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1 Introduction

In this thesis, we study asymptotic behavior of maximum likelihood type estimator
and leats squares type estimator for parameterized stochastic differential equations
driven by a fractional Brownian motion (fBm). Note that the fBm is a centered
Gaussian process with B0 = 0 and

E[BH
t BH

s ] =
1

2

(
t2H + s2H − |t− s|2H

)
.

This covariance formula implies that the sample paths of the fBm have γ-Hölder
continuity for any 0 < γ < H. The fBm divided into three different families corre-
sponding to 0 < H < 1/2, H = 1/2 and 1/2 < H < 1 respectively. When H = 1/2,
this process is a standard Brownian motion and the increment of the process in
disjoint intervals are independent. However, for H "= 1/2 the increments are not
independent. When H > 1/2, the increments exhibit long-range dependence which
is observed in the economics, physics, finance and other fields. When H < 1/2,
the increments are negatively correlated and it is more important in the field of the
mathematical finance (see [9]). Thus, fBm can represent various phenomena and it
is important to study the statistical inference for stochastic processes, modeled by
stochastic differential equations driven by fBm.

When H = 1/2, for which the process is a diffusion process, its parametric
inference has been studied by many authors. In particular, the maximum likelihood
estimator (MLE) via the likelihood function based on the Girsanov density is one of
the optimal estimation methods (see, e.g., Prakasa Rao [36], Liptser and Shiryaev
[24], Kutoyants [22] and references therein).

Since fBm is neither a semimartingale nor Markov process, it is not possible
to use the tool of the stochastic analysis. In this context, Norros [31] succeeded
in analyzing stochastic differential equation driven by fBm within the framework of
conventional stochastic analysis by applying a transformation to a certain martingale.
This idea has since been widely used in its statistical inference and various studies
have been conducted. We refer the reader to Pracasa Rao [37], Mishura [26] and also
references therein. Many authors studied the following fractional one-dimensional
Orstein–Uhlenbeck process:

Xt = X0 − θ0

∫ t

0

Xsds+ σBH
t , t ∈ (0, T ], (1.1)

where X0 ∈ R is the initial value, {BH
t }t∈[0,T ] is a fBm with Hurst index H ∈

(0, 1)/{1
2}. In this model, the drift function is linear in θ and the MLE has explicit
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form. Asymptotic properties of the MLE for unknown parameter θ0 in (1.1) is well
studied when T → ∞.

The main purpose of this thesis is to construct an asymptotic inference theory
for parameterized stochastic differential equations driven by fBm with generalized
drift functions. In Chapter 3, we consider a stochastic process {Xε

t }t∈[0,T ] which is
the solution to the following one-dimensional stochastic differential equations:

Xε
t = X0 +

∫ t

0

b(Xε
s , θ0)ds+ εBH

t , t ∈ (0, T ], (1.2)

where X0 ∈ R is the initial value, θ0 ∈ Θ is the parameter which is contained in
a bounded and open convex subset Θ ⊂ Rd and b is the function on R × Θ. we
consider a maximum likelihood estimator from a realization data {Xε

t }t∈[0,T ] and
derive its asymptotic properties under a small dispersion coefficient ε → 0: small
noise asymptotic.

The parametric inference for diffusion processes under small noise asymptotics
has been well developed (see, e.g., Kutoyants [20], [21], Uchida and Yoshida [42],
Yoshida [43] and [44]). However, parametric estimation problems for the stochastic
differential equation driven by fBm has not been analyzed yet. There are some
practical advantages in small noise asymptotic. We need technical assumptions such
as long-time observation and uniformly-moment conditions in the ergodic setting to
obtain limit theorems of estimators. However, it doesn’t seem very easy to check
those conditions in (1.2) in practice. In the case of small noise asymptotics, we
can obtain some limit theorems under relatively milder conditions compared to the
ergodic case. In addition, by a suitable scaling, we can deal with a small noise model
as a long-term model, approximately. Hence the small noise model is convenient in
practice.

In Chapter 4, we consider the following stochastic differential equations which
generalize coefficients of noise in (1.2):

Xε
t = X0 +

∫ t

0

b(Xε
s , θ0)ds+ ε

∫ t

0

σ(Xε
s )dB

H
s , t ∈ (0, T ], (1.3)

where σ is the function on R and the integral with respect to BH is defined as a path-
wise Riemann–Stieltjes integral. As in Chapter 3, we consider the M-estimator that
naturally follow from the derivation of the MLE from a realization data {Xε

t }t∈[0,T ]

and derive its asymptotic properties under a small dispersion coefficient ε → 0. In
addition, we give one of the sufficient conditions which guarantee the absolute conti-
nuity between the semimartingale derived by transforming the solution of (1.3) and
Wiener measure.
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On the other hands, from a practical point of view, the parametric inference
for discretely observed data is necessary. In Chapter 5, we consider a stochastic
process {Xt}t∈[0,T ] which is the solution to the following one-dimensional stochastic
differential equations:

Xt = X0 +

∫ t

0

b(Xs, θ0)ds+ σBH
t , t ∈ [0, T ], (1.4)

where H ∈ (1/2, 1), θ0 is a parameter contained a bounded and open convex subset
Θ ⊂ R, and σ ∈ R is assumed to be the known diffusion coefficient. we consider the
least squares type estimators from discretely observed data {Xkhn}nk=1 and derive
its asymptotic properties as n → ∞, hn → 0, nhn → ∞. The least squares type
estimators are relatively tractable estimators, and deriving asymptotic normality is
theoretically and practically meaningful. In contrast, Liu et al. [25] proved the LAN
property for the equation (1.4) when the observation of the process are continuous
and the optimal asymptotic variance and converegence rate of estimators have al-
ready known. Our results do not achieve that optimal rate of convergence. This
indicates that our least squares type estimators are not lilely asymptotic efficient for
SDE driven by fBm, unlike the case of Brownian motion. Of course, it can hap-
pen the optimality rate of estimators is different between continuous observations
and discrete observations. However, Brouste and Iacus [2] and Hu-Nualart-Zhou [14]
studied an estimator which is called ergodic type estimator in the case of fractional
Orstein–Uhlenbeck process and derived its asymptotic distribution. Their estimators
achieve optimal convergence rate suggested by [25] when H ∈ (1/2, 3/4). Thus we
expect that it is possible to improve the convergence rate of our estimator based on
discrete samples and more general drift function. In addition, the drift and diffusion
parameters and Hurst index should be estimated jointly. [2] and Haress and Hu [12]
studied the parametric estimation of fractional Ornstein–Uhlenbeck process based
on discrete samples. They proposed the ergodic type estimators and proved joint
convergence of all parameters. For more general equations such as (1.3), Kubilius
and Skorniakov [19] proposed the estimator of the Hurst index when the function σ
is unknown and they proved the consistency and asymptotic normality. However, in
this general case, joint convergence of the drift and the diffusion parameters and the
Hurst index is still open.

This thesis mainly consists of three already published papers on statistical infer-
ence [27], [28] and [29].
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2 Preliminaries

2.1 Notations

• Let (Ω,F , P ) be a probability space and Ft be the σ-field generated by the
random variables BH

s , s ∈ [0, t].

• We denote oP (1) for a sequence of random variables {Yn}n∈N that converges to
zero in probability as n → ∞.

• For a measurable function f on the measure space (E,B, µ), we denote ‖Y ‖Lp(E) :=
(
∫
E |f |pdµ)1/p.

• Ck,l(R×Θ) denotes the space of functions f : R×Θ → R such that the function
f(x, θ) is k and l times differentiable with respect to x and θ.

• Ck
b (Rn) denotes a set of functins which are bounded and Ck(Rn)-class with

bounded derivative.

• For any 0 < λ < 1, we define the Hölder space Cλ[0, T ] which is the set of
λ-Hölder continuous functions g : [0, T ] → R equipped with the norm

‖g‖Cλ[0,T ] := ‖g‖∞,[0,T ] + ‖g‖λ,[0,T ],

with

‖g‖∞,[0,T ] = sup
t∈[0,T ]

|g(t)|, ‖g‖λ,[0,T ] = sup
s,t∈[0,T ]

|g(t)− g(s)|
|t− s|λ .

• For any a, b ≥ 0, the symbol a ! b means that there exists a universal constant
C > 0 such that a ≤ Cb. When C depends explicitly on a specific quantity, we
shall indicate it explicitly through the thesis.

2.2 Fractional calculus

We recall the basic definitions in fractional calculus. See [38] for more details on this
subsection. Let f ∈ L1(a, b) for a < b and α > 0. The fractional Riemann-Liouville
integrals of f of order α are defined for almost all x ∈ (a, b) by

Iαa+f(x) :=
1

Γ(α)

∫ x

a

(x− y)α−1f(y) dy,
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and

Iαb−f(x) :=
1

Γ(α)

∫ b

x

(y − x)α−1f(y) dy.

By interchange the order of integration, we can obtain the following semigroup prop-
erties

Iαa+I
β
a+f = Iα+β

a+ f, Iαb−I
β
b−f = Iα+β

b− f, α > 0, β > 0.

