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Abstract
Nonlinear regression is a kind of regression analysis and has been widely used in many

practical applications, such as health forecasting, environmental monitoring, and elec-

tric load forecasting. Moreover, the missing data problem, which is usually caused by

mechanical and human factors, is a common issue encountered in predictive analytics.

Improper processing of the missing information will directly affect the accuracy of fore-

casting. Thus, nonlinear regression analysis under missing data scenarios has become

a prevailing problem in the research field. However, it is difficult in most cases to esti-

mate all missing values with complete accuracy due to some reasons and the incorrect

estimation result of missing data can lead to noisy data. Since some classical solutions

are difficult to deal with such complex nonlinear relationships among samples, it is mo-

tivated to develop more robust and powerful regression models to solve the nonlinear

regression problem with missing values.

As an extension version-based support vector machine (SVM), support vector regres-

sion (SVR) is adopted for regression. In this way, it is possible to determine how much

error is acceptable and then match the data with an appropriate line or hyperplane in

higher dimensions through kernel functions. However, SVR with implicit nonlinear

kernel functions such as Gaussian kernel may cause severely over-fitting when process-

ing datasets with characteristics of high noise.

To improve the robustness of the regression prediction model to noisy data, in this the-

sis, multi-local linear models or piecewise linear models are constructed. They are

identified in the same way as an SVR with quasi-linear kernel composed using the data

information as obtained in the fill-in missing values step. SVR with quasi-linear kernel

is a nonlinear modeling method based on the divide-and-conquer strategy. In contrast to

standard kernel functions, SVR with quasi-linear kernel can utilize information on data

structure in nonlinear modeling. Therefore, two-part hybrid models can be applied to

solve the nonlinear regression with missing values. On the one hand, partition informa-

tion is modeled and utilized to generate gating mechanisms while using autoencoders

to fill in missing values. On the other hand, gated linear networks are constructed to

implement multi-local linear models or piecewise linear models by incorporating the

gating mechanism, whose parameters are formulated by using SVR with quasi-linear

kernel.

Though quasi-linear kernel has been utilized in classification tasks, it is still challeng-

ing to exploit it by tackling regression issues, especially in the case of missing values.
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Therefore, in this thesis, using SVR with quasi-linear kernel, we propose a series of

hybrid models to solve nonlinear regression problems under the missing data scenario.

Chapter 1 briefly introduces the background of the nonlinear regression problem under

the missing data scenario and its research status. Then, we introduce two-part hybrid

models and quasi-linear kernel. At last, several challenges are listed, and we propose

different corresponding modeling methods in the following chapters.

Chapter 2 proposes a hybrid model consisting of an autoencoder and a gated linear

network for solving the regression problem under the missing value scenario. A sophis-

ticated modeling and identifying algorithm is developed. Firstly, an extended affinity

propagation (AP) clustering algorithm is applied to obtain a self-organized competi-

tive net dividing the datasets into several clusters. Secondly, a multiple imputation tool

with top p% winner-take-all denoising autoencoders (DAE) is introduced to realize bet-

ter predictions of missing values, in which rough estimates of missing values by using

mean imputation and similarity method within the clusters are used as teacher signals

of DAE. Finally, a gated linear network is designed to construct a local linear regression

model with interpolations in the exact same way as an SVR with quasi-linear kernel

composed using the cluster information obtained in the AP clustering step. Based on

the experiments on five datasets, our proposed method demonstrates its effectiveness

and robustness compared with other traditional kernels and methods with different per-

centages of missing data as 10%, 20%, 30%, 40%, 50%, and 60% when the missing are

completely at the random.

Chapter 3 increases the role of autoencoders and proposes a winner-take-all (WTA)

autoencoder-based piecewise linear model, which consists of two parts: an overcom-

plete WTA autoencoder and a gated linear network. The overcomplete WTA autoen-

coder is a stacked denoising autoencoder (SDAE) designed to play two roles: 1) to

estimate the missing values; 2) to realize a sophisticated partitioning by generating a

broad set of binary gate control sequences. Besides, an iterative algorithm with renewed

teacher signals is developed to train the SDAE. On the other hand, the gated linear net-

work with the generated binary gate control sequences implements a flexible piecewise

linear model for nonlinear regression. By composing a quasi-linear kernel based on the

gate control sequences, the piecewise linear model is then identified in the same way

as a support vector regression. Two comparative experiments are conducted based on

different missing data mechanisms. The accuracy and robustness of the proposed model

have been verified by both experimental results of real-world datasets. Even for a large

fraction of missing data, the role of our proposed model is also apparent.



iii

Chapter 4 proposes an improved hybrid model based on previously proposed models

to solve the nonlinear regression problem under missing data scenarios, consisting of

two parts: an overcomplete WTA autoencoder and a multilayer gated linear network.

The WTA autoencoder is trained in an adversarial training process by taking advan-

tage of gradually renewed teacher signals and the discrimination of missing values and

observed values, and is designed to play two roles: 1) to impute missing components

conditioned on observed samples; 2) to generate gate control sequences. On the other

hand, the multilayer gated linear network with the generated gate control sequences

implements a powerful piecewise linear regression model, whose parameters are opti-

mized by formulating an SVR with deep quasi-linear kernel. Experimental results about

air quality datasets that originally have missing values in this chapter show that the pro-

posed model achieves the best performance in each case. Moreover, results based on

another missing data mechanism also prove that our proposed model yields the best

prediction accuracy with a wide range of missing values.

Chapter 5 concludes the dissertation and provides future work. In summary, three dif-

ferent hybrid models are proposed to solve nonlinear regression problems under the

missing data scenario. Numerical experimental results demonstrate the effectiveness

and robustness of the proposed hybrid models.
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Chapter 1

Introduction

1.1 Nonlinear Regression Problems with Missing Data

The objective of regression analysis in the research field is to establish a model which

can examine the relationship between a response variable (y) and one or more indepen-

dent variables (x). Among these, nonlinear regression is a kind of regression analysis

in which the data is fit into a model and then expressed as a function f (x)→y [1, 2].

As is known to all, simple linear regression connects two variables as a straight line

(y = kx+b), while nonlinear regression connects two variables as a curvilinear relation-

ship. Nowadays, nonlinear regression analysis has been widely used in many pirati-

cal applications, such as utilizing the natural environment to complete health forecast-

ing [3]. Therefore, it is important to develop effective and robust predicting models.

Another inevitable problem becoming more popular is the missing data problem [4, 5,

6], which has been a common phenomenon in the prediction domain. Missing data

(or missing values) are defined as data values that are not stored while observing the

variables of interest and can skew following problems from clinical trials to economic

analysis. Firstly, missing data can lead to bias in parameter estimates. Secondly, it will

reduce the representativeness of the sample. Thirdly, it may complicate the analysis

of the research. Each distortion could threaten the validity of the test and could also

1
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lead to invalid conclusions. Missing data is usually due to mechanical and human fac-

tors which include unobserved samples and observation. Improper processing of the

missing information will directly affect the accuracy of forecasting. Before processing

the missing data problem, it is necessary to understand the mechanism of missing data,

which is divided into three main categories [7, 8]:

• Missing completely at random (MCAR) [9], if there are no relationships between

the absence of missing data and the value itself or any other attributes, it can be

classed as MCAR.

• Missing at random (MAR) [10], usually MCAR is the most common mechanism

in related research, but there is another possibility that missingness only depends

on other observed attributes but not its own value, which is corresponding to

MAR.

• Missing not at random (MNAR) [11], when we say data are MNAR, it means that

the propensity of the value to be missing is closely related to its own value.

Therefore, all these factors prove that missing data problems are ubiquitous and in-

evitable in the nonlinear research field. In this thesis, we analyze the research in recent

years and propose innovative methods to tackle nonlinear regression problems under

the missing data scenarios.

1.2 Research Status

In the literature, people always regard nonlinear regression problems with missing data

as two separate problems, that is, the missing data problem is firstly solved and then

they try to solve nonlinear regression problems based on fill-in datasets. Therefore, we

try to introduce their research status from the perspective of two separate problems.

Methods for solving missing values are described in Fig.1.1 and methods for tackling

nonlinear regression problems are illustrated in Fig.1.2.
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FIGURE 1.1: Methods for solving missing values

1.2.1 Approaches for Solving Missing Data Problems

Deletion Methods

The deletion method is the simplest method for dealing with missing values. According

to different perspectives of data processing, it can be divided into two types: List-wise

or case deletion [12]. Case deletion is suitable for small proportions of missing val-

ues [13], and List-wise deletion may work well when this attribute has little impact on

the research objectives. In popular statistical software packages [14], List-wise deletion

has become the default choice. Accordingly, the deletion method is only valid in the

following circumstances:

• First Case: If the potential impact of the missing data is minimal, missing data

may then be ignored in further analysis.

• Second Case: Only the dependent variable has missing values and it has little

influence on the results.

• Third Case: Data satisfy the MCAR assumption.
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When the proportion of missing data is large, especially when the missing data is not

randomly distributed, the deletion method may lead to deviation of the data and lead to

wrong conclusions.

Imputation Methods

Imputation methods are more common ways of dealing with missing values compared

with discarding [15, 16]. Filling in the missing data through a certain method to form

the complete dataset is crucial for subsequent data processing, analysis, and modeling.

The commonly used imputation methods are as follows:

• Simple imputation

Simple imputation requires replacing missing values for individual value by using

the quantitative or qualitative attributes of all non-missing values [17]. With sim-

ple imputation, missing data can be treated in different ways, such as the mode,

mean or median of available values. Though it is easy, this method may produce

bias or unrealistic results when dealing with high-dimensional datasets. More-

over, with the generation of big data emerging, simple imputation has been proved

that it is inadequate for such datasets because of poor performance.

• Hot-deck imputation method

Hot-deck method handles missing data by matching the missing values with other

complete samples which are the most similar in the dataset and then fills in miss-

ing values by using similar objects [18]. The hot-deck imputation method is well

known in all single imputation methods because it produces rectangular data,

which can be used by secondary data analysts. In addition, this method does

not rely on model fitting to replace missing values, which makes it less delicate to

model specification compared with parametric models (such as regression inter-

polation). The method also reduces the deviation of no-response. Although this

method has been widely used, its concept is not mature enough compared with

other imputation techniques. [19]
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In Sullivan and Andridge [20], a hot-deck imputation method has been proposed,

which allows for the investigation of the impact of missing mechanisms and uses

the information contained in fully observed covariates. Bias and coverage of

estimates from the proposed method have been also investigated by simulation. In

another study by Christopher et al. [21], a fractional hot-deck imputation method

has been proposed to deal with missing values, which is applicable to MAR.

The proposed method produces a small standard error compared with list-wise

deletion, mean imputation methods.

• Clustering method

For missing data processing, clustering methods such as hierarchical cluster-

ing [22] and the k-means clustering [23] are generally tried in the literature. In

study by Jocelyn T. Chi et al. [24], a missing data imputation method based on the

k-means clustering technique has been proposed, which is divided into two steps.

In the first step, k-means clustering is used to obtain clusters, and then missing

values are processed with clustering information. This method is somewhat sim-

ilar to the hot-deck method. If the nearest neighbor samples only consider the

nearest sample, it will degenerate into hot-deck method. Besay Montesdeoca et

al. [25] then proposed a big data k-means clustering and a big data fuzzy k-means

missing values approach which provides robust and efficient output for big data

and reasonable execution time. The fuzzy k-means method was proved to pro-

vide better results with high percentages of missing values in the data, while the

k-means method performed better on the dataset with lower amounts of miss-

ing values. Zhang et al. [26] also proposed multiple imputation clustering-based

approach to deal with missing values in large-scale longitudinal test data of e-

Health. The results show that it could be adapted for different kinds of clustering

in e-Health services.

• Expectation maximization method

Expectation maximization (EM) imputation is an iterative algorithm for deal-

ing with missing values in numerical datasets, which uses the approach of ”im-

pute, estimate and iterate until convergence” [27]. Each iteration consists of two
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phases: expectation and maximization. The expectation step estimates the miss-

ing value given observed samples, while in maximization, the estimated values

are used to maximize the probability of all data [28]. In Rubin et al. [29], the

method of handling missing data has been investigated using a dataset that ana-

lyzed the effects of feeding behavior in drug-treated and untreated animals. The

EM method has been used and compared with other methods. The authors then

concluded that the EM algorithm is the best method for the type of data they use.

However, it may lead to the results being specific to idiosyncrasies in the dataset.

The EM algorithm has been also used to tackle the problem of training Gaus-

sian mixture in large high-dimensional datasets with missing values in another

study [30]. The results showed that the performance was significantly improved

compared with other basic imputation methods. However, it has led to expensive

matrix calculations.

• Imputation methods inspired by machine learning

With the advent of the era of big data, it is difficult for traditional learning meth-

ods to deal with missing data. Computational methods based on machine learning

are complex techniques and mainly involve developing a predictive method that

uses unsupervised or supervised learning to deal with missing values. These tech-

niques try to handle missing values depending on the information obtained from

the non-missing values in the data using unlabelled or labeled data [31]. In most

cases, if available samples have useful information to deal with missing values,

high predictive precision can be maintained.

State-of-the-art imputation algorithms for solving missing data problems are pri-

marily based on deep learning since latent relationships among samples can be

learned [32]. The denoising autoencoder (DAE)-based approaches [33, 34, 35]

work well in practice but require complete data during the training process. In

many cases, missing values are inherent problems of the structure, and obtaining

a complete dataset is impossible. In the existing methods, mean imputation is

often used as teacher signals during training the DAE. In [36], a generative model

for missing data imputation is proposed, and various experiments show that it is

obviously superior to state-of-art imputation algorithms.
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FIGURE 1.2: Methods for solving nonlinear regression problems

• Multiple imputation by chained equations method

Multiple imputation by chained equations method is a kind of traditional multiple

imputation algorithms [37, 38]. It is used to replace missing data under the MAR

or MCAR assumption, that is the probability of missing a value depends only on

the observed values, not on the unobserved values. Many of the original mul-

tiple imputation algorithms assumed large joint models of all variables, such as

joint normal distributions. MICE is an alternative, flexible method to these joint

models and has been applied in datasets with thousands of observations hundreds

of variables [39, 40]. In the MICE, a series of regression models are run where

each sample with missing data is modeled from other variables in the dataset,

which means that each variable can be modeled based on its distribution. For in-

stance, binary variables can be modeled with logistic regression, and continuous

variables can be modeled with linear regression.

1.2.2 Methods for Solving Nonlinear Regression Problems

Neural Network Methods

Neural network methods are based on mathematical models of the human brain [41].

There are complex relationships between networks of prediction methods that allow

for response variables. In the literature, many researchers have proposed forecasting
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methods using machine learning algorithms instead of traditional classical methods.

Artificial neural networks (ANN) can well understand the nonlinear mechanism of at-

mospheric phenomena and have high predictive performance, so it is widely used in

forecasting research [42, 43]. Since then, researchers have focused their attention on

the improvement of prediction accuracy and started to focus on the development of hy-

brid models combining various optimization methods with ANN instead of traditional

simple neural networks [44, 45]. Currently, as a field of machine learning for artifi-

cial intelligence, deep learning has been successfully applied to computer vision [46],

speech recognition [47], natural language processing, and so on. In addition, it is also

widely used for nonlinear regression [48]. Despite the increased complexity of neu-

ral network architectures for modern applications, they still consist of a combination

of basic structures such as multi-layer perceptions (MLP), recurrent neural networks,

and convolutional neural networks, which are well known and explored for decades.

Nevertheless, these models are all edified with complete datasets.

Statistical Methods

In statistics, the goal of the nonlinear regression problem is to make the sum of squares

as small as possible. In nonlinear regression, when the sum of squares of residuals is

the smallest, the likelihood can be maximized [49]. For the nonlinear regression, the

forecasting model depends on one or more parameters nonlinearly. In general, statistical

methods can be applied when the relationship between variables follows the function in

a specific way or the dataset is very small.

Segmented Regression

Segmented regression, which is known as broken-stick regression or piecewise regres-

sion, is a popular method in regression analysis. The independent variables are divided

into several intervals, and each interval is fitted with a separate line segment. The seg-

mented regression method can also analyze multivariate data by dividing various in-

dependent variables. It may have better results especially when independent variables
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are clustered into different groups and show different relationships between variables in

these regions. The boundaries between line segments can be regarded as breakpoints.

Moreover, segmented linear regression, also known as the piecewise linear regression

method [50], is a kind of segmented regression method whereby the relations among

the intervals are acquired by linear regression analysis.

Kernel Methods

Kernel methods are a kind of algorithm, and their importance has increased in the ma-

chine learning field since the 1990s. The most famous example of kernel methods is

supoort vector machine (SVM) [51], which is the latest technology for classification

problems. Kernel methods do not care about data structure or dimension. They are de-

fined by operating on the kernel function. For the regression problem, the re-expression

of SVM is soon produced named support vector regression (SVR) [52], but SVR has

some problems related to its expression and efficiency. Least squares support vector

machine (LS-SVM) [53] or kernel ridge regression [54] is an improvement of standard

SVM, trying to overcome these shortcomings. Kernel ridge regression combines ridge

regression (linear least squares and L2 norm regularization) with the kernel technique.

Therefore, it learns linear functions in the space induced by their respective kernels and

data. For the nonlinear kernel, it corresponds to the nonlinear function in the original

space.

Time Series Methods

The time series problem is a kind of typical nonlinear regression problem which is or-

dered lists of parameters or variables and provided at equal time intervals. Forecasts

are continuous patterns over time such as sales growth, stock market analysis, or gross

national product [55]. The most common time-series method is named Autoregressive

Integrated moving average which was first proposed in the early 1970s and can divide

the time-series problem into three phases: identification, testing and estimation, and ap-

plication. With the popularity of neural networks, the most commonly used methods for
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solving time series problems are recurrent neural networks and long short-term mem-

ory. The recurrent neural network is a generalization of the feedforward neural network

but it can utilize internal state (memory) in order to process sequences of inputs. The

long term short term memory network is an improved version of the recurrent neural

network that makes it easier for memory to remember past data [56].

Hybrid Methods

In recent years, researchers have become interested in combining different methods for

more accurate predictions. These combinations are also called hybrid models. Each hy-

brid model consists of completely independent and effective prediction methods. The

main purpose is to use their characteristics for reducing the prediction error. For in-

stance, in [57], authors used back-propagation neural network and GM (1,1). In order

to combine these methods, appropriate weights should be assigned. In this work, the

weight is calculated based on Shapley value distribution.

1.3 Hybrid Modeling Methods

In most real applications, the estimation of missing values cannot achieve the 100%

because of specific reasons and the imperfect estimation result of missing data can be

served as noisy data. Some classical solutions are difficult to model such complex

nonlinear relationships among samples. Therefore, it is motivated to develop more

robust and powerful regression models to solve the nonlinear regression problem with

missing values.

In this thesis, we construct multi-local linear models or piecewise linear models be-

cause of their robustness to noise data, and they are identified in the exact same way

as an SVR with the quasi-linear kernel composed using the data information obtained

in the fill-in missing values step. SVR with quasi-linear kernel is a nonlinear modeling

method based on divide-and-conquer strategy, which is utilized to solve nonlinear re-

gression problems. Different from standard kernel functions that are black-box models



Chapter 1. Introduction 11

and unable to incorporate prior knowledge of datasets, SVR with quasi-linear kernel can

utilize information on data structure in nonlinear modeling. Therefore, two-part hybrid

models can be proposed to solve the nonlinear regression with missing values. In one

part, partition information is modeled and utilized to generate gating mechanisms while

using autoencoders to fill in missing values. For the other part, gated linear networks

are constructed to implement multi-local linear models or piecewise linear models by

incorporating the gating mechanism, whose parameters are formulated by using SVR

with quasi-linear kernel. In this way, SVR with quasi-linear kernel can realize nonlinear

regression by using a composed data-dependent kernel. To easily understand it, we first

briefly address SVR with general kernels.

1.3.1 SVR Based Regression

SVR is an extension version-based SVM that is used for regression. It maintains all

the main features that fit the algorithm. In the case of regression, the main idea is to

minimize error, individualizing the hyper-plane which maximizes the margin.

Consider a d-dimensional dataset S ={(x1,y1),...,(xn,yn)}, where xi ∈ Rd is the i-th input

feature vector and yi ∈ R is the target output of i-th sample. A regression function is

defined by using a kernel function as:

f (x) = wTϕ(x) + b (1.1)

where ϕ(·) denotes the feature function which maps data from input data to a high-

dimensional feature space.
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In the following, we will focus on how to estimate linear parameters using SVR formu-

lation. Based on the structural risk minimization principle as:

min
w,b,ξi,ξ

∗
i

1
2
wTw+C

N∑
i=1

(ξi + ξ
∗
i )

s.t.


wTϕ(x) + b−yi ≤ ε + ξ∗i

yi−w
Tϕ(x)−b ≤ ε + ξi

ξi, ξ
∗
i ≥ 0, i = 1,2, ...,N

(1.2)

where yi denoted the ideal output of zi, C is a non-negative weight to determine the

penalization of prediction errors, N is the number of observations, and ξt, ξ
∗
t are slack

variables. By introducing Lagrange multipliers µ ≥ 0, µ∗ ≥ 0, α ≥ 0, α∗ ≥ 0, we can

construct the Lagrange function as:

L(w,ξt,ξt∗,α,α∗,µ,µ∗)=
1
2
wTw+C

N∑
i=1

(ξi + ξ
∗
i )

+

N∑
i=1

αi(f (xi)−yi−ε −ξt) +

N∑
i=1

αi(− f (xi) +yi− ε − ξ
∗
i )−

N∑
i=1

(µξi +µ
∗ξ∗i )

(1.3)

Then it can be solved through getting the saddle point:

∂L
∂w

= 0→Θ =

N∑
i=1

(α−α∗)ϕ(xi)

∂L
∂ξ

= 0→C = α+µ

∂L
∂ξ∗

= 0→C = α∗+µ∗

(1.4)
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After converting the Lagrange function into its dual problem, we can get:

max W(α,α∗) =−
1
2

N∑
i, j=1

(αi−α
∗
i )(α j−α

∗
j)K(xi,x j)

+

N∑
i=1

(αi−α
∗
i )yi− ε

N∑
i=1

(αi +α
∗
i )

(1.5)

s.t.
N∑

i=1

(αi−α
∗
i ) = 0. α,α∗ ∈ [0,C].

where K(xi, x j) = ϕT (xi)ϕ(x j) is the kernel function. From the above, with the Lagrange

multipliers αi and α∗i obtained, the regression model can finally be represented as:

f (z) =

N∑
i=1

(αi−α
∗
i )K(x, xi) + b (1.6)

Traditional basis kernel function includes Linear Kernel, Polynomial Kernel and Radial

Basis Function (RBF) Kernel [58, 59], defined by:

K(xi, x j)linear = xT
i x j (1.7)

K(xi, x j)poly = (1 + xT
i x j)d (1.8)

K(xi, x j)RBF = exp
−‖xi− x j‖

2

σ2

 (1.9)

For SVR, choosing an explicit kernel function is very important, which maps the sam-

ple from the original space to another high-dimensional feature space. However, SVR

with implicit kernel mapping such as RBF kernel may not have a good performance

on nonlinear regression problems, since the dataset is always large and complex which

may cause over-fitting problems.
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1.3.2 SVR with Quasi-Linear Kernel

Suppose a given dataset whose sample is x ∈ Rd. We then build the gated linear network

realizing a multi-local linear model, which is defined by:

f (x) =

M∑
j=1

(
ΩT

j x + b j
)
g j(x) + b (1.10)

where M is the number of linear base models ΩT
j x + b j, {Ω j,b j,b} is the parameter set,

and R j(x) ∈ {0,1} is a gate signal controlling whether the j-th base model works.

In order to construct Eq.(1.10), the functions g(x) need to be evaluated. B.Zhou et

al [60] used the RBF to formulate g(x), defined by:

g̃ j(x) = e
−

(x−µ j)
2

λσ2
j , g j(x) =

g̃ j(x)∑M
i=1 g̃i(x)

(1.11)

where M is the number of local linear partitions, λ is an appropriate scale parameter, µi

and σi are i-th local-linear cluster’s center and width which need to be evaluated.

After that, W. Li et al. [61] proposed a new method to generate the gated signals by pre-

training a winner-take-all autoencoder. The gated signals can be regarded as outputs of

autoencoder, defined by:

g j(x) =


1, wT

j x + θ j > 0

0, wT
j x + θ j ≤ 0

j = 1, . . . ,M. (1.12)

where w j and θ j are the weights and bias and M is the number of nodes of the pre-trained

autoencoder.

By importing two vectors Φ(z) and Θ defined as:

Φ(x) =
[
g1(x), xTg1(x), . . . ,gM(x), xTgM(x)

]T
(1.13)

Θ =
[
b1,Ω

T
1 , . . . ,bM,Ω

T
M

]T
(1.14)
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Eq.(1.10) can be expressed as a linear-in-parameter form as:

f (x) = ΘT Φ(x) + b. (1.15)

where Φ(x) is the regression vector and Θ is called linear parameter vector. In the

following, like the standard SVR, we concentrate on how to estimate linear parame-

ters using SVR formulation. Based on the structural risk minimization principle, a QP

optimization problem is obtained:

min
Θ,b,ξi,ξ

∗
i

1
2

ΘT Θ+C
N∑

i=1

(ξi + ξ
∗
i )

s.t.


ΘT Φ(x) + b−yi ≤ ε + ξ∗i

yi−ΘT Φ(x)−b ≤ ε + ξi

ξi, ξ
∗
i ≥ 0, t = 1,2, ...,N

(1.16)

By applying the Lagrange function through introducing Lagrange multipliers µ ≥ 0,

µ∗ ≥ 0, α ≥ 0, α∗ ≥ 0, the QP optimization problem can be converted into its dual

problem , we can get:

max W(α,α∗) =−
1
2

N∑
i, j=1

(αi−α
∗
i )(α j−α

∗
j)K(xi,x j)

+

N∑
i=1

(αi−α
∗
i ) f (x)− ε

N∑
i=1

(αi +α
∗
i )

(1.17)

s.t.
N∑
i

(αi−α
∗
i ) = 0. α,α∗ ∈ [0,C].

where K(xi, x j) is a data-dependent composed kernel called quasi-linear kernel, defined

as:

K(xi, x j) = ΦT (xi)Φ(xk)

= (1 + xix j)
M∑

k=1

gk(xi)gk(x j)
(1.18)
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From the above, with the Lagrange multipliers αi and α∗i obtained, the regression model

can finally be represented as:

f (x) =

N∑
i=1

(αi−α
∗
i )K(x, xi) + b. (1.19)

1.3.3 SVR with Deep Quasi-Linear Kernel

Then an extension version has been proposed in Ref. [62], and it takes advantage of

the pre-trained deep neural network to achieve the task. The multilayer gated linear

network realizing a powerful piecewise linear model is defined by [62, 63]:

f (x) =

MS∑
j=1

(
Ω

(S )T
j aS−1(x) + b(S )

j

)
g(S )

j (x) + b (1.20)

ai(x) =

Mi∑
j=1

(
Ω

(i)T
j ai−1(x) + b(i)

j

)
g(i)

j (x) (1.21)

i = 1,2, ...,S −1; a0(x) = x

where S is the number of layers in the multilayer gated linear network, Mi is the number

of linear base models Ω
(i)T
j ai−1(x) + b(i)

j in the i-th layer, {Ω
(i)
j ,b

(i)
j , b} is the parameter

set, and g(i)
j (x) ∈ {0,1} is a gate signal controlling whether the j-th base model in the i-th

layer works.

When the gate signals are given, the multi-layer gated linear network can reduce to a

linear model. By denoting Φ0 = x and Θ0 = [], we import two vectors ΦS (x) and ΘS

defined as:

Φi(x) = [g(i)
1 (x),ΦT

i−1(x)g(i)
1 (x), ...,g(i)

Mi
(x),ΦT

i−1(x)g(i)
Mi

(x)]

= [g(i)T (x)⊗ [1 ΦT
i−1(x)]]T (1.22)

Θi = [ΩΩΩ(i)T ⊗ [1 ΘT
(i−1)]]

T (i = 1,2, ...,S ) (1.23)

where g(x) = [g1(x), ...,gM(x)]T , and ⊗ represents Kronecker production, ΩΩΩi = [b(i)
1 ,Ω

(i)T
1

, ...,b(i)
Mi
,Ω(i)T

Mi
)]T .
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ΦS (x) gives a multi-linear mapping since for each given g(i)(x) it is a linear mapping.

Therefore, the S -layer gated linear network can be compactly expressed as a linear-in-

parameter form as:

f (x) = ΘT
S ΦS (x) + b (1.24)

Same as subsection 1.3.2, the Eq.(1.24) can be optimized by using SVR with the deep

quasi-linear kernel in a recursive form defined by:

Ki(xl, x j) = Θi
T (zl)Θi(x j)

= (1 + Ki−1(xl, x j))g(i)T
(xl)g(i)(x j)

(i = 1, ...,S )

(1.25)

where K0(xl, x j) = xT
l x j. Therefore, the regression model can finally be represented as:

f (x) =

N∑
l=1

(αl−α
∗
l )KS (x, xl) + b (1.26)

1.4 Challenges

As mentioned above, since we try to propose two-part hybrid models consisting of

autoencoders and gated linear networks, from the modeling perspective, we need to

consider the following three issues:

• Unlike traditional methods, since missing values are existed, accurate teacher sig-

nals are needed before training the overcomplete autoencoder. Improper process-

ing of teacher signals will directly affect the accuracy of forecasting. Therefore, a

more suitable and accurate method should be used as the preprocessing procedure

to generate accurate teacher signals especially the proportion of missing data is

large. Moreover, how to better train autoencoders to fill in missing values should

be considered simultaneously.
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• Considering gating mechanisms, since there are many ways to realize partition,

the key points we need to consider are which partitioning method is more suit-

able for application in our proposed model and how to utilize data information to

generate gate mechanisms.