For f ∈ Lp(a, b), g ∈ Lq(a, b) such that 1/p+ 1/q ≤ 1 + α, the following integration
by parts formula holds

∫ b

a

Iαa+f(x)g(x)dx =

∫ b

a

f(x)Iαb−g(x)dx. (2.1)

Let Iαa+(L
p(a, b)) (resp. Iαb−(L

p(a, b))) be the image of Lp(a, b) by the operator
Iαa+ (resp. Iαb−). For f ∈ Iαa+(L

p(a, b)) with 0 < α < 1, the fractional derivative is
defined by

Dα
a+f(x) :=

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
.

Moreover, for f ∈ Iαb−(L
p(a, b)),

Dα
b−f(x) :=

1

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

)
.

Fractional derivatives also have integration by parts formula
∫ b

a

Dα
a+f(x)g(x)dx =

∫ b

a

f(x)Dα
b−g(x)dx,

for f ∈ Iαa+(L
p(a, b)), g ∈ Iαb−(L

q(a, b)), 1/p + 1/q ≤ 1 + α and the semigroup
properties

Dα
a+D

β
a+f = Dα+β

a+ f,

for f ∈ Iα+β
a+ (L1(a, b)). The following inversion formulas hold

Iαa+D
α
a+f = f,

for f ∈ Iαa+(L
p(a, b)) and

Dα
a+I

α
a+f = f,

for f ∈ L1(a, b). The following Proposition guarantees that certain functions are
contained in the image of fractional integral which is found in Theorem 13.6 in [38].

Proposition 2.1. Let f(x) := (x − a)−µg(x) where g ∈ Cλ([a, b]), a < b, λ > α
and −α < µ < 1. Then for 1 ≤ p < ∞ such that µ + α < 1/p it follows that
f ∈ Iαa+(L

p(a, b)).
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2.3 Fractional Brownian motion

The fBm with Hurst index H ∈ (0, 1) is a centered Gaussian process and its covari-
ance function is given by

E[BH
t BH

s ] =
1

2

(
t2H + s2H − |t− s|2H

)
=: RH(s, t).

By Kormogorev’s continuity criterion and Garsia–Rodemich–Rumsey inequality, we
can show that fBm has a version with γ-Hölder continuous trajectories with 0 <
γ < H. For H = 1/2, fBm reduces to the standard Brownian motion. It is known
that fBm is a semimartingale if and only if H = 1/2. Therefore, to define stochastic
integration, the tool of the stochastic analysis is not applicable and the stochastic
integral with respect to fBm needs to define other method.

Let E be the set of step function on [0, T ] and H be the Hilbert space defined as
the closure of E with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The mapping 1[0,t] -→ BH
t can be extended to a linear isometry between E and the

Gaussian space H1 spanned by BH . We denote this isometry by f -→ BH(f) and
call it Wiener integral. The covariance of the fBm can be expressed as

RH(t, s) =

∫ t∧s

0

kH(t, u)kH(s, u)du,

where kH(t, s) is the square integrable kernel defined by

kH(t, s) :=






dH
Γ(H−1/2)

[
( ts)

H−1/2(t− s)H−1/2

−(H − 1/2)s1/2−H
∫ t

s u
H−3/2(u− s)H−1/2du

]
if H < 1/2

dH
Γ(H−1/2)s

1/2−H
∫ t

s (u− s)H−3/2uH−1/2du if H > 1/2,

with

dH :=

√
2HΓ(32 −H)Γ(H + 1

2)

Γ(2− 2H)
.

Consider the linear operator K∗
H from E to L2[0, T ] defined by

(K∗
Hf)(s) :=

{
kH(T, s)f(s) +

∫ T

s (f(t)− f(s)) ∂kH
∂t (t, s)dt if H < 1/2∫ T

s f(t)∂kH∂t (t, s)dt if H > 1/2.

8



Notice that
K∗

H1[0,t] = kH(t, s)1[0,t](s).

The operator K∗
H is an isometry between E and the L2[0, T ] that can be extended to

the Hibert space H. Indeed, for s, t[0, T ],

〈K∗
H1[0,t], K

∗
H1[0,s]〉L2[0,T ] = 〈kH(t, ·)1[0,t], kH(s, ·)1[0,s]〉L2[0,T ]

=

∫ t∧s

0

kH(t, u)kH(s, u)du

= RH(t, s) = 〈1[0,t], 1[0,s]〉H.

The operator K∗
H can be expressed by the following fractional representation:

(K∗
Hf)(s) :=

{
dHs1/2−HD1/2−H

T−
(
(·)H−1/2f

)
(s) if H < 1/2

dHs1/2−HIH−1/2
T−

(
(·)H−1/2f

)
(s) if H > 1/2.

By using the fractional inversion formula, for any a ∈ [0, T ], the inverse operator of
K∗

H is given by

(
(K∗

H)
−11[0,a]

)
(s) =

{
1
dH

s1/2−HI1/2−H
a−

(
(·)H−1/2

)
(s)1[0,a](s) if H < 1/2

1
dH

s1/2−HDH−1/2
a−

(
(·)H−1/2

)
(s)1[0,a](s) if H > 1/2.

Consider the stochastic process {Wt}t∈[0,T ]

Wt := BH
(
(K∗

H)
−11[0,t]

)
. (2.2)

Then W is a Wiener process. Indeed, for s, t ∈ [0, T ], we have

E[WtWs] = E
[
BH

(
(K∗

H)
−11[0,t]

)
BH

(
(K∗

H)
−11[0,s]

)]

= 〈BH
(
(K∗

H)
−11[0,t]

)
, BH

(
(K∗

H)
−11[0,s]

)
〉H

= 〈1[0,t], 1[0,s]〉 = s ∧ t.

Moreover, the process BH(f) has an integral representation of the form

BH
t =

∫ t

0

kH(t, s)dWs. (2.3)
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2.4 Polynomial type large deviation inequality

The statistical inference for unknown parameter θ ∈ Θ will be done besed on the
random fields Lε : Ω × Θ → R. In Chapter 3 and 4, we formulate Lε as a
likelihood function and consider the estimator that maximizes it. Let Uε(θ0) :={
u ∈ Rd : θ0 + εu ∈ Θ

}
and define the random field Zε : Uε(θ0) → R+ by

Zε(u) = exp {Lε(θ0 + εu)− Lε(θ0)} , u ∈ Uε(θ0).

Assume that Lε is of C3 with respect to θ for every ω ∈ Ω and then applying Taylor
formula, the random field Zε is locally asymptotically quadratic at θ0 ∈ Θ under Pθ0 ,
that is,

Zε(u) = exp

(
ε∇θLε(θ0)u

∗ − 1

2
uΓ(θ0)u

∗ +Rε(u)

)
,

where Γ(θ0) is a d-dimensional deterministic matrix, u∗ denotes the tarnspose of u
and

Rε(u) =
1

2
u
(
ε2∇2

θLε(θ0)− (−Γ(θ0))
)
u∗

+
1

2
ε3

∫ 1

0

(1− s)2∇3
θLε(θ0 + sεu)[u, u, u]ds.

with ∇3
θLε(θ)[x, y, z] =

∑d
i,j,k=1 ∂θi∂θj∂θkLε(θ)xiyjzk. Moreover, let Yε : Ω × Θ → R

be a randon field defined by

Yε(θ) :=ε2 (Lε(θ)− Lε(θ0)) ,

and YH be the expected its limit when ε → 0.

Assumption 2.1. For every p > 0,

sup
ε∈(0,1]

E|ε∇θLH,ε(θ0)|p < ∞.

Assumption 2.2. For every p > 0,

sup
ε∈(0,1]

E
(
ε−1/2

∣∣−ε2∇2
θLε(θ0)− Γ(θ0)

∣∣)p < ∞.

Assumption 2.3. For every p > 0,

sup
ε∈(0,1]

E

(
ε2 sup

θ∈Θ

∣∣∇3
θLε(θ)

∣∣
)p

< ∞.
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Assumption 2.4. For every p > 0,

sup
ε∈(0,1]

E

(
sup
θ∈Θ

ε−1 |Yε(θ)− Y(θ)|
)p

< ∞.

Assumption 2.5. The matrix Γ(θ0) is deterministic and positive definite.

Assumption 2.6. There exists a positive constant ξ(θ0) > 0 such that

Y(θ) ≤ −ξ(θ0)|θ − θ0|2,

for every θ ∈ Θ.

The following theorems are Theorems 3, 5 of Yoshida [45]. Here we give a sim-
plified version of them.

Theorem 2.1. Under Assumptions 2.1-2.6, there exists a constant C > 0 such that

sup
0<ε<1

P

[
sup
|u|≥r

Zε(u) ≥ e−r

]
≤ Cr−L,

for any r > 0 and L > 0.

Let B(R) := {u ∈ Rd; |u| ≤ R} for R > 0 and θ̂ε be a random variable maximizes
Lε:

Lε(θ̂ε) = sup
θ∈Θ̄

Lε(θ),

and let uε := ε−1(θ̂ε − θ0).

Theorem 2.2. Assume that there exists a random function Z such that for every
R > 0,

Zε
d−→ Z,

in C(B(R)) as ε → 0 and there exists a measurable mapping û that is a unique

maximum point of Z. Then ûε
d−→ û as ε → 0.