• Finally, how to formulate a support vector regression (SVR) with quasi-linear

kernel to optimize parameters should also be considered.

1.5 Goals of the Thesis

The main goal of this research is to focus on solving nonlinear regression problems

with missing data. In this thesis, two-part hybrid modeling methods consisting of au-

toencoders and gated linear networks are developed. More precisely, autoencoders are

utilized to estimate missing values and gated linear networks are constructed to imple-

ment multi-local linear models or piecewise linear models by incorporating the gating

mechanism, whose parameters are optimized by formulating SVR with quasi-linear ker-

nel.

Though the quasi-linear kernel has been utilized in classification tasks, it is still chal-

lenging to exploit it by tackling regression issues, especially in the case of missing

values. Therefore, according to the different solutions to the above three problems,

we propose a series of hybrid models to solve nonlinear regression problems under the

missing data scenario.

The work presented here aims to assess the performances of the hybrid models com-

pared with traditional modeling methods based on different missing mechanisms. The

thesis also shows the performance of proposed models even in dealing with large por-

tions of missing values.
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FIGURE 1.3: Flow diagram of this thesis

1.6 Thesis Outlines and Main Contributions

This thesis is divided into five chapters to introduce my work accumulated in my doc-

toral career. Chapter 1 introduces the background, related work, and an outline for

the whole thesis. Chapter 2 proposes a hybrid modeling method consisting of the AP

clustering step, an autoencoder, and a gated linear network for solving the regression

problem under the missing value scenario. Chapter 3 proposes a winner-take-all (WTA)

autoencoder-based piecewise linear model consisting of an overcomplete WTA autoen-

coder and a gated linear network to solve the nonlinear regression problem with missing

data. Chapter 4 proposes an improved hybrid model based on previous work to solve

the same problem. Chapter 5 makes the conclusion for the whole thesis and illustrates

future research directions. The flow of the structure is illustrated in Fig.1.3.

This thesis summarizes the research on the nonlinear regression problem with missing

data. The main contents and contributions are shown as follows:

Chapter 2 proposes a hybrid model consisting of an autoencoder and a gated linear

network for solving the regression problem under missing value scenario. A

sophisticated modeling and identifying algorithm is developed. Firstly, an ex-

tended affinity propagation (AP) clustering algorithm is applied to obtain a self-

organized competitive net dividing the datasets into several clusters. Secondly, a
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multiple imputation tool with top p% winner-take-all DAE is introduced to realize

better predictions of missing values, in which rough estimates of missing values

by using mean imputation and similarity method within the clusters are used as

teacher signals of DAE. Finally, a gated linear network is designed to construct a

piecewise linear regression model with interpolations in an exact same way as a

SVR with a quasi-linear kernel composed using the cluster information obtained

in the AP clustering step. Based on the experiments on five datasets, our proposed

method demonstrates its effectiveness and robustness compared with other tradi-

tional kernels and state-of-the-art methods even on datasets with large percentage

of missing values.

The main contributions related to this model are shown as follows:

• This paper is the first to present a hybrid model which combines winner-

take-all DAE and a gated linear network to solve forecasting problem with

missing data.

• To the best our knowledge, our studies on filling in missing data before

training DAEs firstly use AP clustering algorithm for constructing the self-

organized competitive net, which makes DAEs get more accurate and ef-

fective information during training, and as to the regression phase, we can

also make full use of cluster information efficiently to build a local linear

prediction model.

Chapter 3 proposes a WTA autoencoder-based piecewise linear model to solve the

nonlinear regression problem under the missing value scenario, which consists of

two parts: an overcomplete WTA autoencoder and a gated linear network. The

overcomplete WTA autoencoder is a stacked denoising autoencoder (SDAE) de-

signed to play two roles: 1) to estimate the missing values; 2) to realize a sophis-

ticated partitioning by generating a broad set of binary gate control sequences.

Besides, an iterative algorithm with renewed teacher signals is developed to train

the SDAE. On the other hand, the gated linear network with the generated binary

gate control sequences implements a flexible piecewise linear model for nonlin-

ear regression. By composing a quasi-linear kernel based on the gate control
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sequences, the piecewise linear model is then identified in the same way as a

support vector regression.

The main contributions are that:

• By increasing the role of the denoising autoencoder we improve the over-

complete WTA autoencoder which plays two roles: 1) to estimate the miss-

ing values as a multiple imputation tool; 2) to realize a sophisticated parti-

tioning by generating a broad set of binary gate control sequences using the

feature layer of SDAEs.

• By using the binary gate control sequences, the gated linear network imple-

ments a flexible piecewise linear model for the nonlinear regression.

Chapter 4 proposes an improved hybrid model to solve the nonlinear regression prob-

lem under missing data scenarios, consisting of two parts: an overcomplete WTA

autoencoder and a multilayer gated linear network. The WTA autoencoder is

trained in an adversarial training process by taking advantage of gradually re-

newed teacher signals and the discrimination of missing values and observed val-

ues, and is designed to play two roles: 1) to impute missing components con-

ditioned on observed samples; 2) to generate gate control sequences. On the

other hand, the multilayer gated linear network with the generated gate control

sequences implements a powerful piecewise linear regression model, whose pa-

rameters are optimized by formulating a SVR with a deep quasi-linear kernel.

Experimental results based on different real-world datasets demonstrate the ef-

fectiveness of our proposed hybrid model.

The main contributions are that:

• By using the WTA autoencoder as a generator and introducing a discrimi-

nator, we can expect a better adversarial training of the WTA autoencoder

by taking advantage of gradually renewed teacher signals and the discrimi-

nation of missing values and observed values.
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• By using a multilayer gated linear network and the generated layered gate

control sequences, we implement a more powerful piecewise linear regres-

sion model, whose parameters are then optimized by formulating a SVR

with a deep quasi-linear kernel in a recursive form

Chapter 5 concludes this work, summarizes the thesis and gives suggestions for fur-

ther research.



Chapter 2

A Hybrid Model for Nonlinear

Regression with Missing Data Using

Quasi-Linear Kernel

2.1 Introduction

1 The objective of regression analysis in research field is to establish a model which

can examine the relationship between variable of interest. Therefore, it is important

to develop accurate and robust predicting models. Statistical methods like linear re-

gression have been widely used in prediction domain. However, these linear models

may not be able to achieve reliable prediction if the sequence is nonlinear or irregular.

Moreover, the existence of noisy data which is a common phenomenon in scientific do-

main further reduces the prediction accuracy of these linear models. To overcome these

shortcomings, AI methods, including ANN [64] and Hidden Markov Model [65] have

been developed rapidly. However, many real-world applications like wind power pre-

diction [66] are too complex to be modeled by the above single global model. In recent

years, SVR [67] has been applied in nonlinear regression forecasting. It was proposed

1This chapter mainly extends the Journal paper: H. Zhu, Y. Tian, Y. Ren and J. Hu, “A Hybrid Model
for Nonlinear Regression with Missing Data Using Quasi-Linear Kernel”, IEEJ Trans. on Electrical and
Electronics Engineering, Vol.15, No.12, pp.1791-1800, Dec 2020.

23
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by the AT&T BELL Laboratories for classification, and then extended for the purpose

of regression. But on its nonlinear expansion, choosing explicit kernel function for spe-

cific applications is challenging, which maps the sample from original space to another

high-dimensional feature space [68].

Another inevitable problem becoming more popular is the missing data problem [4, 5],

which has been a common phenomenon in prediction domain. Missing data is usually

due to mechanical and human factors which includes unobserved samples and observa-

tion. Improper processing of the missing information will directly affect the accuracy of

forecasting. The simplest method to solve missing data problem is deletion. However, it

may discard a large amount of information in datasets. In particular, complete samples

are too little to provide effective information especially when the proportion of missing

values is large. Another approach is called imputation [19], which is a class of proce-

dures that aims to replace the missing data with estimated values such as mean impu-

tation and K-Nearest-Neighbors(KNN) imputation [69]. Moreover, clustering methods

like K-POD [24] become more popular since similarities between samples can be found

to estimate missing values. But it still has some disadvantages. Firstly, we have to set

the number of clusters during K-means algorithm. Secondly, a simple and inexpensive

fill-in step has been applied during update procedure, which may lead to inaccurate

results. Besides, some advanced algorithms like EM algorithm [70] and multiple impu-

tation [71] which is a statistical method which aims to allow for several representative

imputation of the dataset have also been widely used for solving missing data problem.

In order to solve aforementioned problems, we propose a hybrid model consisting of

two parts, to solve nonlinear regression problem under missing data scenario. As one

part, a neural network is firstly proposed to solve missing data problem. In this way,

an overcomplete winner-take-all DAE [72] is pre-trained as a multiple imputation tool

to learn nonlinear relationships combined with a novel preprocessing method. Differ-

ent from traditional autoencoders, DAEs allow corrupted versions as input data during

training, where corruptions can be produced either by additive mechanisms or by miss-

ing data. In the context of DAEs, DAEs based imputation can naturally be combined

with multiple imputation scenario, since DAEs draw several posterior predictive distri-

butions through setting different random weights when initializing DAEs. Moreover,
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the estimation of missing values cannot achieve the perfect 100% because of specific

reasons in most real applications. In such case, the imperfect estimation result about

missing data can be served as noisy data. Traditional regression models may be sensi-

tive to noisy data due to overfitting problem. Therefore, as the other part, we build a

gated linear network so as to realize a piecewise linear regression model. After recon-

structing piecewise local linear model with interpolations, nonlinear regression problem

can be transferred into linear-in-parameter problem, which can be finally solved by us-

ing SVR formulation [73, 74] in the renewed feature space.

However, training DAEs requires complete data at initialization, and we also need parti-

tion information during building gated linear network. Therefore, we extend a novel AP

clustering algorithm [75] combined with two different updating methods during the pre-

processing procedure named self-organized competitive net. By mean of this method,

accurate teacher signals can be obtained during training phase and it can also provide

parameters for further gated linear network.

Therefore, the general methodology is proposed for modeling and identifying the hybrid

model. Firstly, an extended AP clustering algorithm with iterations is applied to obtain

a self-organized competitive net. Secondly, a multiple imputation tool with top p%

winner-take-all DAE is introduced to learn latent interactions among datasets so as to

realize better predictions of missing values, in which rough estimates of missing values

by using mean imputation and similarity method within the clusters are used as the

initial values before training DAEs. Besides, multiple imputation can be adopted during

training phase to provide several slightly different imputed values. Finally, a gated

linear network is constructed to implement the piecewise linear regression model with

interpolations in an exact same way as an SVR with a quasi-linear kernel composed

using the cluster information obtained during the self.

Our main contributions in this chapter are as follows. Firstly, this chapter is the first to

present a hybrid model which combines winner-take-all DAE and a gated linear network

to solve forecasting problem with missing data. Secondly, to the best our knowledge,

our studies on filling in missing data before training DAEs firstly use AP clustering algo-

rithm for constructing the self-organized competitive net, which makes DAEs get more
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accurate and effective information during training, and as to the regression phase, we

can also make full use of cluster information efficiently to build a local linear prediction

model.

The rest of the chapter is structured as follows: Section 2.2 formulates local linear model

with missing data. Then, a novel AP clustering algorithm is introduced as a preprocess-

ing method in Section 2.3. Section refsec3.4 presents an overcomplete winner-take-all

DAE to realize better predictions of missing values. In section 2.5, a piecewise local lin-

ear regression is given, and followed by numerical experiments in Section 2.6. Finally,

conclusions are summarized in Section 2.7.

2.2 Problem Formulation

Suppose a given dataset whose sample is x ∈ Rd with missing values. The missing

components are denoted by Nx ⊆ [d] = {1,2, ...,d}.

In consideration of nonlinear regression problem, we build a hybrid model consisting

of an overcomplete DAE and a gated linear network. As shown in Fig.2.1(b), the DAE

is defined by:

z = DAE(W,c, x) (2.1)

where {W,c} is parameter set, and the gated linear network is defined by:

f (z) =

M∑
j=1

(ΩT
j z + b j)γ j(z) + b (2.2)

where M is the number of linear node, and {Ω j,b j,b} is the parameter set, γ j(z) is the

gate control signal generated by a self-organized competitive net.

The output of the DAE in Eq.(2.1), z, gives a prediction of x with the missing values

estimated. The gated linear network in Eq.(3.2) performs the nonlinear regression as a

piecewise linear regression model with interpolations, in which ΩT
j z + b j is local linear
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FIGURE 2.1: The overall structure of the hybrid model

model and γ j(z) is a RBF interpolation function defined by:

γ j(z) = exp

− (z−µj)2

λσ2
j

 (2.3)

where µ j and σ j are the center and the width of the local clusters, and λ is an appropriate

scale parameter.

In general, our essential problems are how to estimate the three sets of parameters

{M,µ j,σ j}, {W,c} and {Ω j, b j, b}, by using the training data. We then propose a so-

phisticated modeling and identifying algorithm for the hybrid model, which consists of
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three consecutive steps:

Step 1 By incorporating the mean imputation for filling missing data, AP clustering

algorithm is extended to the case where there are missing data. With the extended

AP clustering algorithm a self-organized competitive net is obtained to divide

the dataset into M clusters. Then the centers and the sizes of clusters give the

estimates of µ j andσ j. On the other hand, The mean imputation and the similarity

method within clusters provides rough estimates of missing values.

Step 2 As shown in Fig.2.1(a), by using the rough estimates of missing values in the

first step as the teacher signals, we train a winner-take-all DAE to obtain a pre-

diction of x with missing values estimated.

Step 3 As shown in Fig.2.1(b), based on the output of DAE, z, a prediction of x with

missing values estimated, the competitive net may be updated, if needed, to obtain

the updated estimates of µi and σi. And then an SVR formulation is introduced

to optimize the linear parameter set {Ω j, b j, b} in the reproduced feature space to

provide final estimates.

2.3 An Extended Clustering for Partitioning

In this section, we will introduce the extended AP clustering algorithm aimed at obtain-

ing both teacher signals and parameters {M,µ j,σ j} for constructing the gate constrol

signal γ j(z).

2.3.1 AP Clustering Algorithm

An AP clustering Algorithm is a kind of fast clustering algorithm, which has several

advantages compared with other traditional clustering methods. Firstly, AP clustering

method does not need to specify parameters to decide the number of clusters. Secondly,

all data points can be considered as potential centers simultaneously instead of creating
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new clustering centers [76]. Thirdly, the results of executing multiple times are exactly

the same, that is, there is no need to randomly select initial values.

Aimed at finding appropriate exemplars (clustering center), ‘Responsibility’ R(i,k) and

‘Availability’ A(i,k) are set as two evaluation criteria. R(i,k) indicates the degree to

which data point k is suitable as the clustering center of data point i, and A(i,k) rep-

resents the suitability of data point i to select data point k as its exemplar. The larger

A(i,k) + R(i,k) is, the more likely data point k will be the final exemplar. In the iter-

ative process, AP algorithm continuously updates R(i,k) and A(i,k) of each data point

until it generates m accurate exemplars, and distributes the remaining data points to the

corresponding clustering in the mean time.

In the first stage, we calculate an n×n similarity matrix S for n data points, update

R(i,k) of each point in the similarity matrix and calculate A(i,k). In addition, S (i,k)

takes the negative value of the Euclidean distance between i and k, and we set S (i,k)

as the median of the entire matrix when i = k, which also affects the final number of

clusters. Therefore, The main formulas in AP algorithm are:

Rt+1(i,k) =


S (i,k)−max

j,k
{At(i, j) + S (i, j)} i , k

S (i,k)−max
j,k

S (i, j) i = k
(2.4)

At+1(i,k) =


min{0,Rt(k,k)+

∑
j,i,k

max{Rt( j,k),0}} i ,k∑
j,k

max{0,Rt( j,k)} i =k
(2.5)

where j ∈ {1,2, ...,n}. In Eq.(2.4), we only consider which point k is most likely to be

the exemplar of point i, but neglect whether k could be seen as the clustering center of

other data points, which may cause final number of clustering centers to be larger than

the actual. As a result, Eq.(2.5) is proposed as the cumulative proof of selecting k as its

clustering center.

Then in each iterative step, Rt+1(i,k) and At+1(i,k) are updated with the one in last

iteration. The damping factor λ̂ is used to eliminate oscillation and adjust convergence
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speed, where λ̂ ∈ [0,1] and default λ̂ = 0.5. The updating formulas are:

Rt+1(i,k) = λ̂×Rt(i,k) + (1− λ̂)×Rt+1(i,k) (2.6)

At+1(i,k) = λ̂×At(i,k) + (1− λ̂)×At+1(i,k) (2.7)

Finally, we calculate A(i,k) + R(i,k) to test the decision of selecting the clustering cen-

ter. If the clustering center remains constant after several iterations, or the maximum

number of iterations is reached, then we terminate the overall procedure.

2.3.2 Fill-in Methods for Each Updating Iteration

Next, fill-in step should be discussed based on AP clustering algorithm to generate new

dataset. The filling in is done per iteration until convergence.

Firstly, we use its conditional mean to replace the missing data point[77]. That is:

x0
t =

 E[Xt|xobs] if t ∈ Nx

xt otherwise
(2.8)

where x0
t is the initial estimating version of x, and Xt is the tth co-variate. Then AP

clustering algorithm is used to obtain initial cluster assignments and record its assigned

cluster C. In the following, two methods can be used to update unobserved portion

for each iteration. One is a kind of computationally inexpensive method which aims at

determining the range of plausible values roughly and effectively. Based on it, missing

values can be updated through conditional mean method based on clustering result.

Thus:

xn
t =

 E[XCt|xCobs] if t ∈ Nx∪ x ∈C

xt otherwise
(2.9)

where xn
t is the estimated value of nth iteration. Another updated method is to calculate

the weight between the observed data in the same cluster. The detailed algorithm is

shown as follows:
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(1) Let ẋ denotes another sample vector in the same cluster. Calculate the similarity

between x and ẋ. This paper defines the similarity metric between data points in

input space as:

s =
1

distance(x, ẋ)
(2.10)

where Euclidean distance is assigned to calculate the distance between samples.

(2) Calculate the weight between x and other samples in the same cluster in sequence.

For instance, the weight of missing data sample x corresponding to ẋ can be defined

as:

w j =
s j∑n

j′=1 s j′
(2.11)

(3) Finally, we perform a weighted estimation of the missing values, which is calculated

as:

xn
t =


∑n

j=1w jXCt if t ∈ Nx∪ x ∈C

xt otherwise
(2.12)

in which XCt means all the other samples in the same cluster and w j is its corre-

sponding weight.

More concretely, experimental results suggest that repeating 3 or 4 times of conditional

mean method and then using the second weighted estimating method until convergence

can be more efficient and delivers statistically higher performance. We summarize the

whole procedure in Algorithm 1.

Therefore, the information about the number of clusters M, µi and σi of ith cluster can

be acquired in the last iteration simultaneously, in which µi and σi are set as the center

and radius of the ith data cluster. Moreover, rough estimates of missing values z′ = xn
t

can also be obtained simultaneously.
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Algorithm 1 AP clustering algorithm for missing data during preprocessing procedure
Input: sample x with missing values
Output: rough estimates of missing values and cluster information about µ, σ and M
For each i ∈ [1,3] do

1. Fill in unobserved entries through conditional mean method;

2. Update clustering result with AP clustering algorithm;

End For
Repeat

3. Fill in unobserved entries through weighted estimating method;

4. Update clustering result with AP clustering algorithm;

until Convergence

2.4 Denoising Autoencoders for Missing Data

2.4.1 Denoising Autoencoders

A traditional autoencoder is an unsupervised learning algorithm which is mainly used

for feature extraction or dimensional reduction. For encoder phase, an autoencoder

takes an input x ∈ [0,1]d and then maps it into a different representation h ∈ [0,1]d′ ,

where d′ means another dimensional subspace. Then h can be mapped back into the

decoder phase. Both encoders and decoders can be regarded as artificial neural net-

works. DAEs, which are natural unsupervised extensions to traditional autoencoders,

are forced to map corrupted input data caused by missing mechanisms or distributional

additive noise into hidden layers to learn latent features. Therefore, missing data prob-

lem can be seen as a special case that makes DAEs an effective candidate to recover

missing patterns. As an example, we consider a 5-layer symmetrical autoencoder de-

scribed as:

h( j) = a
(
WT

2

(
a(WT

1 x + c1)
)
+ c2

)
, j = 1,2, ... (2.13)

z(i) = a (W1 (a(W2h + c3)) + c4) , i = 1,2, ... (2.14)
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FIGURE 2.2: The basic structure of denoising autoencoders

FIGURE 2.3: Comparison with basic DAE and winner-take-all DAE

where a is ReLU activation function, h = [h(1),h(2), ...] is the feature representation,

z = [z(1),z(2), ...] is a prediction of x based on a reconstruction from the feature, the

parameter set is {W1,W2,c1,c2,c3,c4}.

As shown in Fig.2.2 and Fig.2.3, in order to have an accurate reconstruction of missing

data based on latent associations, it is built as an overcomplete DAE. That is, the number

of nodes is increasing from the previous layer by a factor of (1 +ϕ) in encoder while

decreasing in decoder, where ϕ=0.5 to 1.0 in this paper. On the other hand, to overcome

overfitting problem, we apply a top p% winner-take-all [78] measure on the feature

layer. Winner-take-all method accepts only top p% hidden layer units activated for

each sample, while the others are set as 0. Let h̃ denote the input and consider ReLU

activation function, the output of feature layer is

h( j) = a(WT
2 h̃ + c2) = max{0,WT

2 h̃ + c2}

= (WT
2 h̃ + c2)H(WT

2 h̃ + c2)
(2.15)
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where H(·) is a step function. Then we rank all of values in hidden units on the feature

layer and only top p% units are chosen to keep them active. Therefore, only a few

units can be updated, which protects the model from overfitting. By defining a set

Γ = suppp{a(WT
2 h̃ + c2)} containing hidden units with top p% activation values, the

representation h( j) can finally be formulated as:

h( j) =

 (WT
2 h̃ + c2)H(WT

2 h̃ + c2) j ∈ Γ

0 j < Γ
(2.16)

where j = 1,2, ...nl (the number of node in feature layer). p and ϕ are hyper-parameters.

How to choose suitable p and ϕ affects the accuracy of calculating missing data. Either

a larger p or ϕmay increase the risk of overfitting. However, smaller ϕmay also prevent

the DAE from extracting enough information. ϕ ∈ [0.5 1.0] and p = 50 in this paper.

The overcomplete DAE is trained by minimizing a loss function defined by

loss =
1
2

N∑
i

(z′i − zi)2 + L2 (2.17)

where z′ is the teacher signals obtained using the extended AP clustering, L2 is the L2

regularization term.

2.4.2 Multiple Imputation for Missing Values

In order to provide diverse information for further inference, we apply multiple impu-

tation to generate new replaced values for unobserved data, and subsequent regression

can combine all imputed versions to acquire more accurate results. In short, multiple

imputation takes the uncertainty of missing values into consider. Therefore, with the

randomness of initial weights at each run, we sweep the complete model repetitively to

generate P new datasets. The final result of DAEs can be defined through calculating

an average respectively, that is:

z =
1
P

P∑
i=1

zi (2.18)
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2.5 SVR with Quasi-linear Kernel

In this section, we propose a SVR formulation to further optimize the parameter set of

{Ω j,b j, b}, which combines the advantages of SVR and piece-wise linear approxima-

tion.

After importing two vectors Φ(z) and Θ defined as:

Φ(z) = [γ1(z),zTγ1(z), ...,γM(z),zTγM(z)] (2.19)

Θ = [b1,Ω
T
1 , ...,bM,Ω

T
M]T (2.20)

Therefore, Eq.(2.2) can be expressed as a linear-in-parameter way as:

f (z) = ΘT Φ(z) + b (2.21)

As a result, the nonlinear regression problem is reduced to a linear regression model.

Φ(z) is the regression vector and Θ is called linear parameter vector. In the following,

we will focus on how to estimate linear parameters using SVR formulation. Based on

the structural risk minimization principle as:

min
Θ,b,ξi,ξ

∗
i

1
2

ΘT Θ+C
N∑

i=1

(ξi + ξ
∗
i )

s.t.


ΘT Φ(z) + b−yi ≤ ε + ξ∗i

yi−ΘT Φ(z)−b ≤ ε + ξi

ξi, ξ
∗
i ≥ 0, t = 1,2, ...,N

(2.22)

where yi denoted the ideal output of zi, C is a non-negative weight to determine the

penalization of prediction errors, N is the number of observations, and ξt, ξ
∗
t are slack

variables. By introducing Lagrange multipliers µ ≥ 0, µ∗ ≥ 0, α ≥ 0, α∗ ≥ 0, we can
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construct the Lagrange function as:

L(Θ,ξt,ξt∗,α,α∗,µ,µ∗)=
1
2

ΘT Θ+C
N∑

i=1

(ξi + ξ
∗
i )

+

N∑
i=1

αt(fz(z)−Φ(z)Θ−ε −ξt) +

N∑
i=1

αt(− fz(z)

+Φ(z)Θ− ε − ξ∗i )−
N∑

i=1

(µξi +µ
∗ξ∗i )

(2.23)

Then it can be solved through getting the saddle point:

∂L
∂Θ

= 0→Θ =

N∑
i=1

(α−α∗)Φ(zi)

∂L
∂ξ

= 0→C = α+µ

∂L
∂ξ∗

= 0→C = α∗+µ∗

(2.24)

After converting the Lagrange function into its dual problem, we can get:

max W(α,α∗) =−
1
2

N∑
i, j=1

(αi−α
∗
i )(α j−α

∗
j)K(zi,z j)

+

N∑
i=1

(αi−α
∗
i ) f (z)− ε

N∑
i=1

(αi +α
∗
i )

(2.25)

s.t.
N∑

i=1

(αi−α
∗
i ) = 0. α,α∗ ∈ [0,C].

where K(zi,z j) is a data-dependent composed kernel called quasi-linear kernel, defined

as:

K(zi,z j) = ΦT (zi)Φ(zk)

= (1 + ziz j)
M∑

k=1

γk(zi)γk(z j)
(2.26)
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From the above, with the Lagrange multipliers αi and α∗i obtained, the regression model

can finally be represented as:

f (z) =

N∑
i=1

(αi−α
∗
i )K(z,zi) + b (2.27)

Overall, by implementing the aforesaid procedures, we are able to solve the nonlinear

regression problem with missing data. By comparison with the early studies, two major

contributions have been made in our work. First, each part in our hybrid model is

closely related. For instance, the result of AP clustering algorithm cannot only be used

to provide teacher signals for DAEs, but also provide clustering information to construct

a competitive net to generate gate control signal for the gated linear network. Second,

a gated linear network is designed to build a piecewise linear regression model with

interpolations, which is more suitable to solve the regression problem under missing

data scenario because of its robustness.

2.6 Experiment Results and Discussions

2.6.1 Datasets

Five datasets without missing values are used in order to test the effectiveness of pro-

posed method. The details of datasets are shown in Table 2.1. The last column of Table

2.1 shows the network size of 5-layer DAE. All datasets can be downloaded from UCI

machine learning repository [79] and Tianchi crowd intelligence platform [80]. When

dealing with missing values, only input samples are considered while outputs are left

out.

Before processing missing data problem, it is necessary to understand the mechanism

of missing data, which is divided into three main categories [81]:

• MCAR [9], which means the absence of missing data in the tth co-variate (Xt) is

independent of the value itself or any other attributes.



Chapter 2. Hybrid Model for Nonlinear Regression wit Missing Data 38

TABLE 2.1: Specification of the five tested regression datasets

Datasets Attribute Training data Testing data Net size of 5-layer DAE
Steam 38 2888 1444 38×57×86×57×38
Stocks 9 633 317 9×18×36×18×9
Tecator 122 160 80 122×208×353×208×122
Bank1 8 2999 1500 8×16×32×16×8
Bank2 16 2999 1500 16×24×36×24×16

• MAR, it represents that the probability of Xt is missing is only related to other

observed attributes without regard to its own value. For instance, if men are more

likely to tell their weights than women, The absence of weight values can be seen

as MAR.