2.5 Basic inequalities

We summarize the inequalities that will be used frequently throughout this thesis.
First, we state Hölder’ inequality and Minkowski’s inequality. For proofs, see theorem
6.2.7 in [40].
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Theorem 2.3 (Hölder’s inequality). Let p, q ∈ [1,∞] such that 1/p+1/q = 1. Then
for every measurable functions f, g on the measure space (E,B, µ),

‖fg‖L1(E) ≤ ‖f‖Lp(E)‖g‖Lq(E).

Theorem 2.4 (Minkowski’s inequality). Let (Ei,Bi, µi), i ∈ {1, 2} be σ-finite mea-
sure spaces. Then for 1 ≤ q ≤ p∞ and measurable functions f on (E1×E2,B1×B2),

(∫

E2

(∫

E1

|f(x1, x2)|qµ1(dx1)

) p
q

µ2(dx2)

) 1
p

≤
(∫

E1

(∫

E2

|f(x1, x2)|pµ2(dx2)

) q
p

µ1(dx1)

) 1
q

Lemma 2.1 (Gronwall’s inequality). Let f, g be non-negative and local-integrable
functions on [0,∞). Suppose that a non-negative function φ on [0,∞) satisfies

φ(t) ≤ f(t) +

∫ t

0

g(s)φ(s)ds.

Then the following inequality is valid:

φ(t) ≤ f(t) +

∫ t

0

f(s)g(s) exp(

∫ t

s

g(r)dr)ds.

The following lemma is often used to evaluate the Hölder norm of some functions.
Its proof is found in [8].

Lemma 2.2 (Garsia–Rodemich–Rumsey inequality). Let p ≥ 1 and α > p−1. Then
there exists a constant Cα,p > 0 such that for any f ∈ C[0, T ] and for all s, t ∈ [0, T ],

|f(t)− f(s)|p ≤ Cα,p|t− s|αp−1

∫ T

0

∫ T

0

|f(x)− f(y)|p

|x− y|αp+1
dxxy.

We prepare fractional version of the Gronwall’s inequality (see [34]).

Lemma 2.3. Let 0 ≤ α < 1, a, b ≥ 0 and f is non-negative and continuous function
on [0,∞) such that

f(t) ≤ a+ btα
∫ t

0

(t− s)−αs−αf(s)ds.

Then
f(t) ≤ adα exp(cαtb

1/(1−α)),

where cα and dα are positive constant depending on α.
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In order to establish some Hölder norm estimates of the solution to the SDE, we
prepare the following lemma which is found in Exercise 4.24 in [6].

Lemma 2.4. Let α ∈ (0, 1), h > 0, and Z ∈ Cα[0, T ]. Assume that

‖Z‖α,h := sup
|Zs,t|

|t− s|α ≤ M,

where sup is restricted to time s, t ∈ [0, T ] and |t− s| ≤ h. Then

‖Z‖α,[0,T ] ≤ M(1 ∨ 2(T/h)1−α).

We prepare the Burkholder–Davis–Gundy’s inequality which is appied to estimate
the stochastic integral with respect to Wiener process. For a proof, see Theorem 5.16
in [23].

Theorem 2.5 (Burkholder–Davis–Gundy’s inequality). For every p > 0, there exist
constants cp and Cp such that for every continuous martingale {Mt}t∈[0,T ] satisfying

E[〈M〉p/2T ] < ∞,

cpE[〈M〉p/2T ] ≤ E[ sup
t∈[0,T ]

|Mt|p] ≤ CpE[〈M〉p/2T ],

where 〈M〉 is the quadratic variation of M .

We state Fernique’s theorem frequently used in Section 4. Let E be a separable
Banach space with norm ‖ · ‖E and B(E) be its Borel σ-field. A centered Gaussian
measure µ on (E, E) is a probability measure such that l∗µ is a real Gaussian prob-
ability measure on R with zero mean for every linear functional l : E → R. For a
proof, see [5] or [10].

Theorem 2.6 (Fernique’s theorem). Let µ be an arbitrary centered Gaussian mea-
sure on E. Then there exists a constant c > 0 such that

∫

E

ec‖x‖
2
Eµ(dx) < ∞.

Remark 2.1. In a later section, we will use Fernique’s theorem on the Hölder space
Cλ[0, T ]. However, we need to be a little more careful because the Hölder space is
not separable. In order to apply Fernique’s theorem, we fix 0 < β < λ and let E be
a function space defined as the closure of Cβ[0, T ] in the norm Cλ[0, T ]. Then E is
a separable Banach space and we can see that µ can actually realised as a Gaussian
measure on E. Therefore, Fernique’s theorem is applicable. See [1] and [10] for
further details.
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Let f ∈ Cλ[a, b] and g ∈ Cµ[a, b] with λ + µ > 1. Then the Riemann Stieltjes

integral
∫ b

a f(s)dg(s) exists , see Young [46]. Moreover, the chain rule for the change
of variable is valid which found Theorem 4.3.1 in [47].

Lemma 2.5. Let f ∈ Cλ[a, b] and F ∈ C1(R) be functions such that ∂xF (f(·)) ∈
Cµ[a, b] with λ+ µ > 1. Then

F (f(x))− F (f(a)) =

∫ x

a

∂xF (f(y))df(y), x ∈ [a, b].

Lemma 2.6 (Young’s inequality). Let f ∈ Cλ[a, b] and g ∈ Cµ[a, b] with λ+ µ > 1.
Then there exists a constant Cλ,µ > 0 such that

∣∣∣∣
∫ b

a

(f(x)− f(a)) dg(x)

∣∣∣∣ ≤ Cλ,µ‖f‖λ,[a,b]‖g‖µ,[a,b].
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3 Additive noise case

Let {Xε
t }t∈[0,T ] be a solution to the following stochastic differential eqution:

Xε
t = X0 +

∫ t

0

b(Xε
s , θ0)ds+ εBH

t , t ∈ (0, T ], (3.1)

where X0 ∈ R is the initial value, {BH
t }t∈[0,T ] is a fBm with Hurst index H ∈

(0, 1)/{1
2} and θ0 ∈ Θ is the parameter which is contained in a bounded and open

convex subset Θ ⊂ Rd admitting Sobolev’s inequalities for embedding W 1,p(Θ) ↪→
C(Θ̄). Without loss of generality, we assume that ε ∈ (0, 1]. The main purpose
in this chapter is the estimation of parameter θ0 ∈ Θ from a realization {Xε

t }t∈[0,T ]

when ε → 0.
There are several results on the parametric inference for stochastic differential

equation driven by fractional Brownian motion. Brouste and Kleptsyna [3], Klept-
syna and Le Breton [17] studied the parameter estimation problem for continuously
observed fractional Ornstein–Uhlenbeck processes. In these papers, the drift func-
tion is linear in both x and θ (b(x, θ) = −θx) and the asymptotic normality and
moment convergence of MLE are established when the terminal time of observation
goes to infinity. In similar framework, Tudor and Viens [41] discussed the statistical
estimation with special drift function b(x, θ) = θb(x) and they showed the consis-
tency of the MLE. All the drift functions discussed in these papers are linear in θ
and the MLE has an explicit expression. Recently, in the case when the drift func-
tion b(x, θ) is nonlinear in both x and θ, Chiba [4] proposed an M-estimator based
on the likelihood function. Unlike previous studies, the estimator proposed in [4]
does not have an explicit expression. In order to obtain the asymptotic properties
of the estimator, he applied the method investigated by Ibragimov and Has’minskii
[15] and established asymptotic properties of the estimator when the Hurst index
H is contained in (14 ,

1
2). Their approach is based on the analysis of the likelihood

ratio random field, where the large deviation inequality plays an important role to
derive the asymptotic properties. We allow the drift function b(x, θ) is nonlinear in
both x and θ and the Hurst index H is contained in (0, 1)/{1

2}. We aim to deduce
asymptotic normality and moment convergence of the MLE of the drift parameter
under ε → 0.

3.1 Construction of the MLE

We aim to estimate the unknown parameter θ0 ∈ Θ in the equation (3.1) from
completely observed data {Xε

t }t∈[0,T ]. We impose some assumptions on the parameter
space Θ and coefficients b to derive likelihood function.
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Assumption 3.1. The parameter space Θ ⊂ Rd to be bounded, open and convex
domain admitting Sobolev embedding W 1,p(Θ) ↪→ C(Θ̄) for p > d. Here, C(Θ̄) is the
set of continuous functions on Θ̄ and W 1,p(Θ) is the set of functions f on Θ such
that f and its derivative in the weak sense are Lp integrable functions.

Assumption 3.2. The function b in (3.1) is of C1,4(R × Θ;R)-class such that for
every x ∈ R and θ ∈ Θ, the following growth conditions hold:

|∇i
θb(x, θ)| ≤ c(1 + |x|N), |∇i

θ∂xb(x, θ)| ≤ c(1 + |x|N),

for 0 ≤ i ≤ 4 and some constants c > 0, N ∈ N.

Assumption 3.3. There exists L > 0 such that for every x, y ∈ R,

sup
θ∈Θ

|b(x, θ)− b(y, θ)| ≤ L|x− y|.