• MNAR, which is a mechanism that missingness generation depends on the value

of unobserved attribute Xt itself. The only way to solve MNAR is to build the

missingness model.

since our research mainly focuses on regression with missing data rather than ana-

lyzes missing data for some special reasons, so only MCAR mechanism is consid-

ered in this paper. Therefore, the real case scenario should be simulated by discard-

ing some elements of the data randomly with a fixed probability during preprocessing

procedure.Two-thirds of the whole datasets are chosen as the training part, and the re-

maining third is set as testing set. Then repeat this Monte-Carlo [82] preprocessing 10

times and calculate the average of Root Mean Square Error (RMSE) as the criterion for

comparison. For each Monte-Carlo split, we also repeat the whole model 10 times and

impute the mean standard deviation. The formula of RMSE is defined as:

RMS E =

√√√
1
L

L∑
i=1

(mi−ni)2 (2.28)

where mi and ni are the predicted and observed values respectively, L is the total amount

of the testing data. The value of RMSE closed to 0 indicates that the model is perfect.
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2.6.2 Experiments and Results

To emphasize the effectiveness of DAEs, AP clustering algorithm combined with SVR

with quasi-linear kernel (AP-QSVR) is applied to do the comparison. For further com-

parison, SVR with linear kernel (LinearSVR) and SVR with RBF kernel (RBF-SVR)

are then applied to test respectively, and DAE combined with SVR with RBF kernel

(DAE-SVR) is also used to verify the performance of AP clustering algorithm when

dealing with missing data. The results of each datasets are presented for different per-

centages of missing data as 10%, 20%, 30%, 40%, 50%, 60%, and the same experiment

procedures are done to evaluate the methods. Moreover, other two prediction methods

with missing values including KSC clustering with MVI kernel method (KSC-MVI)

devised in Ref.[83] and Gaussian mixture model (GMM) with extreme learning ma-

chine (ELM) (GMM-ELM) proposed in Ref.[84] are also utilized to compare with our

method. Besides, this paper also tests GMM algorithm combined with SVR with quasi-

linear kernel (GMM-QSVR) to verify the effectiveness of our proposed model, and the

clustering result of GMM is then used to do further prediction. Since there may be miss-

ing values in the testing data, we use conditional mean method to fill in these missing

values during the comparative experiments. Moreover, P = 10 is used for the multi-

ple imputation scenario because of new datasets {zi}
P
i=1 generated from DAEs, and λ in

Eq.(2.3) is estimated in experiments.

Take the steam data with 50% missing values for example, there are 4332 samples, 38

attributes and 1 output originally in the dataset. Firstly, (4332×38)×50%≈ 139308 data

points are deleted as missing values. Then for each Monte-Carlo split, 2888 samples

are chosen randomly as training set and the other 1444 samples are set as testing part.

Fig.2.4 illustrates the comparison result of steam data. x-axis means the percentage

of the missing data in the training part from 10%-60%, and y-axis represents RMSE

results.

Table.2.2 and Fig.2.4-2.8 are used to present the comparison results. For easy compar-

ison, we highlight the first-rank model with boldface. Based on it, we can draw the

following conclusion. Firstly, we make a comparison between our proposed method

and SVR with conventional kernels. When the number of missing data is small, our
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FIGURE 2.8: RMSE for bank2 data

proposed method has led to greater performance in most simulations other than bank1

data. We can see that in Fig.2.7, our proposed method cannot achieve the best result

when the percentage of missing data is 10%. However, RBF-SVR method always gives

complex parameters setting with case dependent. As the ratio of missing data increases,

the advantage of our method becomes more obvious because of smooth rise of RMSE

results, our method remains on a stable status even after adding 60% of the missing val-

ues. Secondly, it can be seen that deleting DAEs from the model reduces performance

in all cases, except that it is inferior for tecator data with 20% of the missing data, which

proves that DAEs can better leverage latent information. Thirdly, we also compare the

performance of RBF-SVR and DAE-SVR to demonstrate one of the advantages of AP

clustering algorithm, which is to provide the more accurate teacher signal for DAEs.

Finally, our proposed method is then compared with two state-of-art algorithms. For

KSC-MVI method, since it generates a set of constraints only based on the regular ob-

served features and there are not enough samples left with the increasing amount of

missing value, so it is only effective when the amount of missing data is small. Es-

pecially for tecator data, we can not use KSC-MVI method to do prediction due to its

large attributes. Compared with GMM-ELM method, our proposed method has also

achieved encouraging results in most cases, which proves that our algorithm is simple



Chapter 2. Hybrid Model for Nonlinear Regression wit Missing Data 44

but effective. Furthermore, we more concern the effectiveness of the proposed DAE, so

GMM-QSVR method is also used to make a comparison. As to GMM-QSVR method,

our proposed method has also achieved greater performance. Nevertheless, it is hard to

estimate reliable parameters to fit GMM in high-dimensional data and execution time

is also longer. As a whole, our proposed method have the lowest RMSE in most case

which proves that our proposed model is much more robust and reliable.

2.6.3 Discussion

We in this paper introduce a novel hybrid model to solve regression problem with miss-

ing data. Experimental results prove that each component of the model is indispensable.

Firstly, comparative experiments between the proposed method and AP-QSVR check

the effectiveness of DAEs. Moreover, we also test the influence of layers of DAEs and

show its effect when dealing with steam data as an example in Table.2.3.

TABLE 2.3: RMSE comparison across differen number of layers

Number of layers
Missing

10% 20% 30% 40% 50% 60%
3 0.3037 0.3235 0.3378 0.3592 0.3871 0.3984
5 0.3031 0.3227 0.3363 0.3566 0.3791 0.3973
7 0.3129 0.3227 0.3373 0.3569 0.3845 0.3992

Secondly, this local linear regression model inherits the advantages of SVR, and for

quasi-linear kernel, it is physically meaningful and can be regarded as a composite and

local linear kernel with interpolations, and this piecewise linear regression model is im-

plemented by the cluster information of AP clustering algorithm. Experimental results

among our proposed method and other traditional kernels have demonstrated the stabil-

ity of quasi-linear kernel in the presence of noisy problem. Moreover, we implement the

comparison between RBF-SVR and DAE-SVR to reveal that AP clustering algorithm

is more suitable for combing with DAEs to solve missing data problem.
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2.7 Conclusions

In this chapter, we have proposed an effective modeling method to realize the prediction

task with missing data. Briefly speaking, AP clustering method with iterations is firstly

presented as a preprocessing method aimed at providing teacher signals and cluster

information to construct a competitive net. Then, we present a multiple imputation

method based on winner-take-all DAEs. Finally, an advanced modification named SVR

with quasi-linear kernel is used to design a gated linear network based on each partition.

Experiments of five datasets have shown the effectiveness and robustness of our pro-

posed method. It has better performance compared with other advanced methods, espe-

cially when the percentage of missing data is very large.





Chapter 3

A Winner-Take-All Autoencoder Based

Pieceswise Linear Model for Nonlinear

Regression with Missing Data

3.1 Introduction

1 As mentioned in Chapter 2, in most real applications, it is hard to find the reason

why some data are missing. Therefore, it is vital to find a method that is suitable for

all three missing mechanisms. In our previous work, a category of quasi-linear ARX

models, which includes the quasi-linear kernel, was first applied to the nonlinear system

identification [73], and then the multi-local linear model with interpolations has been

proposed to solve nonlinear regression problems [74]. In Chapter 2, we proposed a hy-

brid model to solve the nonlinear regression problem under the missing data scenario,

which consists of three parts: an extended AP clustering algorithm for partitioning, a

denoising autoencoder for estimating the missing value, and a gated linear network im-

plementing a multi-local linear model with interpolation. However, the performance

1This chapter mainly extends the Journal paper: H.Zhu,Y. Ren, Y. Tian and J. Hu, “A Winner-Take-All
Autoencoder Based Piecewise Linear Model for Nonlinear Regression with Missing Data”, IEEJ Trans.
on Electrical and Electronics Engineering, Vol.16, No.12, pp.1618-1627, Dec 2021.
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of the hybrid model depends heavily on the effectiveness of AP clustering for detect-

ing local linear partitions that may be sensitive to the data distribution. In this chapter,

by increasing the role of the denoising autoencoder we improve the hybrid model to

consist of only two parts: an overcomplete WTA autoencoder [78] and a gated linear

network [85]. The overcomplete WTA autoencoder is an SDAE designed to play two

roles: 1) to estimate the missing values as a multiple imputation tool [71, 86]; 2) to

realize a sophisticated partitioning by generating a broad set of binary gate control se-

quences using the feature layer of SDAEs [61]. When training the SDAE, an iterative

algorithm is developed to improve the performance of the SDAE, which is, we firstly

use the mean imputation method to acquire rough estimates of missing values, and then

clustering information derived from the feature layer of SDAEs provides more accurate

teacher signals for further training. On the other hand, by using the binary gate control

sequences, the gated linear network implements a flexible piecewise linear model for

the nonlinear regression. Moreover, by composing a quasi-linear kernel based on the

gate control sequences, the piecewise linear model is identified in the same way as a

SVR with the quasi-linear kernel.

The proposed hybrid model is applied to six real-world datasets with a wide range of

missing data. Experimental results show that our proposed hybrid model has a better

performance than state-of-the-art algorithms.

The rest of the chapter is organized as follows: Section 3.2 outlines the overall model,

and then we introduce SDAEs for solving missing data and generating the gate mecha-

nism in Section 3.3. The whole regression procedure is laid out in Section 3.4. Finally,

experimental results on real-world datasets with a wide range of missing data are pro-

vided in Section 3.5, and conclusions are summarized in Section 3.6.

3.2 Structure of the Hybrid Model

Consider a d-dimensional dataset S ={(x1,y1),...,(xd,yd)} with missing values, where

xi ∈ Rd is the i-th input feature vector and yi ∈ R is the target output of i-th sample.
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FIGURE 3.1: (a)The overall structure of the autoencoder based piecewise linear model;
(b) An image of different gating signals by using different sequence of g(z)

When solving nonlinear regression problems with missing values, we consider an effi-

cient hybrid model consisting of an overcomplete WTA SDAE and a gated linear net-

work. As shown in Fig.3.1 (a), the WTA SDAE is defined by:

z = SDAE(w,c, x) (3.1)



Chapter 3. Autoencoder Based Pieceswise Linear Model for Nonlinear Regression 50

where {w,c} is the parameter set, and then the gated linear network realizing a piece-

wise linear model, is defined by:

f (z) =

M∑
j=1

(ΩT
j z + b j)g j(z) + b (3.2)

where M is the number of linear base models ΩT
j z + b j, {Ω j,b j,b} is the parameter set,

and g j(z) ∈ {0,1} is a gate signal controlling whether the j-th base model works. A

gating mechanism for generating gate control sequences g(z) = [g1(z),g2(z), ...,gM(z)]T

is built by using the information of feature layers, defined by:

g(z) = SDAEFlayer(w,c, x). (3.3)

Note that as shown in Fig.3.1, the encoder parts of the WTA autoencoder used for filling

in missing values and for generating gate signals are the same. Fig.3.1(b) shows an

image of calculating z and g(z) from an overcomplete WTA autoencoder and the details

of SDAE(w,c, x) and SDAEFlayer(w,c, x) will be discussed in Section 3.3.

In general, the overall proposed model consists of two parts as illustrated in Fig.3.1: an

overcomplete WTA autoencoder for estimating missing values and generating gate con-

trol sequences, and a gated linear network for implementing a piecewise linear model

for nonlinear regression. We will discuss the details of two parts in Sections 3.3 and 3.4

respectively.

3.3 Overcomplete Winner-take-all Autoencoder

The overcomplete WTA SDAE is designed to perform two functions: to estimate miss-

ing values and to generate gate control signals, as shown in Fig.3.1. Due to the missing

values, accurate teacher signals are not available for training the SDAE. To solve the

problem, we will introduce a sophisticated training algorithm consisting of two steps.

In the first step, rough teacher signals are first generated by filling the missing values us-

ing the mean imputation method, then the weights of each encoder layer are pre-trained
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through DAEs in a layer-by-layer way. In the second step, a fine-tuning of the whole

autoencoder including the top k% WTA layer is performed. By applying a normal WTA

strategy to the pre-trained encoder, we realize a clustering to better estimate the missing

data by using clustered mean imputation method. In this way, the fine-tuning part is

repeated by updating the teacher signals. Finally, all decoder parts are symmetrically

scaled back to their original dimensions in our model.

The whole procedure is summarized in Algorithm 2.

FIGURE 3.2: The network architecture of the full encoder part

Algorithm 2 Overcomplete WTA SDAEs for solving missing data and generating gate
signals
Input: Dataset x with missing data

1. Pre-training the weights of all layers in the encoder, and mean imputation is
used for generating rough teacher signals;

2. Fine-tuning of the full autoencoder;

Repeat

3. Updating teacher signals through clustering information provided by the fea-
ture layer;

4. Repeating the fine-tuning part of the full autoencoder;

Until Convergence

5. Generating gate signals through information on the feature layer;

Return Complete dataset z and gate singals g(z) for the gated linear network.
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3.3.1 Pre-training Step of the Encoder

The pre-training step consists of stacking simple autoencoders using the DAE tech-

nique. Fig.3.2 shows the network architecture of the full encoder part. The encoder

phase of the first DAE maps the corrupted input x caused by additive noise or discard-

ing some data to the hidden representation h through any nonlinear functions, and then h

is mirrored back to the reconstruction as the decoder. It is constructed as overcomplete,

which means the number of nodes increases from the previous layer in the encoder.

Therefore, the missing data problem being a typical case makes the DAE an ideal can-

didate for recovering missing variables. The transformation of the first DAE is shown

as follows:

h1 = a (w1x + c1) (3.4)

x̄ = a
(
wT

1 h1 + c′1
)

(3.5)

where a represents rectified linear (ReLU) activation function in our model, {w1,c1,c′1}

is the parameter set. To pre-train the first DAE, we minimize a loss function defined by:

E1 =
1
N

N∑
i=1

d∑
j=1

αi j ‖ x̂i j− x̄i j ‖
2 + L2 (3.6)

where L2 represents the L2 regularization term. N is the number of samples in the d-

dimensional dataset, x̄i j is rough teacher signals constructed by replacing missing values

by the mean imputation and x̂i j represents the reconstructed jth component of the ith

data sample, and αi j is a coefficient defined by:

αi j =

 α when xi j is missing component

1 otherwise

where α < 1 is a parameter to reduce the effect of the uncertainty of teacher signals

related to missing values. α is set as a smaller value at the beginning of the training

so that the deep neural network can better learn latent relationships among observed

samples, and then we increase the value of α to retrain the autoencoder.
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Similar to the previous step, the second layer of the encoder uses h1 as the input to train

the second simple autoencoder by optimizing the loss function defined as:

E2 =
1
N

N∑
n=1

‖ h1n− ĥ1n ‖
2 +L2 (3.7)

where ĥ1 is the reconstructed output given by the second autoencoder. Therefore, the

remaining hidden layers can be pre-trained by repeating the aforementioned procedures.