According to [33] and [34], the existence and uniqueness of the strong solution to
equation (3.1) follows under Assumption 3.2 and 3.3. In addition, for every 0 < α <
H, the solution to (3.1) has α-Hölder continuity. By Proposition 2.1, we can define
the function

Qε
H,θ(t) :=

{
(εdH)

−1 tH−1/2I1/2−H
0+

[
(·)1/2−Hb(Xε

· , θ)
]
(t) if H < 1/2

(εdH)
−1 tH−1/2DH−1/2

0+

[
(·)1/2−Hb(Xε

· , θ)
]
(t) if H > 1/2.

For 0 < s < t, let k−1
H (t, s) be a functin given by

k−1
H (t, s) :=

{
1
dH

s1/2−HI1/2−H
t−

[
(·)H−1/2

]
(s) if H < 1/2

1
dH

s1/2−HDH−1/2
t−

[
(·)H−1/2

]
(s) if H > 1/2.

Define a stochastic process {Wt}t∈[0,T ] by

Wt :=

∫ t

0

k−1
H (t, s) dBH

s .

Here we interpret the stochastic integral with respect to a fractional Brownian mo-
tion as a Wiener integral. Then W is a Wiener process and BH has the integral
representation

BH
t =

∫ t

0

kH(t, s) dWs.
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We consider a semimartingale {Zt}t≥0 as follows:

Zt : = ε−1

∫ T

0

k−1
H (t, s)dXε

s

=

∫ t

0

Qε
H,θ(s)ds+Wt.

We can find the following Girsanov theorem in [41].

Proposition 3.1. Under Assumptions 1-3, the stochastic process {Xε
t /ε}t∈[0,T ] is a

Ft-fractional Brownian motion.

By Proposition 3.1, the log-likelihood function LH,ε for the equation (3.1) can be
obtained by

LH,ε(θ) :=

∫ T

0

Qε
H,θ(t)dZt −

1

2

∫ T

0

Qε
H,θ(t)

2dt.

We define the maximum likelihood estimator by

θ̂ε := argmax
θ∈Θ̄

LH,ε(θ).

3.2 Main results

In order to state our main results about asymptotic properties of θ̂ε, we make some
notations. Let {xt}0≤t≤T be the solution to the differential equation under the true
value of the drift parameter: 





dxt

dt
= b(xt, θ0)

x0 = X0.
(3.2)

We set the d–dimensional square matrix ΓH(θ0) which is an asymptotic convariance
matrix of our estimator as

Γi,j
H (θ0) :=






c1
∫ T

0 t2H−1
(∫ t

0 s
1/2−H(t− s)−1/2−H∂θib(xs, θ0)ds

)

×
(∫ t

0 s
1/2−H(t− s)−1/2−H∂θjb(xs, θ0)ds

)
dt if H < 1/2

∫ T

0

(
c2t1/2−H∂θib(xt, θ0) + c3tH−1/2

∫ t

0

∂θib(xt,θ0)−∂θib(xs,θ0)

(t−s)H+1/2 s1/2−Hds

)

×
(
c2t1/2−H∂θjb(xt, θ0) + c3tH−1/2

∫ t

0

∂θj b(xt,θ0)−∂θj b(xs,θ0)

(t−s)H+1/2 s1/2−Hds

)
dt if H > 1/2,
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where
c1 = (dHΓ(1/2−H))−2

c2 = (dHΓ(3/2−H))−1

{
1 + (H − 1/2)

∫ 1

0

1− s1/2−H

(1− s)H+1/2
ds

}

c3 = (H − 1/2) (dHΓ(3/2−H))−1 .

Assumption 3.4. The matrix ΓH(θ0) is positive definite.

In order to guarantee the asymptotic properties of the estimator, we need to
impose the identifiability condition. Define

YH,ε(θ) :=ε2 (LH,ε(θ)− LH,ε(θ0)) ,

and let YH be the expected limit of YH,ε defined by

YH(θ) :=






− c1
2

∫ T

0 t2H−1
{∫ t

0 s
1/2−H(t− s)−1/2−H (b(xs, θ)− b(xs, θ0)) ds

}2

dt if H < 1/2

−1
2

∫ T

0

(
c2t1/2−H (b(xt, θ)− b(xt, θ0))

+c3tH−1/2
∫ t

0
(b(xt,θ)−b(xt,θ0))−(b(xs,θ)−b(xs,θ0))

(t−s)H+1/2 s1/2−Hds

)2

dt if H > 1/2.

Assumption 3.5. There exists a positive constant ξ(θ0) > 0 such that

YH(θ) ≤ −ξ(θ0)|θ − θ0|2,

for every θ ∈ Θ.

The following theorem gives the asymptotic properties of the estimator θ̂ε.

Theorem 3.1. Suppose that the Assumptions 3.1-3.5 are fulfilled. Then the estima-
tor θ̂ε satisfies that

ε−1(θ̂ε − θ0)
d−→ N(0,ΓH(θ0)

−1),

as ε → 0. Moreover, we have

E
[
f
(
ε−1(θ̂ε − θ0)

)]
→ E[f(ξ)],

as ε → 0 for every continuous function f of polynomial growth, where ξ ∼ N(0,ΓH(θ0)−1).
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3.3 Examples

Example 3.1. We consider a one-dimensional fractional Ornstein–Uhlenbeck pro-
cess that is, the drift function in (3.1) is given by b(x, θ0) = θ0x with θ0 ∈ R. Then
xt satisfies the following equation






dxt

dt
= θ0xt

x0 = X0.

The explicit solution is given by xt = X0eθ0t. In this case, we can check Assumptions
1-4 hold true. Indeed, Assumptions 1,2 are obvious. We will show that Assumptions
3.4 and 3.5 hold. In the case H < 1/2,

ΓH(θ0) = c1

∫ T

0

t2H−1

(∫ t

0

s1/2−H(t− s)−1/2−HX0e
θ0sds

)2

dt

≥ c1X
2
0

(
eθ0T ∧ 1

)2
∫ T

0

t2H−1

(∫ t

0

s1/2−H(t− s)−1/2−Hds

)2

dt

= c1X
2
0

(
eθ0T ∧ 1

)2
β(3/2−H, 1/2−H)2T 2−2H > 0.

Thus the Assumption 3.4 holds true. In the same way,

−YH(θ) =
c1
2

∫ T

0

t2H−1

{∫ t

0

s1/2−H(t− s)−1/2−H (θ0xs − θxs) ds

}2

dt

=
c1
2
(θ0 − θ)2X2

0

∫ T

0

t2H−1

{∫ t

0

s1/2−H(t− s)−1/2−Heθ0sds

}2

dt

≥ c1
2
(θ0 − θ)2X2

0

(
eθ0T ∧ 1

)2
β(3/2−H, 1/2−H)2T 2−2H ,

and the Assumption 3.5 holds true. In the case H > 1/2, we restrict θ0 > 0. Then

−YH(θ) =
(θ − θ0)2

2
X2

0

∫ T

0

(
c2t

1/2−Heθ0t + c3t
H−1/2

∫ t

0

eθ0t − eθ0s

(t− s)H+1/2
s1/2−Hds

)2

dt

=
(θ − θ0)2

2
X2

0

{
c22

∫ T

0

t1−2He2θ0t + 2c2c3e
θ0t

∫ t

0

eθ0t − eθ0s

(t− s)H+1/2
s1/2−Hds

+ c23t
2H−1

(∫ t

0

eθ0t − eθ0s

(t− s)H+1/2
s1/2−Hds

)2

dt

}
.
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By the mean value theorem, we have

∫ t

0

eθ0t − eθ0s

(t− s)H+1/2
s1/2−Hds ≥ θ0

∫ t

0

(t− s)1/2−Hs1/2−Heθ0sds

≥ θ0t
2−2Hβ(3/2−H, 3/2−H).

Thereofore

−YH(θ) ≥
(θ − θ0)2

2
X2

0

{
c22

∫ T

0

t1−2He2θ0t + 2c2c3e
θ0tθ0t

2−2Hβ(3/2−H, 3/2−H)

+ c23θ
2
0t

3−2Hβ(3/2−H, 3/2−H)2dt

}

≥ (θ − θ0)2

2
X2

0

{
c22

2− 2H
T 2−2H +

2c2c3θ0
3− 2H

T 3−2Hβ(3/2−H, 3/2−H)

+
c23θ

2
0

4− 2H
T 4−2Hβ(3/2−H, 3/2−H)2

}
,

and Assumption 3.5 holds. Assumption 3.4 can be confirmed by the same calculation.

Example 3.2. Let us consider the drift function

b(x, θ) =
√
θ + x2,

with θ ∈ (m,M), 0 < m < M, X0 > 0 and H ∈ (0, 1/2). Then we can confirm
to b ∈ C1,4(R × Θ) and all derivative functions are bounded. Thus Assumptions
3.2,3.3 hold true. We check Assumption 3.5. Note that the function xt is monotone
increasing and satisfies the relation

xt +
√
θ0 + x2

t =

(
X0 +

√
θ0 +X2

0

)
et.