3.3.2 Fine-tuning of the Full Network

During the fine-tuning procedure, we train the whole network through minimizing the

reconstruction error like:

E f =
1
N

N∑
i=1

d∑
j=1

αi j ‖ ẑi j− x̄i j ‖
2 + L2 (3.8)

where ẑi j is the reconstructed jth component of the ith data sample. On the other hand,

the overcomplete SDAE is an overparameterized model so as to have the capability of

estimating missing values by learning the latent relationships among samples. When

training even with the L2 regularization term, it is easy to be overfitting.

To account for the overfitting problem using an aggressive sparsity technique, we add a

top k% WTA strategy in the last hidden layer of the encoder named feature layer hF . Set

the last hidden layer h̃ as the the input and {w̃, c̃} as the parameter set of the feature layer,

by defining a set Γ = suppk{a(w̃T h̃ + c̃)} containing hidden units with top k% activation

values, the representation hF can be finally defined by:

hF(p) =

 a(w̃T h̃ + c̃) p ∈ Γ

0 p <Γ
(3.9)

where p = 1,2, ...,M and M is the number of nodes of the feature layer.
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3.3.3 Updating Teacher Signals

By applying a standard WTA strategy to the pre-trained encoder, we cluster the data

and obtain better estimates of missing values by imputing conditional mean for each

cluster [87]. After updating teacher signals using better estimates of missing values,

the aforementioned fine-tuning part can be trained repeatedly by using renewed teacher

signals x′ as the input. Finally, the full autoencoder is accomplished by minimizing the

loss function E f in:

E f in =
1
N

N∑
i=1

d∑
j=1

αi j ‖ ẑi j− x′i j ‖
2 + L2 (3.10)

where zi j represents generated new dataset. This procedure will be repeated. Our exper-

iments show that repeating the fine-tuning by updating teacher signals for 1 or 2 times

can result in better and more effective results. Therefore, the final decoded result can be

regarded as the generating new dataset:

z = a(w̄h̄ + c̄′) (3.11)

where {w̄,c̄′} is the parameter set of the last decoder layer, and h̄ is the representation

of the previous layer.

3.3.4 Generation of Gated Signals

Generally, the basic strategy should be considered to build a 0-1-sequence. Therefore,

an assumption is made to decide whether g(·) equals 0 or 1. In order to make full use

of information about the feature layer efficiently to generate gate signals for the linear

base model, we duplicate and redefine the feature layer when p ∈ Γ as:

hF = a(w̃T h̃ + c̃) = max{0, w̃T h̃ + c̃}

= (w̃T h̃ + c̃)H(w̃T h̃ + c̃)
(3.12)

where H(·) is formulated as the step function. When estimating the missing values,

the WTA strategy has already been applied to prevent overfitting, where top k% = 50%
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has been applied to the hidden units in the feature layer, which satisfies the sparsity

requirement. However, k% = 50% results in the largest diversity since the number of

partition is CM×k%
M , which may not be suitable for generating gate control sequences.

Therefore, we introduce another WTA of top m%(m < k) ones satisfying the assumption

defined by ζ = suppm{a(w̃p
T x̂ + c̃p)} for generating gate control sequences. We finally

define g(p) as follows:

g(p) =

 H(w̃p
T h̃ + c̃p) p ∈ ζ

0 p < ζ
(3.13)

It is an arbitrary choice for choosing m% and M, both of which can be regarded as tuning

hyper-parameters. How to choose effective m and M affects the accuracy of solving both

missing values and the nonlinear regression. For missing data problems, increasing the

number M leads to the tendency of overfitting and too much training time. However,

fewer M may also prevent the SDAE from extracting enough information. For the

regression stage, a smaller m% and M is preferable to decrease the risk of overfitting and

prevent too many partitions. Detailed numbers of hyper-parameters based on different

datasets are illustrated in Section 3.5.

3.4 Gated Linear Network for Regression

By generating a set of gate control sequences g(z) from the SDAE, the gated linear

network implements a piecewise linear regression model, which can be identified as a

SVR with a quasi-linear kernel. Moreover, the multiple imputation tool, which results

in unbiased and useful estimates for missing values, is also taken into account.
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3.4.1 SVR with Quasi-linear Kernel

By importing two vectors Φ(z) and Θ defined as:

Φ(z) = [g1(z),zTg1(z), ...,gM(z),zTgM(z)] (3.14)

Θ = [b1,Ω
T
1 , ...,bM,Ω

T
M]T (3.15)

Eq.(3.2) can be expressed as a linear-in-parameter form as:

f (z) = ΘT Φ(z) + b (3.16)

where Φ(z) is the regression vector and Θ is called linear parameter vector. In the

following, we concentrate on how to estimate linear parameters using SVR formulation.

Based on the structural risk minimization principle as:

min
Θ,b,ξi,ξ

∗
i

1
2

ΘT Θ+C
N∑

i=1

(ξi + ξ
∗
i )

s.t.


ΘT Φ(z) + b−yi ≤ ε + ξ∗i

yi−ΘT Φ(z)−b ≤ ε + ξi

ξi, ξ
∗
i ≥ 0, t = 1,2, ...,N

(3.17)

where yi denoted the ideal output of zi, C is a non-negative weight to determine the

penalization of prediction errors, N is the number of observations, and ξt, ξ
∗
t are slack

variables. By applying the Lagrange function through introducing Lagrange multipliers

µ ≥ 0, µ∗ ≥ 0, α ≥ 0, α∗ ≥ 0, we can construct the Lagrange function as:

L(Θ,ξt,ξt∗,α,α∗,µ,µ∗)=
1
2

ΘT Θ+C
N∑

i=1

(ξi + ξ
∗
i )

+

N∑
i=1

αt(fz(z)−Φ(z)Θ−ε −ξt) +

N∑
i=1

αt(− fz(z)

+Φ(z)Θ− ε − ξ∗i )−
N∑

i=1

(µξi +µ
∗ξ∗i )

(3.18)
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Then it can be solved by getting the saddle point:

∂L
∂Θ

= 0→Θ =

N∑
i=1

(α−α∗)Φ(zi)

∂L
∂ξ

= 0→C = α+µ

∂L
∂ξ∗

= 0→C = α∗+µ∗

(3.19)

After converting the Lagrange function into its dual problem, we can get:

max W(α,α∗) =−
1
2

N∑
i, j=1

(αi−α
∗
i )(α j−α

∗
j)K(zi,z j)

+

N∑
i=1

(αi−α
∗
i ) f (z)− ε

N∑
i=1

(αi +α
∗
i )

(3.20)

s.t.
N∑

i, j=1

(αi−α
∗
i ) = 0. α,α∗ ∈ [0,C].

where K(zi,z j) is a data-dependent composed kernel called quasi-linear kernel, defined

as:

K(zi,z j) = ΦT (zi)Φ(zk)

= (1 + ziz j)
M∑

k=1

gk(zi)gk(z j)
(3.21)

From the above, with the Lagrange multipliers αi and α∗i obtained, the regression model

can finally be represented as:

f (z) =

N∑
i=1

(αi−α
∗
i )K(z,zi) + b. (3.22)

3.4.2 Multiple Imputation for Missing Data

Since initialized weights of the SDAE are random at each run, kinds of new datasets

can be generated as posterior predictive distributions of missing values. The fill-in



Chapter 3. Autoencoder Based Pieceswise Linear Model for Nonlinear Regression 58

TABLE 3.1: Sizes and features of all datasets and network size

Datasets Attribute Samples Net size of the SDAE m%
Steam 38 4332 38×60×90×140×90×60×38 30%

CO 9 7343 9×20×50×20×9 20%
NO2 9 6609 9×20×40×20×9 30%
NOx 9 6000 9×20×40×20×9 30%
Bank 16 4499 8×20×50×20×8 20%

PM2.5(TT) 10 28541 10×20×40×20×10 30%

procedure is repeated for prespecified number of times N to generate different new

datasets {zn}Nn=1. We combine the piecewise regression model for each new dataset to

make the prediction and then calculate an average of N models ModelN .

f (z) =
1
N

N∑
n=1

ModelN(zn) (3.23)

To summarise, estimations of f (z) appropriately reflect sampling diversity on account

of incomplete values.

3.5 Experimental Results

3.5.1 The General Setup

Six real-world datasets that are complete downloaded from UCI machine learning repos-

itory [79] and Tianchi crowd intelligence platform [80] are taken to convince our hybrid

model’s effectiveness. In the experiment, all the inputs are normalized to a range of [0,

1]. Moreover,we split the dataset into 6 folds and for each imputation, 4-fold is used for

training and the other 2-fold is set as the testing set. Therefore, 15 train-test splits are

obtained to impute the results and mean standard deviation.

All of hyper-parameters are chosen through a 4-fold cross-validation method on the

training set. The optimal learning rate of different datasets is chosen in the range of

{1e-1, 1e-2, 1e-3}. For L2 regularization term, weight decay is chosen within the grid

{1e-3, 3e-3, 1e-2, 3e-2, 1e-1}. For parameters related with winner-take-all strategy, the
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sparsity level k in the feature layer is selected from {40, 45, 50}, and another sparsity

level m is chosen within a grid {15, 20, 25, 30, 35}. The optimal parameter α in

loss function is searched in the grid of {0.1, 0.2, 0.3} at the beginning, and then α is

chosen from {0.8, 0.9, 1.0}. For the training of kernel SVR, the penalty parameter C

is searched in the grid of {1e-2, 1e-1, 1e0, 1e1, 1e2}. Referring to Ref.[88], we set

the number of hidden layers as 5 or 7 in our experiments. Besides, the number of the

latter layer nodes is chosen with the 1.5-2.5 times of the dimensions of the former layer

during the encoding stage. Table.3.1 shows the properties of datasets, network size,

and the percentage of m used in generating gate signals, we also set N = 20 regarding

the multiple imputation scenario and then calculate the standard deviation. In order to

evaluate the performance, RMSE is used as the criterion defined by:

RMS E =

√√√
1
L

L∑
i=1

(y′i −yi)2 (3.24)

where y′i is the predicted data of corresponding the observed data yi, L is the total

number of the testing values.

Considering three missing mechanisms, two different experiments are conducted to an-

alyze the effect of our proposed method. Firstly, missing data generation is executed

by inserting missing data at six missing rates randomly (10%, 20%, 30%, 40%, 50%,

60% ). To confirm that the effectiveness of the proposed model does not depend on

the percentages of missing values, results without missing values are also considered.

Afterward, we consider mixing two missing mechanisms MCAR and MNAR to test our

proposed method, which is also satisfied in real life. That is, firstly, two attributes x1 and

x2 are randomly selected from the dataset and their medians are calculated as m1 and m2,

and then we set it to have missing data where x1 <m1 and x2 >m2. Besides, we remove

datasets randomly with fixed missingness proportions of 20% and 60% respectively.

3.5.2 Numerical Experiments Procedure

To verify the validity of the proposed model, we compare it from two aspects. Firstly,

SVR with radial basis function kernel (RBF-SVR) and MLP are combined with SDAEs
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TABLE 3.3: Prediction results of mixed missing data

Datasets Models Missing
20% 60%

CO

Proposed Method 0.9027±0.0009 1.9917±0.0030
RBF-SVR 1.0477± 0.0015 2.4903±0.0035

MLP 0.9902±0.0027 2.4691±0.0049
MICE-RBF 1.1847±0.0017 2.6909±0.0042
MICE-MLP 1.0580±0.0030 2.6233±0.0051

AP-DAE-QSVR 0.9052±0.0009 2.0819±0.0032
KSC-MVI 1.3469 -

NO2

Proposed Method 39.4761±0.0381 52.4034±0.0610
RBF-SVR 49.1037±0.0441 72.6330±0.0681

MLP 49.1421±0.0538 73.7772±0.0728
MICE-RBF 52.1699±0.0491 76.0714±0.0720

AP-DAE-QSVR 40.9463±0.0387 54.7729±0.0669
KSC-MVI 55.2581 -

NOx

Proposed Method 104.7605±0.1793 128.0278±0.4017
RBF-SVR 117.0897±0.2077 164.0531±0.4129

MLP 111.4266± 0.2580 157.8426±0.4690
MICE-RBF 119.6138±0.2591 166.2327±0.4793
MICE-MLP 121.1152±0.3117 177.8541±0.5697

AP-DAE-QSVR 105.9787±0.1948 129.7165±0.4544
KSC-MVI 125.0198 -

Steam

Proposed Method 0.3098±0.0004 0.3708±0.0012
RBF-SVR 0.4061±0.0007 0.5269±0.0015

MLP 0.3927±0.0009 0.5201±0.0027
MICE-RBF 0.4217±0.0006 0.5053±0.0016
MICE-MLP 0.4063±0.0007 0.5211±0.0022

AP-DAE-QSVR 0.3291±0.0005 0.4045±0.0013
KSC-MVI - -

Bank

Proposed Method 0.0278±0.0004 0.0321±0.0007
RBF-SVR 0.0298±0.0001 0.0376±0.0006

MLP 0.0297±0.0004 0.0367±0.0012
MICE-RBF 0.0302±0.0005 0.0391±0.0014
MICE-MLP 0.0295±0.0005 0.0383±0.0017

AP-DAE-QSVR 0.0286±0.0003 0.0337±0.0006
KSC-MVI 0.0329 -

PM2.5(TT)

Proposed Method 38.0172±0.0891 52.5730±0.1296
RBF-SVR 44.2480±0.0886 70.9757±0.1374

MLP 40.9723±0.0935 62.0813±0.1629
MICE-RBF 45.5362±0.0962 72.9448±0.1448
MICE-MLP 43.4899±0.0997 68.7432±0.1562

AP-DAE-QSVR 39.0210±0.0641 56.6105±0.1299
KSC-MVI 52.4877 -
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FIGURE 3.3: RMSE for CO data
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respectively to calculate the prediction accuracy. Moreover, we also examine the per-

formance of SDAEs, that is, the well known multiple imputation method multivariate

imputation by chained equations (MICE) [89] in combination with SVR with RBF ker-

nel (MICE-RBF) and MLP (MICE-MLP) are all conducted in the experiments. Besides,

two prevailing prediction methods with missing values including KSC clustering with

MVI kernel method (KSC-MVI) proposed in Ref.[83] and affinity propagation (AP)

clustering combined with DAE and the hybrid model (AP-DAE-QSVR) developed by

us in Ref.[90] are also tested for comparison. The results of all the experiments are

shown in Table.3.2 and Table.3.3, respectively, and the numbers highlighted with bold-

face mean that the corresponding model achieves the first-rank for easy comparison.

From Table 3.2 and Fig.3.3-3.8, we can conclude several observations. Firstly, our pro-

posed model achieves better performance than traditional regression methods when the

amount of missing data is small, except for bank data shown in Fig.3.7. RBF-SVR is

higher than our proposed method’s RMSE value for bank data with 10% missing values.

However, RBF-SVR has to set complex parameters with case dependent. Secondly, the

advantage of our proposed method increases as the percentage of missing data rises.