In particular, for every t ∈ [0, T ], X0 ≤ xt <
(
X0 +

√
θ0 +X2

0

)
et. By the mean
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value theorem,

−YH(θ) =
c1
2

∫ T

0

t2H−1

{∫ t

0

s1/2−H(t− s)−1/2−H
(√

θ0 + x2
s −

√
θ + x2

s

)
ds

}2

dt

≥ c1
8
(θ0 − θ)2

∫ T

0

t2H−1

{∫ t

0

s1/2−H(t− s)−1/2−H 1√
M + x2

s

ds

}2

dt

≥ c1
8(M + x2

T )
(θ0 − θ)2

∫ T

0

t2H−1

{∫ t

0

s1/2−H(t− s)−1/2−Hds

}2

dt

≥ (θ0 − θ)2
c1β(3/2−H, 1/2−H)2T 2−2H

8

(
M +

(
X0 +

√
θ0 +X2

0

)2

e2T
) ,

and Assumption 3.5 holds. Assumption 3.4 can be confirmed by the same calculation.

Example 3.3. Let H ∈ (1/2, 1). We consider a simpler drift function than Example
3.2 which is given by

b(x, θ) = θ
√
1 + x2,

with θ ∈ (m,M), 0 < m < M and X0 > 0. As in Example 3.2, Assumptions
1,2 can be checked and the function xt satisfies the relation xt + θ0

√
1 + x2

t =(
X0 + θ0

√
1 +X2

0

)
et. We check Assumption 3.5 holds true.

−YH(θ) =
1

2

∫ T

0

(
c2t

1/2−H
(
θ0
√
1 + x2

t − θ
√

1 + x2
t

)

+ c3t
H−1/2

∫ t

0

(
θ0
√

1 + x2
t − θ

√
1 + x2

t

)
−

(
θ0
√
1 + x2

s − θ
√

1 + x2
s

)

(t− s)H+1/2
s1/2−Hds

)2

dt

=
(θ0 − θ)2

2

∫ T

0

(
c2t

1/2−H
√
1 + x2

t

)2

+ 2c2c3
√

1 + x2
t

∫ t

0

√
1 + x2

t −
√

1 + x2
s

(t− s)H+1/2
s1/2−Hds

+

(
c3t

H−1/2

∫ t

0

√
1 + x2

t −
√
1 + x2

s

(t− s)H+1/2
s1/2−Hds

)2

dt.

(3.3)
We evaluate each of the three terms that appear in the last equality in (3.3). Using
the monotonicity of xt, the first term can be estimated as

∫ T

0

t1−2H
(
1 + x2

t

)
dt ≥ (1 +X2

0 )

∫ T

0

t1−2Hdt =
1 +X2

0

2− 2H
T 2−2H .
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Let us estimate the second term of (3.3). By the change of the variable formula, we
have

√
1 + x2

t −
√
1 + x2

s =

∫ t

s

xu√
1 + x2

u

dxu

= θ0

∫ t

s

xu

√
1 + x2

u

1√
1 + x2

u

du ≥ θ0X0(t− s).

Thus

∫ T

0

√
1 + x2

t

∫ t

0

√
1 + x2

t −
√
1 + x2

s

(t− s)H+1/2
s1/2−Hdsdt ≥

√
1 +X2

0θ0X0

∫ T

0

∫ t

0

(t− s)1/2−Hs1/2−Hdsdt

=
√

1 +X2
0θ0X0β(3/2−H, 3/2−H)T 3−2H .

In the same way, we can estimate the third term of (3.3) as

∫ T

0

t2H−1

(∫ t

0

√
1 + x2

t −
√
1 + x2

s

(t− s)H+1/2
s1/2−Hds

)2

dt ≥ θ20X
2
0

∫ T

0

t2H−1

(∫ t

0

(t− s)1/2−Hs1/2−Hds

)2

dt

=
θ20X

2
0β(3/2−H, 3/2−H)2

4− 2H
T 4−2H ,

and Assumption 3.5 is valid. Assumption 3.4 can be confirmed by the same calcula-
tion.

3.4 Proofs

Recall that {xt}0≤t≤T be the solution to the following differential equation:





dxt

dt
= b(xt, θ0)

x0 = X0.

Lemma 3.1. For every p > 0, there exist constants ci > 0, i = 1, 2, 3 such that for
every s, t ∈ [0, T ],

E|Xε
t − xt|p ≤ c1ε

p

E|Xε
t |p ≤ c2,

and
E|Xε

t −Xε
s |p ≤ c3|t− s|pH .
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Proof. By Assumptions 3.3,

|Xε
t − xt| ≤

∫ t

0

|b(Xε
s , θ0)− b(xs, θ0)|+ ε|BH

t |

≤ L

∫ t

0

|Xε
s − xs|ds+ ε sup

0≤t≤T
|BH

t |.

By Gronwall’s inequality, it follows that

|Xε
t − xt| ≤ εeLt sup

0≤t≤T
|BH

t |,

and the first estimate follows. Other estimates hold true by the linear growth con-
dition of the functon b.

Let Uε(θ0) :=
{
u ∈ Rd : θ0 + εu ∈ Θ

}
and define the random field ZH,ε : Uε(θ0) →

R+ by
ZH,ε(u) = exp {LH,ε(θ0 + εu)− LH,ε(θ0)} , u ∈ Uε(θ0).

Applying Taylor’s formula, we have

logZH,ε(u) = ε∇θLH,ε(θ0)u
∗ − 1

2
uΓH(θ0)u

∗ +Rε(u),

where

Rε(u) =
1

2
u
(
ε2∇2

θLH,ε(θ0)− (−ΓH(θ0))
)
u∗

+
1

2
ε3

∫ 1

0

(1− s)2∇3
θLH,ε(θ0 + sεu)[u, u, u]ds.

The following lemma gives Assumption 2.2 of Theorem 2.1.

Lemma 3.2. For every p > 0,

sup
0<ε<1

E
[(
ε−dH

∣∣ε2∇2
θLH,ε(θ0)− (−ΓH(θ0))

∣∣)p] < ∞,

where

dH =

{
1 if H < 1/2

1/2 if H > 1/2.

Proof. Note that the function LH,ε is twice differentiable in θ and we have

ε2∇2
θLH,ε(θ0)− (−ΓH(θ0)) = ε2

∫ T

0

∇2
θQ

ε
H,θ0(t)dWt −

(
ε2

∫ T

0

(
∇θQ

ε
H,θ0(t)

)⊗2
dt− ΓH(θ0)

)
.
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At first, we consider the case of H < 1/2. Note that

Qε
H,θ0(t) = c21ε

−1tH−1/2

∫ t

0

s1/2−H(t− s)−1/2−Hb(Xε
s , θ0)ds.

By Burkholder’s and Minkowski’s inequalities and Lemma 3.1, the stochastic integral
part is estimated as

E

(
ε2

∣∣∣∣
∫ T

0

∂θi∂θjQ
ε
H,θ0(t)dWt

∣∣∣∣

)p

!
(
ε4

∫ T

0

∥∥∂θi∂θjQε
H,θ0(t)

∥∥2

Lp(Ω)
dt

)p/2

! εp
(∫ T

0

t2H−1

∣∣∣∣
∫ t

0

s1/2−H(t− s)−1/2−H
∥∥∂θi∂θjb(Xε

s , θ0)
∥∥
Lp(Ω)

ds

∣∣∣∣
2

dt

)p/2

! εp sup
0≤s≤T

∥∥1 + |Xε
s |N

∥∥p

Lp(Ω)

(∫ T

0

t1−2Hdt

)p/2

! εp,

for every i, j = 1, · · · , d. We shall estimate the second part. For every i, j = 1, · · · , d,

ε2
∫ T

0

∂θiQ
ε
H,θ0(t)∂θjQ

ε
H,θ0(t)dt− Γi,j

H (θ0)

= c21

∫ T

0

t2H−1

{(∫ t

0

s1/2−H(t− s)−1/2−H∂θib(X
ε
s , θ0)ds

)(∫ t

0

s1/2−H(t− s)−1/2−H∂θjb(X
ε
s , θ0)ds

)

−
(∫ t

0

s1/2−H(t− s)−1/2−H∂θib(xs, θ0)ds

)(∫ t

0

s1/2−H(t− s)−1/2−H∂θjb(xs, θ0)ds

)}
dt

= c21

∫ T

0

t2H−1

{(∫ t

0

s1/2−H(t− s)−1/2−H∂θi (b(X
ε
s , θ0)− b(xs, θ0)) ds

)

×
(∫ t

0

s1/2−H(t− s)−1/2−H∂θjb(X
ε
s , θ0)ds

)

−
(∫ t

0

s1/2−H(t− s)−1/2−H∂θib(xs, θ0)ds

)

×
(∫ t

0

s1/2−H(t− s)−1/2−H∂θj (b(xs, θ0)− b(Xε
s , θ0)) ds

)}
dt.
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By Hölder’s and Minkowski’s inequalities and Lemma 3.1, we can show that

E

∣∣∣∣∣

∫ T

0

t2H−1

(∫ t

0

s1/2−H(t− s)−1/2−H∂θi (b(X
ε
s , θ0)− b(xs, θ0)) ds

)

×
(∫ t

0

s1/2−H(t− s)−1/2−H∂θjb(X
ε
s , θ0)ds

)
dt

∣∣∣∣∣

p

≤

∣∣∣∣∣

∫ T

0

t2H−1

(∫ t

0

s1/2−H(t− s)−1/2−H ‖∂θi (b(Xε
s , θ0)− b(xs, θ0))‖L2p(Ω) ds

)

×
(∫ t

0

s1/2−H(t− s)−1/2−H
∥∥∂θjb(Xε

s , θ0)
∥∥
L2p(Ω)

ds

)
dt

∣∣∣∣∣

p

! sup
0≤s≤T

∥∥(1 + |Xε
s |N + |xs|N

)
|Xε

s − xs|
∥∥p

L2p(Ω)

(∫ T

0

t1−2Hdt

)
! εp.

Therefore
sup
0<ε<1

E
[(
ε−1

∣∣ε2∇2
θLH,ε(θ0)− (−ΓH(θ0))

∣∣)p] < ∞.

The case where H > 1/2. We have that

Qε
H,θ0(t) = c1ε

−1t1/2−Hb(Xε
t , θ0) + c2ε

−1tH−1/2

∫ t

0

b(Xε
t , θ0)− b(Xε

s , θ0)

(t− s)H+1/2
s1/2−Hds.
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In a similar way with the case H < 1/2, the stochastic integral part is evaluated as

E

(
ε2

∣∣∣∣
∫ T

0

∂θi∂θjQ
ε
H,θ0(t)dWt

∣∣∣∣

)p

!
(
ε4

∫ T

0

∥∥∂θi∂θjQε
H,θ0(t)

∥∥2

Lp(Ω)
dt

)p/2

! εp
{∫ T

0

t1−2H‖∂θi∂θjb(Xε
t , θ0)‖2Lp(Ω)dt

+

∫ T

0

t2H−1

∥∥∥∥
∫ t

0

∂θi∂θjb(X
ε
t , θ0)− ∂θi∂θjb(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hds

∥∥∥∥
2

Lp(Ω)

dt

}p/2

! εp
{∥∥∥∥1 + sup

0≤t≤T
E|Xε

t |2N
∥∥∥∥
2

Lp(Ω)

∫ T

0

t1−2Hdt

+

∫ T

0

t2H−1

∥∥∥∥∥

∫ t

0

(
1 + |Xε

t |N + |Xε
s |N

)
|Xε

t −Xε
s |

(t− s)H+1/2
s1/2−Hds

∥∥∥∥∥

2

Lp(Ω)

dt

}p/2

! εp




1 +

∫ T

0

t2H−1

(∫ t

0

‖Xε
t −Xε

s‖L2p(Ω)

(t− s)H+1/2
s1/2−Hds

)2

dt






p/2

! εp,

for every i, j = 1, · · · , d. We estimate the term ε2
∫ T

0

(
∇θQε

H,θ0(t)
)⊗2

dt−ΓH(θ0). For
every i, j = 1, · · · , d

ε2
∫ T

0

∂θiQ
ε
H,θ0(t)∂θjQ

ε
H,θ0(t)dt− Γi,j

H (θ0)

= c2

(∫ T

0

t1−2H
{
∂θib(X

ε
t , θ0)∂θjb(X

ε
t , θ0)− ∂θib(xt, θ0)∂θjb(xt, θ0)

}
dt

)

+ (c2c3)
1/2

(∫ T

0

∂θib(X
ε
t , θ0)

∫ t

0

∂θjb(X
ε
t , θ0)− ∂θjb(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hdsdt

−
∫ T

0

∂θib(xt, θ0)

∫ t

0

∂θjb(xt, θ0)− ∂θjb(xs, θ0)

(t− s)H+1/2
s1/2−Hdsdt

)

+ c3

(∫ T

0

(∫ t

0

∂θib(X
ε
t , θ0)− ∂θib(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hds

)(∫ t

0

∂θjb(X
ε
t , θ0)− ∂θjb(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hds

)
dt

−
∫ T

0

(∫ t

0

∂θib(xt, θ0)− ∂θib(xs, θ0)

(t− s)H+1/2
s1/2−Hds

)(∫ t

0

∂θjb(xt, θ0)− ∂θjb(xs, θ0)

(t− s)H+1/2
s1/2−Hds

)
dt

)
.
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Using Lemma 3.1, we have

E

∣∣∣∣
∫ T

0

t1−2H
{
∂θib(X

ε
t , θ0)∂θjb(X

ε
t , θ0)− ∂θib(xt, θ0)∂θjb(xt, θ0)

}
dt

∣∣∣∣
p

! E

∣∣∣∣
∫ T

0

t1−2H
{
∂θib(X

ε
t , θ0)

(
∂θjb(X

ε
t , θ0)− ∂θjb(xt, θ0)

)
+ ∂θjb(xt, θ0) (∂θib(X

ε
t , θ0)− ∂θib(xt, θ0))

}∣∣∣∣
p

! E

∣∣∣∣
∫ T

0

t1−2H(1 + |Xε
t |N + |xt|N)2 |Xε

t − xt|
∣∣∣∣
p

! εp.

We shall estimate the second term. Note that
∥∥∂θjb(Xε

t , θ0)− ∂θjb(X
ε
s , θ0)− ∂θjb(xt, θ0) + ∂θjb(xs, θ0)

∥∥
Lp(Ω)

!
(∥∥∂θjb(Xε

t , θ0)− ∂θjb(X
ε
s , θ0)

∥∥
Lp(Ω)

+
∥∥∂θjb(xt, θ0)− ∂θjb(xs, θ0)

∥∥
Lp(Ω)

)1/2

×
(∥∥∂θjb(Xε

t , θ0)− ∂θjb(xs, θ0)
∥∥
Lp(Ω)

+
∥∥∂θjb(Xε

s , θ0) + ∂θjb(xs, θ0)
∥∥
Lp(Ω)

)1/2

! ε1/2|t− s|H/2.

Thus we obtain that

E

∣∣∣∣∣

∫ T

0

(
∂θib(X

ε
t , θ0)

∫ t

0

∂θjb(X
ε
t , θ0)− ∂θjb(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hds

− ∂θib(xt, θ0)

∫ t

0

∂θjb(xt, θ0)− ∂θjb(xs, θ0)

(t− s)H+1/2
s1/2−Hds

)
dt

∣∣∣∣∣

p

= E

∣∣∣∣∣

∫ T

0

(
(∂θib(X

ε
t , θ0)− ∂θib(xt, θ0))

∫ t

0

∂θjb(X
ε
t , θ0)− ∂θjb(X

ε
s , θ0)

(t− s)H+1/2
s1/2−Hds

+ ∂θib(xt, θ0)

∫ t

0

∂θjb(X
ε
t , θ0)− ∂θjb(X

ε
s , θ0)− ∂θjb(xt, θ0) + ∂θjb(xs, θ0)

(t− s)H+1/2
s1/2−Hds

)
dt

∣∣∣∣∣

p

!
(∫ T

0

∥∥(1 + |Xε
t |N + |xt|N)|Xε

t − xt|
∥∥
L2p(Ω)

∫ t

0

∥∥(1 + |Xε
t |N + |Xε

s |N
)
|Xε

t −Xε
s |
∥∥
L2p(Ω)

(t− s)H+1/2
s1/2−Hds

)p

+

(∫ T

0

(1 + |xt|N)
∫ t

0

∥∥∂θjb(Xε
t , θ0)− ∂θjb(X

ε
s , θ0)− ∂θjb(xt, θ0) + ∂θjb(xs, θ0)

∥∥
Lp(Ω)

(t− s)H+1/2
s1/2−Hdsdt

)p

! εp + εp/2.

We can estimate the third term in a similar way the second term and we complete
the proof.
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Lemma 3.3. For every p ≥ 2,

sup
0<ε<1

E

[
sup
θ∈Θ

∣∣ε2∇3
θLH,ε(θ)

∣∣p
]
< ∞.

Proof. By Sobolev’s inequality, it follows for every p > d that

sup
θ∈Θ

∣∣∇3
θLH,ε(θ0)

∣∣p !
∫

Θ

(∣∣∇3
θLH,ε(θ)

∣∣p +
∣∣∇4

θLH,ε(θ)
∣∣p) dθ.

By the same argument as in the proof of Lemma 3.2, we can show that

sup
0<ε<1

ε2pE

[∫

Θ

(∣∣∇3
θLH,ε(θ)

∣∣p +
∣∣∇4

θLH,ε(θ)
∣∣p) dθ

]
< ∞.

The proof of the following Lemma is similar to the one for Lemmas 3.2 and 3.3.

Lemma 3.4. For every p ≥ 2,

sup
0<ε<1

E|ε∂θLH,ε(θ0)|p < ∞,

and

sup
0<ε<1

E

(
sup
θ∈Θ

ε−1 |YH,ε(θ)− YH(θ)|
)p

< ∞.