We can see that the growth of RMSE value for our proposed model is the slowest with

the increasing number of missing data. Thirdly, the SDAE method is superior to the

MICE method for solving missing data problems. Finally, for KSC-MVI model, it

is risky when the amount of missing values is large since unobserved samples are re-

moved during the preprocessing procedure. Like the steam data, there are not enough

complete training samples to run while the percentage of missing values is greater than

10%. Compared with AP-DAE-QSVR method, the proposed method gives a competi-

tive results with lower RMSE values except CO dataset with 20% missing values. The

proposed model is improved version of the AP-DAE-QSVR model with a more flexible

gating mechanism and does not need to detect local linear partitions and set the number

of local linear models. Therefore, it leads to the conclusion that the proposed model is

more stable and effective at dealing with the regression problem with missing data.

Experimental results of mixed missing data mechanisms are shown in Table.3.3. We

can see that the performance of our proposed methods exceeds other state-of-the-art

methods for CO data. It learns to the conclusion that our proposed model achieves the
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best performance for every case. The possible reason is that the SDAE has the capability

to learn latent associations among datasets.

3.6 Conclusions

In this chapter, a hybrid modeling method is presented in dealing with the regression

task under the missing data scenario. The complete model composes of two steps. WTA

SDAEs are employed to tackle missing data problems, and then a gated linear network is

designed to construct a piecewise linear model. In this way, SVR with a data-dependent

quasi-linear kernel can be used for prediction tasks.

Two comparative experiments are conducted based on different missing data mecha-

nisms. The accuracy and robustness of the proposed model has been verified by both

experimental results of five real-world datasets. Even for a large fraction of missing

data, the role of our proposed model is also apparent.



Chapter 4

An Improved Hybrid Model for

Nonlinear Regression with Missing

Values Using Deep Quasi-Linear

Kernel

4.1 Introduction

1 The objective of regression analysis in the research field is to establish a model which

can examine the relationship between a response variable and one or more indepen-

dent variables. Among these, nonlinear regression is a kind of regression analysis and

has been widely used in many practical applications, such as health forecasting [3].

Moreover, missing values are ubiquitous and inevitable in the nonlinear regression field,

which often complicate analysis and cause trouble for the further research. Traditional

methods to deal with missing values include mean interpolation, KNN [91] and Ex-

pectation Maximization [92]. Currently, imputation methods based on deep neural

networks such as DAE [33], SDAE [93] and generative adversarial nets (GAN) [36]

1This chapter mainly extends the Journal paper: H.Zhu and J. Hu, “An Improved Hybrid Model for
Nonlinear Regression with Missing Values Using Deep Quasi-Linear Kernel“, IEEJ Trans. on Electrical
and Electronic Engineering, Vol.17, No.10, PP.1-9, 2022.
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are rousing attention due to learning latent relationships among datasets. On the other

hand, no filling-in algorithms can achieve 100% accuracy, and noised features are in-

evitable. Some classical solutions like linear regression [94] are difficult to unearth and

model such complex nonlinear relationships among samples. It is highly motivated to

develop a more robout, powerful piecewise linear regression model to solve problems

as mentioned above.

In our previous work, hybrid models have been proposed to solve nonlinear regres-

sion problems under missing data scenarios [90, 95], which consists of two parts: 1)

an overcomplete WTA autoencoder [96] to impute missing components conditioned on

observed samples and generate a set of gate control signals, 2) a gated linear network

with generated gate control signal implementing flexible multi-local linear models. In

this paper, the hybrid model is improved in two aspects. On the one hand, an adversarial

training process is introduced to train the WTA autoencoder. Under missing data sce-

narios, a key difficulty is the lack of an accurate teacher signal for the training of WTA

autoencoder, and the uncertainty of the teacher signals limits the performance of the

WTA autoencoder. In Ref. [95], we use a clustered imputation of missing values as the

updated teacher signals. By using the WTA autoencoder as a generator and introducing

a discriminator, we can expect a better adversarial training of the WTA autoencoder by

taking advantage of gradually renewed teacher signals and the discrimination of miss-

ing values and observed values. In addition to the missing values estimation, the WTA

autoencoder is trained to realize sophisticated partitioning by generating a set of layered

binary gate control sequences. On the other hand, by using a multilayer gated linear net-

work and the generated layered gate control sequences, we implement a more powerful

piecewise linear regression model, whose parameters are then optimized by formulating

a SVR with a deep quasi-linear kernel in a recursive form [62, 63]. Experimental results

on several real-world datasets show that the improved hybrid model is effective.

The rest of this chapter is organized as follows. The structure of the hybrid model is

presented in Section 4.2. Section 4.3 explains how to solve missing data problems and

generate layered gate control sequences. Section 4.4 introduces the multilayer gated

linear network for the nonlinear regression problem. In Section 4.5, the experimental
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FIGURE 4.1: A hybrid prediction model consisting of a WTA autoencoder and a mul-
tilayer gated linear network. The encoder parts of WTA autoencoder used for filling in

missing values and for generating gate signals are the same.

results are shown to validate the effectiveness of the proposed model. Finally, conclu-

sions are given in Section 4.6.

4.2 Model Structure

In the case of missing data problem, we firstly consider a d-dimensional training set

(x1,y1), (x2,y2),..., (xn,yn). xn=[x1
n, x2

n,..., xd
n]∈Rd represents the n-th input and yn∈R is

the correspondent n-th target output.

Considering the nonlinear regression problem under missing data scenarios, we estab-

lish a hybrid model composed of an overcomplete WTA autoencoder and an multilayer

gated linear network. As shown in Fig.4.1, the WTA autoencoder will fill-in the missing
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values and generate complete datasets z defined by:

z = WTA AE(w,c, x) (4.1)

where {w,c} is the parameter set, and the multilayer gated linear network realizing a

powerful piecewise linear model is defined by [62, 63]:

f (z) =

MS∑
j=1

(
Ω

(S )T
j aS−1(z) + b(S )

j

)
g(S )

j (z) + b (4.2)

ai(z) =

Mi∑
j=1

(
Ω

(i)T
j ai−1(z) + b(i)

j

)
g(i)

j (z) (4.3)

i = 1,2, ...,S −1; a0(z) = z

where S is the number of layers in the multilayer gated linear network, Mi is the number

of linear base models Ω
(i)T
j ai−1(z) + b(i)

j in the i-th layer, {Ω
(i)
j ,b

(i)
j , b} is the parameter

set, and g(i)
j (z) ∈ {0,1} is a gate signal controlling whether the j-th base model in the i-th

layer works.

A gating mechanism for generating gate control sequences g(i)(z) = [g(i)
1 (z),g(i)

2 (z), ...,

g(i)
Mi

(z)]T (i = 1,2, ...,S ) is built by using the encoder part of WTA autoencoder, defined

by:

g(i)(z) = WTA Ei(w,c, x). (4.4)

Note that as shown in Fig.4.1, the encoder parts of the WTA autoencoder used for

filling in missing values and for generating gate signals are the same. The details of

WTA AE(w,c, x) and WTA Ei(w,c, x) will be discussed in Section 4.4 and 4.5, respec-

tively.

In this section, the adversarial training process is introduced in the autoencoder part to

solve the missing data problem and generate layered gate control sequences.
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FIGURE 4.2: The architecture of our proposed adversarial training process

4.3 Autoencoders for Filling-in Missing Values

The traditional autoencoder is an unsupervised learning algorithm, which is mainly used

for feature extraction or dimensional reduction. For the encoder phase, an autoencoder

takes an input x ∈ [0,1]d and then maps it into a different representation h ∈ [0,1]d′ ,

where we set d′ > d since the autoencoder is overcomplete. Then h can be mapped back

into the decoder phase. As an example, we consider a 5-layer symmetrical autoencoder

described as:

hF = a (w2 (a(w1x + c1)) + c2) (4.5)

z = a
(
wT

1

(
a(wT

2 hF + c3)
)
+ c4

)
(4.6)

where z is a prediction of x based on a reconstruction from the feature, hF represents the

final layer of the encoder, the parameter set is {w1,w2,c1,c2,c3,c4}, and a(·) is ReLU

activation function in our model.

In this chapter, we use DAEs to solve missing data problems, which are natural unsuper-

vised extensions of traditional autoencoders. DAEs are forced to map corrupted input

data caused by missing mechanisms or distributional additive noise into hidden layers to
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learn latent features. Therefore, the missing data problem can be seen as a special case

that allows the DAE to effectively recover the missing schema. Moreover, to solve the

overfitting problem, we add a top k% WTA strategy to each hidden layer of the encoder

to avoid the overfitting problem. Set upper layer of the i-th hidden layer h̃ as the input

(h̃ can also be equal to x if i=1), S as the number of hidden layers of the encoder and

{w̃, c̃} as the parameter set, by defining a set Γ = suppk{a(w̃T h̃ + c̃)} containing hidden

units with top k% activation values, the representation of each hidden layer h(i) can be

finally defined by:

h(i)(p) =

 a(w̃T h̃ + c̃) p ∈ Γ

0 p <Γ
(4.7)

where p = 1,2, ...,Mi and Mi is the number of nodes in the i-th layer, i = 1,2, ...,S .

4.3.1 Adversarial Training Process

The adversarial training process is then applied, and the aforementioned DAE is set

as the generator. Fig.4.2 depicts its architecture. Considering discriminator part, it

is constructed as fully connected neural nets. To ensure that the discriminator forces

the autoencoder to learn the desired distributions, we introduce a hint variable Hn =

{H1
n , ...,H

d
n } for the n-th sample as additional input to distinguish between observed and

imputed values. By controlling the amount of information contained in Hn about miss-

ing values, we define Hn for the n-th input by first sampling υ from {1, ..., d} (d is the

dimension of each sample) at random as:

Hi
n =


1 i f the component can be observed

0.5 i f i = υ

0 i f the component is missing

(i = 1, ...,d)

(4.8)

The matrix H (where H = {H1, ...,HN} and N is the number of samples) can also be seen

as the hint mechanism since we can define H in different ways to control the amount
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FIGURE 4.3: Flowchart of training process in the autoencoder part

of information contained in H to the discriminator. For instance, if we cannot provide

information about the missing data, there are several distributions that the autoencoder

could be reproduced to be optimal for the discriminator. Therefore, the discriminator

becomes a function : x ×H→ [0,1]d. To optimize the discriminator, we compare it with

the mask components m, where m = 0 means that the component of x is missing and

m = 1 corresponds to the probability that the component is observed. Hence, the loss

function of D is finally defined as:

LD =

N∑
i=1

d∑
j:H j

i =0.5

[m j
i log(m̂ j

i ) + (1−m j
i ) log(1− m̂ j

i )] (4.9)

where m̂ is the output of the discriminator. In the loss function, we only consider the

ones corresponding to H j
i = 0.5 to account for overfitting problem.

Then, the generator is optimized by using the newly discriminator. Since we ensure that
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the imputed values for missing components (m=0) can fool the discriminator success-

fully. Therefore, the loss function of the DAE can be updated as:

LG =
1
N

N∑
i=1

d∑
j=1

ζ
j
i ‖ ẑ j

i − x̄ j
i ‖

2

−

N∑
i=1

d∑
j:H j

i =0.5

(1−m j
i ) log m̂ j

i +τ ||w ||22
(4.10)

where w = {w1,w2} represents the weights of the antoencoder, and τ ||w ||22 represents

the L2 regularization term. N is the number of samples in the d-dimensional dataset, ẑ j
i

is the reconstructed j-th component of the i-th data sample, and [−
∑N

i=1
∑d

j:H j
i =0.5

(1−

m j
i ) log m̂ j

i ] is smaller when m̂ j
i is closer to 1 when m j

i = 0. In other words, the effect

we want to achieve is that D is less able to recognize the imputed samples as being

imputed. x̄ j
i is rough teacher signals constructed by replacing missing values by the

mean imputation, and ζ j
i is a coefficient defined by:

ζ
j
i =

 ζ when x j
i is missing component

1 otherwise
(4.11)

where ζ < 1 is a parameter to reduce the effect of the uncertainty of teacher signals

related to missing values. ζ is set as a smaller value at the beginning of the training so

that the autoencoder can better learn latent relationships among observed samples, and

then we increase the value of ζ to retrain the autoencoder.

4.3.2 Updating Teacher Signals

Next, more effective teacher signals need to be obtained to improve the accuracy of data

filling and guide the convergence. Given the trained last hidden layer of the encoder,

we only select the top one hidden layer unit activated for each data. Therefore, samples

with the same activated unit are seen as the same cluster. Then, we impute conditional

mean for each cluster to replace the missing data points. After updating teacher signals,
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x̄ in Eq.(4.10) can be changed into renewed teacher signals x′ as the input. Fig.4.3

shows the flowchart of the overall training procedure.

4.3.3 Generation of Gate Control Signals

Next, we introduce a basic strategy for establishing a 0-1 sequence. In order to make

full use of the information of hidden layers in autoencoders, we express the i-th hidden

layer as:

h(i) = a(w̃T h̃ + c̃) = max{0, w̃T h̃ + c̃}

= (w̃T h̃ + c̃)F(w̃T h̃ + c̃)
(4.12)

where F(·) is formulated as the step function, and i = 1,2, ...,S .

When estimating missing values, the WTA strategy has been applied to prevent over fit-

ting, where top k% = 50% has been applied to each hidden layers that meet the sparsity

requirements. However, k% = 50% results in maximum diversity because the number

of partitions is CMi×k%
Mi

in the i-th layer, which is not suitable for partitioning based on

previous work [95, 97] since too many partitions may increase the risk of overfitting

for the piecewise linear model. Therefore, we introduce another WTA strategy with

top t%(t < k) ones satisfying the assumption defined by $ = suppt{a(w̃p
T x̂ + c̃p)} for

generating multi-layer gate control sequences g(i)(.). We finally define the i-th g(i)(.) as

follows:

g(i)(p) =

 F(w̃p
T h̃ + c̃p) p ∈$

0 p <$
(4.13)

4.4 Multilayer Gated Linear Network

In this section, a deep quasi-linear kernel is derived by applying an SVR formula to the

multilayer gated linear network in a recursive form. When the gate signals are given,

the multi-layer gated linear network can reduce to a linear model. By denoting Φ0 = z
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and Θ0 = [], we import two vectors ΦS (z) and ΘS defined as:

Φi(z) = [g(i)
1 (z),ΦT

i−1(z)g(i)
1 (z), ...,g(i)

Mi
(z),ΦT

i−1(z)g(i)
Mi

(z)]

= [g(i)T (z)⊗ [1 ΦT
i−1(z)]]T (4.14)

Θi = [ΩΩΩ(i)T ⊗ [1 ΘT
(i−1)]]

T (i = 1,2, ...,S ) (4.15)

where g(z) = [g1(z), ...,gM(z)]T , and ⊗ represents Kronecker production, ΩΩΩi = [b(i)
1 ,Ω

(i)T
1 ,

...,b(i)
Mi
,Ω(i)T

Mi
)]T in which bi

j( j = 1, ...,Mi) is the bias of i-th layer in the encoder.