From Lemma 3.4 and the proof of Lemma 3.2, we obtain that

ε∇θLH,ε(θ0)
d−→ N(0,ΓH(θ0)), (3.4)

as ε → 0 by the martingale central limit theorem. Moreover, Lemmas 3.2, 3.3 and
the convergence (3.4) give the local asymptotic normality of ZH,ε(u):

ZH,ε(u)
d−→ ZH(u) := exp

(
∆H(θ0)u− 1

2
ΓH(θ0)[u, u]

)
,

where ∆H(θ0) ∼ N(0,ΓH(θ0)). By Lemma 3.2, 3.3 and 3.4, we can apply Theorem
2.1 and yields the inequality

sup
0<ε<1

P

[
sup
|u|≥r

ZH,ε(u) ≥ e−r

]
! r−L, (3.5)
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hold for any r > 0 and L > 0. Since uε := ε−1(θ̂ε − θ0) maximizes the random field
ZH,ε, the sequence {f(uε)}ε is uniformly integrable for every continuous function f
such that for every x ∈ R, |f(x)| ! 1 + |x|N for some N > 0. Indeed,

sup
0<ε<1

P (|uε| ≥ r) ≤ sup
0<ε<1

P

(
sup
|u|≥r

ZH,ε(u) ≥ ZH,ε(0)

)
! r−L,

for every r > 0 and L > 0. Thus

sup
0<ε<1

E[|f(uε)|] ! 1 +

∫ ∞

0

sup
0<ε<1

P
(
|uε| > r1/N

)
dr < ∞.

In the sequel, we prove that

logZH,ε
d−→ logZH in C(B(R)), (3.6)

as ε → 0. If we can show the convergence (3.6), we obtain the asymptotic normality:

ε−1(θ̂ε − θ0)
d−→ N(0,ΓH(θ0)

−1),

as ε → 0 by Theorem 2.4. Due to linearity in u of the weak convergence term
ε∇θLH,ε(θ0)[u], the convergence of finite-dimensional distribution holds true. It re-
mains to show the tightness of the family {logZH,ε(u)}u∈B(R). By the Kolmogorov
tightness criterion (see [15]), it suffices to show that for every R > 0 there exists a
constant p > 0, γ > d and C > 0 such that

E |logZH,ε(u1)− logZH,ε(u2)|p ≤ C|u1 − u2|γ, (3.7)

for u1, u2 ∈ B(R). For a number p > 0 large enough, the inequality (3.7) is shown
easily by Lemmas 3.2, 3.3 and 3.4. Therefore, we complete the proof.
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4 Multiplicative noise case

Let {Xε
t }t∈[0,T ] be a solution to the following stochastic differential eqution:

Xε
t = X0 +

∫ t

0

b(Xε
s , θ0) ds+ ε

∫ t

0

σ(Xε
s ) dB

H
s , t ∈ [0, T ], (4.1)

where X0 ∈ R is the initial value, θ0 ∈ Θ is the parameter which is contained in
a bounded and open convex subset Θ ⊂ Rd admitting Sobolev’s inequalities for
embedding W 1,p(Θ) ↪→ C(Θ̄). The stochastic process {BH

t }t∈[0,T ] is a fBm with
Hurst index H ∈ (1/2, 1) and the integral with respect to BH is defined as a pathwise
Riemann-Stieltjes integral. Without loss of generality, we assume that ε ∈ (0, 1]. The
main purpose in this section is the estimation of parameter θ0 ∈ Θ from a realization
{Xε

t }t∈[0,T ] when ε → 0.
There are some methods to define the stochastic integral with respect to the fBm.

One of them is the pathwise approach. Since we can expect the solution to (4.1) whose
trajectories are the same Hölder continuity to the fBm, the Riemann-Stieltjes integral∫ t

0 σ(X
ε
s ) dB

H
s in (4.1) can be defined in the sense of the Young integral. Under this

interpretation, Nualart and Răşcanu [34] showed the existence and uniqueness of the
solution to (4.1). They rewrote the stochastic integral as generalized Stieltjes integral
and derived to apriori estimate to guarantee global existence of a solution to (4.1).
In order to obtain asymptotic properties of the estimator under ε → 0, we rewrite
the stochastic integral as generalized Stieltjes integral in the same way as [34]. Then
we can get some estimates and asymptotic behavior of the solution to (4.1). We first
prepare these evaluations and then apply the method investigated by Ibragimov and
Has’minskii [15]. We aim to deduce asymptotic normality and moment convergence
of the maximum likelihood type estimators of the drift parameter under ε → 0.

4.1 Generalized Riemann–Stieltjes integral

We define the pathwise integral with respect to fractional Brownian motion appearing
in equation (4.1). Let f and g are functions such that the limits f(a+) := limδ↓0 f(a+
δ), g(b−) := limδ↓0 g(b− δ) exist. Let

fa+(x) := (f(x)− f(a+)) 1(a,b)(x)

gb−(x) := (g(b−)− g(x)) 1(a,b)(x).

Suppose that f(a+) ∈ Iαa+(L
p(a, b)) and g(b−) ∈ Lq(a, b) for some p, q ≥ 0, 1/p +

1/q ≤ 1 and 0 < α < 1. The generalized Stieltjes integral is defined as
∫ b

a

f(x)dg(x) :=

∫ b

a

Dα
a+fa+(x)D

1−α
b− gb−(x) dx+ f(a+) (g(b−)− g(a+)) ,
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and if αp < 1, it can be rewritten by
∫ b

a

f(x)dg(x) =

∫ b

a

Dα
a+f(x)D

1−α
b− gb−(x) dx.

If f ∈ Cλ[a, b] and g ∈ Cµ[a, b] with λ + µ > 1, the generalized Riemann–Stieltjes

integral
∫ b

a f(x)dg(x) coincides with the Riemann–Stieltjes integral. Since the frac-
tional Brownian motion has λ-Hölder continuous trajectiries with λ ∈ (0, H), we can
define the integral for 1−H < α < 1/2 and f ∈ Iαa+(L

1(a, b)),

∫ b

a

f(x)dBH(x) :=

∫ b

a

Dα
a+f(x)D

1−α
b− BH

b−(x) dx,

For 1− α < β < H, we can show that
∣∣∣∣
∫ b

a

f(x)dBH(x)

∣∣∣∣ ≤ sup
a≤x≤b

∣∣D1−α
b− BH

b−(x)
∣∣
∫ b

a

∣∣Dα
a+f(x)

∣∣ dx

≤ β(b− a)α+β−1

Γ(α)(α + β − 1)
‖BH

· ‖β,[a,b]
∫ b

a

∣∣Dα
a+f(x)

∣∣ dx,
(4.2)

where the second inequality follows from the following evaluation:

∣∣D1−α
b− BH

b−(x)
∣∣ = 1

Γ(α)

∣∣∣∣
BH

b − BH
x

(b− x)1−α
+ (1− α)

∫ b

x

Bx − By

(y − x)2−α
dy

∣∣∣∣

≤
‖BH

· ‖β,[a,b]
Γ(α)

∣∣∣∣
1

(b− x)1−α−β
+ (1− α)

∫ b

x

1

(y − x)2−α−β
dy

∣∣∣∣

≤ β(b− a)α+β−1

Γ(α)(α + β − 1)
‖BH

· ‖β,[a,b].

4.2 Construction of the maximum likelihood type estimator

We impose some assumptions on coefficients b and σ in order to derive the likelihood
function.

Assumption 4.1. The parameter space Θ ⊂ Rd to be bounded, open and convex
domain admitting Sobolev embedding W 1,p(Θ) ↪→ C(Θ̄) for p > d.

Assumption 4.2. The function b(·, θ) in (4.1) is of C1(R)-class and there exist
constants c,N > 0 such that, for every x, y ∈ R and θ ∈ Θ,

sup
θ∈Θ

|b(x, θ)− b(y, θ)| ≤ c|x− y|, |∂xb(x, θ)| ≤ c(1 + |x|N).
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Assumption 4.3. The function σ(·) in (4.1) is of C1(R)-class and there exist con-
stants γ, δ ∈ [0, 1] and c,N > 0 such that for every x, y ∈ R and integer 0 ≤ i ≤ 1,

|σ(x)| ≤ c(1 + |x|γ), |∂i
xσ(x)− ∂i

xσ(y)| ≤ c|x− y|, |∂xσ(x)| ≤ c(1 + |x|N).

Assumption 4.4. The function b(·,·)
σ(·) is of C2,4(R×Θ;R)-class, and there exist con-

stants c,N > 0 such that for every x ∈ R, θ ∈ Θ and integers 0 ≤ j ≤ 2 and
0 ≤ i ≤ 4, it holds that

∣∣∣∣∂
j
x∇i

θ

(
b(x, θ)

σ(x)

)∣∣∣∣ ≤ c
(
1 + |x|N

)
.

Assumption 4.5. There exists a random variable ξ such that P (ξ < ∞) = 1 and

sup
t∈[0,T ]

1

|σ(Xε
t )|

≤ ξ.

Since, for every 1−H < α < 1/2 ∧ (2− γ)/4, the solution to (4.1) has (1 − α)-
Hölder continuity under Assumptions 4.2 and 4.3 (see [34]), we can define a function
under Assumptions 4.2-4.4,

Qε
H,θ(t) := (εdH)

−1 tH−1/2DH−1/2
0+

[
(·)1/2−H b(Xε

· , θ)

σ(Xε
· )

]
(t),

where

dH :=

√
2HΓ(32 −H)Γ(H + 1

2)

Γ(2− 2H)
.