ΦS (z) gives a multi-linear mapping shown in the front part of Fig.4.1 since for each

given g(i)(z) it is a linear mapping. Therefore, the S -layer gated linear network can be

compactly expressed as a linear-in-parameter form as:

f (z) = ΘT
S ΦS (z) + b (4.16)

To estimate the parameters Θi (i=1, 2, ..., S ), the SVR formulation is used to solve the

regression form f (z) in Eq.(4.16). Same as the process of basic SVR, by applying the

structural risk minimization principle, we concentrate on quadratic programming (QP)

optimization problem described by:

min
ΘS ,b,ξl,ξ

∗
l

1
2

ΘS
T ΘS +C

N∑
l=1

(ξl + ξ
∗
l )

s.t.


ΘS

T ΦS (zl) + b−yl ≤ ε + ξ∗l

yl−ΘS
T ΦS (zl)−b ≤ ε + ξl

ξl, ξ
∗
l ≥ 0, l = 1,2, ...,N

(4.17)

where yl denoted the ideal output of zl, C is a non-negative weight to determine the

penalization of prediction errors, N is the number of observations, and ξl, ξ
∗
l are slack

variables. By applying the Lagrange function through introducing Lagrange multipliers
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µl ≥ 0, µ∗l ≥ 0, αl ≥ 0, α∗l ≥ 0, the Lagrange function can be constructed as:

L(ΘS ,ξ,ξ
∗,α,α∗,µ,µ∗)=

1
2

ΘS
T ΘS +C

N∑
l=1

(ξl + ξ
∗
l )

+

N∑
l=1

αl(f (zl)−yl−ε −ξl) +

N∑
l=1

α∗l (− f (zl) +yl−

ε − ξ∗l )−
N∑

l=1

(µlξl +µ
∗
l ξ
∗
l )

(4.18)

Then it can be solved by getting the saddle point:

∂L
∂ΘS

= 0→ΘS =

N∑
l=1

(αl−α
∗
l )ΦS (zl)

∂L
∂ξl

= 0→C = αl +µl

∂L
∂ξ∗l

= 0→C = α∗l +µ∗l

(4.19)

After transforming the Lagrangian function into its dual problem, we can get:

max W(α,α∗) =−
1
2

N∑
l, j=1

(αl−α
∗
l )(α j−α

∗
j)KS (zl,z j)

+

N∑
l=1

(αl−α
∗
l ) f (z)− ε

N∑
l=1

(αl +α
∗
l )

(4.20)

s.t.
N∑

l=1

(αl−α
∗
l ) = 0. αl,α

∗
l ∈ [0,C].

where KS (zl,z j) is a data-dependent composed kernel called deep quasi-linear kernel,

defined in a recursive form as:

Ki(zl,z j) = Θi
T (zl)Θi(z j)

= (1 + Ki−1(zl,z j))g(i)T
(zl)g(i)(z j)

(i = 1, ...,S )

(4.21)

where K0(zl,z j) = zT
l z j.
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Therefore, through substitute Eq.(4.19) and Eq.(4.21) into Eq.(4.16), the regression

model can finally be represented as:

f (z) =

N∑
l=1

(αl−α
∗
l )KS (z,zl) + b (4.22)

4.5 Experiments and Results

4.5.1 Experimental Setup

In this section, we use the air quality datasets and bank datasets to verify the effective-

ness of the proposed model from two aspects. Firstly, we use air quality datasets [79]

that originally have missing values to predict PM2.5. Except for original missing values

contained in the datasets, we also analyze data to find outliers with values greater or less

than three times the Interquartile Range (3IQR) [98], which should be removed from

the dataset. Thus, the detailed description of features and the final condition of datasets

are summarized in Table.4.1 and Table.4.2 respectively. The air quality datasets are

recorded hourly and cover the year 2013-2017 from four stations of Beijing: Shunyi

(SY), Huairou (HR), Changping (CP) and Tiantan (TT). The forecasting horizons are

from T1 to T6, where Tn represents the n-th hour after the initial time. In the experi-

ment, the PM2.5 prediction is regarded as the original prediction problem rather than

time-series problem to verify the generality of our proposed model. Secondly, to verify

the robustness of our proposed model with different range of missing values, another

experiment based on Tiantan air quality dataset and two bank datasets [99] which have

8 attributes and 16 attributes respectively are conducted. Missing data generation is ex-

ecuted by inserting missing data at six missing rates randomly (10%, 20%, 30%, 40%,

50%, 60% ).

For both experiments, 70% of the samples for each dataset are split into the training set,

and the rest 30% belongs to the testing set. All the inputs are normalized to a range of
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FIGURE 4.4: RMSE results for Tiantan dataset
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TABLE 4.1: The detailed description of features in air quality datasets

Features Description
PM10 concentration (µg/m3)
PM2.5 concentration (µg/m3)

SO2 concentration (µg/m3)
NO2 concentration (µg/m3)
CO concentration (µg/m3)
03 concentration (µg/m3)

TEMP Temperature(degree Celsius)
PRES Pressure (hPa)
DEWP dew point temperature (degree Celsius)
RAIN precipitation (mm)

WSPM wind speed (m/s)

TABLE 4.2: Details of all four air quality datasets

Station SY HR CP TT
Features Miss Mean SD Miss Mean SD Miss Mean SD Miss Mean SD
PM10 1435 90.372 71.759 820 84.408 68.442 1091 85.487 65.081 1196 95.757 68.546
SO2 3678 9.287 10.318 3110 7.521 8.076 2687 10.269 10.864 3259 9.620 9.438
NO2 1857 42.365 28.407 1637 30.618 23.082 1030 41.976 25.964 1104 50.643 27.917
CO 3877 988.768 729.554 2161 893.152 600.437 3645 900.688 591.180 2610 1080.016 720.589
03 1489 55.201 54.873 486 59.619 54.531 184 57.494 53.880 357 55.863 59.678

TEMP 51 13.388 11.483 51 12.337 11.749 53 13.585 11.376 20 13.667 11.493
PRES 51 1013.062 10.177 53 1007.677 10.007 50 1007.809 10.240 20 1012.547 10.246
DEWP 54 2.465 13.726 53 2.200 14.091 53 1.414 13.844 20 2.486 13.801
RAIN 51 0.061 0.762 55 0.068 0.854 51 0.061 0.761 20 0.064 0.788

WSPM 44 1.808 1.288 48 1.646 1.196 43 1.851 1.310 21 1.857 1.278

[0, 1], and the scaling formula is:

āi =
amax−ai

amax−amin
(4.23)

where āi represents the corresponding scaled value, ai is the value of the i-th point, amin

and amax is the minimum and maximum values of the dataset, respectively. Extra hyper-

parameters are selected by a 5-fold cross-validation on the training set. The optimal

learning rate of different datasets is chosen in the range of {1e-1, 1e-2, 1e-3}. For L2

regularization term, weight decay is chosen within the grid {1e-3, 3e-3, 1e-2, 3e-2, 1e-

1}. υ related with hint mechanism is chosen within {1, 2, 3}. For parameters related

to the winner-take-all strategy, the sparsity level k in the feature layer is selected from

{40, 45, 50}, and another sparsity level t is chosen within a grid {15, 20, 25, 30, 35}.

Based on Section 4.2, the optimal parameter ζ in the loss function formula Eq.(4.10) is
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FIGURE 4.6: RMSE results for bank2 dataset

searched in the grid of {0.1, 0.2, 0.3} at the beginning, and then ζ is chosen from {0.8,

0.9, 1.0}. In our experiments, we set the network size of the autoencoder as five layers,

and the network size of the discriminator is set as one hidden layer. We use the pytorch,

which is a python-based open source machine learning framework and our experiments

are conducted with a 2.8GHz CPU.

In this paper, we apply RMSE to evaluate the performance of the proposed model, which

is formulated as:

RMS E =

√√
1
n

n∑
i=1

(y′i −yi)2 (4.24)

where y′i is the predicted data of corresponding yi, n is the number of the elements in

testing part. The value of RMSE close to 0 means the superiority of the prediction

model.

Since initialized weights of the generative model are random at each run, various new

datasets can be generated as posterior predictive distributions of missing values. In the

experiment, we repeat the hybrid model for the prespecified number of times D = 20

and then calculate the standard deviation to verify the stability of the model.
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In this paper, we compare our proposed model with persistence methods from three

aspects. Since in the literature, many researchers regard the nonlinear regression prob-

lem with missing values as two separate problems, so we first combine the adversarial

training method with multi-layer perception (AT-MLP) which is still a popular method

for solving the nonlinear regression problem [100] to address the effectiveness of SVR

with deep quasi-linear kernel. Secondly, the performance of the adversarial training

method is examined, the improved version of prevalent multiple imputation method

MICE named Single Center Imputation from Multiple Chained Equation(SICE) [101]

with MLP (SICE-MLP) are conducted in the experiments. Thirdly, we also compare the

proposed model with our two previously published models as references. The first AP-

DAE-QSVR model was developed in Ref.[90] by combing affinity propagation clus-

tering algorithm, denoising autoencoders, and a piecewise linear regression model with

interpolations. The second SDAE-QSVR model was proposed in Ref.[95], which con-

sists of two parts: an overcomplete WTA autoencoder for estimating missing values and

generating gate control sequences, and a binary gated linear network for implement-

ing a piecewise linear model. Besides, the novel SDAE method proposed in Ref.[95]

combined with SVR with deep quasi-linear kernel (SDAE-DQSVR) is also tested to

convince the effectivenss of deep quasi-linear kernel.

4.5.2 Performance Evaluation

The experimental results of PM2.5 prediction are shown in Table.4.3. For easy compar-

ison, the first-rank model is highlighted with boldface. From Table.4.3, we can draw the

following five conclusions. Firstly, we can clearly see that the proposed model achieves

the best performance in each case. To specify, with the increase of prediction interval,

the advantages of our proposed model are becoming more obvious. Secondly, compar-

ing the results of AT-MLP method, we can conclude that SVR with the deep quasi-linear

kernel outperforms prevalent MLP method. Thirdly, we make a comparison between

the proposed model and SICE-MLP method to convince that the adversarial training

method has led to the greater performance for tackling missing data problem. Finally,
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compared SDAE-QSVR method with SDAE-DQSVR method from the T1 to T6 mo-

ments, DQSVR is more stable and robust in dealing with nonlinear prediction problems.

For instance, the growth rate between T1 and T6 is 26.1% for the SDAE-QSVR method

and 22.7% for the SDAE-DQSVR method in the SY dataset.

Furthermore, as Table.4.4 and Fig.4.4-4.6 show, our proposed model yields the best

prediction accuracy with a wide range of missing values. Fig.4.4-4.6 show that with

the increase of missing data, the RMSE value of our proposed model grows the slowest.

Therefore, it leads to the conclusion that the proposed model is more stable and effective

in dealing with the regression problem of missing data.

4.6 Conclusions

In this chapter, we propose a hybrid model to solve the severe problem: nonlinear re-

gression under missing data scenarios. This modelling method consists of two parts: the

overcomplete WTA autoencoder, which is trained in an adversarial training process for

imputing missing components conditioned on observed samples and designing layered

gated control sequences, and the multilayer gated linear network with generated gate

control sequences for implementing the piecewise linear regression model. In this way,

we can implicitly optimize the parameters of the piecewise linear model by applying an

SVR formulation with the deep quasi-linear kernel. Various experiments have shown

that our proposed model is effective and robust even in dealing with large proportion of

missing data.





Chapter 5

Conclusions

5.1 Summary

This final chapter concludes the overall thesis. In this thesis, three different hybrid mod-

eling methods are proposed to solve nonlinear regression problems under the missing

data. All of these models fully leverage the information of datasets during the filling-in

missing values step and parameterize the information as prior knowledge to generate

local-linear models or piecewise linear models. Therefore, our proposed models are

more effective and robust even in dealing with large proportions of missing values.

chapter 2 proposes a hybrid model consisting of an autoencoder and a gated linear

network. AP clustering method with iterations is firstly presented as a preprocessing

method aimed at providing teacher signals and cluster information to construct a com-

petitive net. Then, we present a multiple imputation method based on winner-take-all

DAEs. Finally, an advanced modification named SVR with the quasi-linear kernel is

used to design a gated linear network based on each partition. The following are the

main conclusions of this chapter:

• It is the first to present a hybrid model which combines winner-take-all DAE and

a gated linear network to solve forecasting problems with missing data.
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• To the best of our knowledge, our studies on filling in missing data before training

DAEs firstly use the AP clustering algorithm for constructing the self-organized

competitive net, which makes DAEs get more accurate and effective information

during training, and as to the regression phase, we can also make full use of cluster

information efficiently to build a local linear prediction model.

Chapter 3 proposes a winner-take-all (WTA) autoencoder-based piecewise linear model,

which consists of two steps. WTA SDAEs are employed to tackle missing data prob-

lems, and then a gated linear network is designed to construct a piecewise linear model.

In this way, SVR with a data-dependent quasi-linear kernel can be used for prediction

tasks. The main contributions of this chapter are shown as follows:

• By increasing the role of the denoising autoencoder, we use the SDAE to fill in

the missing values. Morevoer, an iterative algorithm is developed to improve the

performance of the SDAE.

• SDAEs can realize a sophisticated partitioning instead of the AP clustering method

by generating a broad set of binary gate control sequences using the feature laye.

By using the binary gate control sequences, the gated linear network implements

a flexible piecewise linear model for the nonlinear regression.

Chapter 4 develops a hybrid model to solve nonlinear regression under missing data

scenarios. This modelling method consists of two parts: the overcomplete WTA autoen-

coder, which is trained in an adversarial training process for imputing missing compo-

nents conditioned on observed samples and designing layered gated control sequences,

and the multilayer gated linear network with generated gate control sequences for imple-

menting the piecewise linear regression model. In this way, we can implicitly optimize

the parameters of the piecewise linear model by applying an SVR formulation with the

deep quasi-linear kernel. The main contributions of this chapter are shown as follows:

• We use adversarial training process to improve the accuracy of filling in missing

values.
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• A piecewise linear regression model is built through the multi-layer gated linear

network.

5.2 Future Research of Topics

Though much progress has been made in this thesis, there are still two main fields that

need to be further investigated. Firstly, since the accuracy of teacher signals which are

the input of autoencoders plays an very important role in filling in missing data, we

should consider methods to improve the accuracy of teacher signals. Secondly, more

applications should be considered in the future like automatic control systems.
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