In the sequel, we construct a maximum likelihood type estimator under Assumptions
4.2-4.5. Consider the stochastic process

Yt :=

∫ t

0

σ−1(Xε
s )dXs =

∫ t

0

b(Xε
s , θ0)

σ(Xε
s )

ds+ εBH
t ,

We set a semimartingale {Zt}t≥0 as follows:

Zt : = ε−1

∫ t

0

k−1
H (t, s) dYs

=

∫ t

0

Qε
H,θ(s) ds+Wt.
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Define the probability measure dP ∗ := Λθ0
T dP , where

Λθ0
T := exp

(
−
∫ T

0

Qε
H,θ0(s) dWs −

1

2

∫ T

0

Qε
H,θ0(s)

2 ds

)
.

Now, let us assume that

EΛθ0
T = 1, (4.3)

one of the sufficient conditions for which is given in Theorem 4.3 later. Then, thanks
to the Girsanov theorem, a stochastic process {Zt}t∈[0,T ] is an (Ft)-Brownian motion
under P ∗. Therefore, we see that

∫ t

0

kH(t, s) dZs = ε−1Yt,

is an (Ft)-fractional Brownian motion.
Let Xε,0 be the solution to the following SDE:

Xε,0
t = X0 + ε

∫ t

0

σ(X0,ε
s ) dBH

s ,

and let P ε
θ0 and P ε

0 be probability measures induced by processes {Xε
t }t∈[0,T ] and

{Xε,0
t }t∈[0,T ], respectively. Note that we have the equality P ∗-a.s.

X0 +

∫ t

0

σ(Xε
s ) dYs = X0 +

∫ t

0

b(Xε
s , θ0) ds+ ε

∫ t

0

σ(Xε
s ) dB

H
s .

Hence for every A ∈ B(C[0, T ]),

P ε
θ0(A) = P ∗(Xε ∈ A) = P (Xε,0 ∈ A) =

∫

{Xε∈A}

(
Λθ0

T (ω)−1
)
dP ∗(ω),

and we find that the Radon-Nikodym derivative of P ε
θ0 with respect to P ε

0 is given
by

dP ε
θ0

dP ε
0

(Xε) = exp

(∫ T

0

Qε
H,θ0(s)dWs +

1

2

∫ T

0

Qε
H,θ0(s)

2 ds

)
. (4.4)

We consider the log-likelihood function

LH,ε(θ) :=

∫ T

0

Qε
H,θ(t)dZt −

1

2

∫ T

0

Qε
H,θ(t)

2dt.
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The maximum likelihood type estimator θ̂ε is defined as

θ̂ε := argmax
θ∈Θ̄

LH,ε(θ), (4.5)

under (4.3).

Remark 4.1. Note that the above argument is under the condition (4.3), which
is to be proved so that θ̂ε becomes the “true” MLE. Nevertheless, we consider the
estimator (4.5) in the sequel as an M -estimator without care of (4.3) while θ̂ε is
well-defined. We need some additional conditions for coefficients b and σ to ensure
(4.3), some of those is given in Section 4.5.

4.3 Main results

To describe our main results, we make some notations.
Let {xt}0≤t≤T be the solution to the differential equation under the true value of

the drift parameter: 




dxt

dt
= b(xt, θ0)

x0 = X0.
(4.6)

We set the d-dimensional square matrix ΓH(θ0) which is an asymptotic convariance
matrix of the estimator as

Γi,j
H (θ0) :=

∫ T

0

(
c1t

1/2−H ∂θib(xt, θ0)

σ(xt)
+ c2t

H−1/2

∫ t

0

∂θib(xt,θ0)

σ(xt)
− ∂θib(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds

)

×
(
c1t

1/2−H ∂θjb(xt, θ0)

σ(xt)
+ c2t

H−1/2

∫ t

0

∂θj b(xt,θ0)

σ(xt)
− ∂θj b(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds

)
dt,

where

c1 = (dHΓ(3/2−H))−1

{
1 + (H − 1/2)

∫ 1

0

s1/2−H − 1

(1− s)H+1/2
ds

}

c2 = (H − 1/2) (dHΓ(3/2−H))−1 .

Assumption 4.6. The matrix ΓH(θ0) is positive definite.

In order to guarantee the asymptotic properties of the estimator, we need to
impose the identifibility condition. Define

YH,ε(θ) := ε2 (LH,ε(θ)− LH,ε(θ0)) ,
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and let YH be the expected limit of YH,ε defined by

YH(θ) := −1

2

∫ T

0

(
c1t

1/2−H

(
b(xt, θ)

σ(xt)
− b(xt, θ0)

σ(xt)

)

+ c2t
H−1/2

∫ t

0

(
b(xt,θ)
σ(xt)

− b(xt,θ0)
σ(xt)

)
−

(
b(xs,θ)
σ(xs)

− b(xs,θ0)
σ(xs)

)

(t− s)H+1/2
s1/2−Hds

)2

dt.

Assumption 4.7. There exists a positive constant ξ(θ0) > 0 such that

YH(θ) ≤ −ξ(θ0)|θ − θ0|2,

for every θ ∈ Θ.

The following theorem gives the asymptotic distribution of the estimator θ̂ε.

Theorem 4.1. Suppose the Assumptions 4.1–4.7. Then it holds for θ̂ε in (4.5) that

ε−1(θ̂ε − θ0)
d−→ ξ, ε → 0,

where ξ ∼ N(0,ΓH(θ0)−1). Moreover, we have

E
[
f
(
ε−1(θ̂ε − θ0)

)]
→ E[f(ξ)], ε → 0,

for every continuous function f of polynomial growth.

Remark 4.2. Let us remark that the Theorem 4.1 can be generalized to the multi-
dimensional stochastic differential equation considered as in [34]. In fact, the key
estimates of the proof of the Theorem 4.1, Lemma 4.1 and 4.2, hold in the multi-
dimensional case. However, to avoid complications of the calculation, we have re-
stricted the assertion of Theorem 4.1 to the one-dimensional case.

4.4 Examples

We supply some examples of Thereom 4.1.

Example 4.1. Let us consider the drift and diffusion functions as follows:

b(x, θ) =
θx

1 + x2
, σ(x) =

1√
1 + x2

,
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with θ ∈ (m,M), 0 < m < M, X0 > 0. Then the function x· satisfies the following
equation: 





dxt

dt
=

θ0xt

1 + x2
t

x0 = X0.

In this case, we can check Assumptions of Theorem 4.1 and 4.2. It is easy to verify
that Assumptions 4.2-4.5 are satisfied. We check Assumption 4.7. Since X0 > 0, the
function x· is monotone increasing and we can evaluate for every t ∈ [0, T ],

X0 ≤ xt = X0 + θ0

∫ t

0

xs

1 + x2
s

ds ≤ X0 + θ0

∫ t

0

xsds,

and by Gronwall’s inequality, we have

xt ≤ X0e
θ0t.

Recall that YH(θ) is given by

−YH(θ) :=
1

2

∫ T

0

(
c1t

1/2−H

(
θxt√
1 + x2

t

− θ0xt√
1 + x2

t

)

+ c2t
H−1/2

∫ t

0

(
θxt√
1+x2

t

− θ0xt√
1+x2

t

)
−

(
θxs√
1+x2

s

− θ0xs√
1+x2

s

)

(t− s)H+1/2
s1/2−Hds

)2

dt

=
(θ − θ0)2

2

∫ T

0

(
c21t

1−2H x2
t

1 + x2
t

+ 2c1c2
xt√
1 + x2

t

∫ t

0

xt√
1+x2

t

− xs√
1+x2

s

(t− s)H+1/2
s1/2−Hds

+ c22t
2H−1




∫ t

0

xt√
1+x2

t

− xs√
1+x2

s

(t− s)H+1/2
s1/2−Hds




2 )

dt.

(4.7)
The first term in the last inequality of (4.7) can be bounded as

∫ T

0

t1−2H x2
t

1 + x2
t

dt ≥ X2
0

1 +X2
0e

2θ0T

∫ T

0

t1−2Hdt =
X2

0T
2−2H

(2− 2H)(1 +X2
0e

2θ0T )
.

We estimate the second term of (4.7). By the change of the variable formula, we
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have
xt√
1 + x2

t

− xs√
1 + x2

s

=

∫ t

s

{
1√

1 + x2
u

− x2
u

(1 + x2
u)

3/2

}
dxu

= θ0

∫ t

s

1

(1 + x2
u)

3/2

xu

1 + x2
u

du

≥ θ0X0

(1 +X2
0e

2θ0T )5/2
(t− s).

Therefore,

∫ T

0

xt√
1 + x2

t




∫ t

0

xt√
1+x2

t

− xs√
1+x2

s

(t− s)H+1/2
s1/2−Hds



 dt

≥ θ0X0

(1 +X2
0e

2θ0T )5/2

∫ T

0

xt√
1 + x2

t

(∫ t

0

(t− s)1/2−Hs1/2−Hds

)
dt

≥ θ0X2
0β (3/2−H, 3/2−H)

(1 +X2
0e

2θ0T )3

∫ T

0

t2−2Hdt =
θ0X2

0β (3/2−H, 3/2−H)T 3−2H

(3− 2H) (1 +X2
0e

2θ0T )3
.

In the same way, we can evaluate the third term of (4.7) and Assumption 4.7 holds
true. Assumption 4.6 can be confirmed by the same calculation. We check the
Assumption 4.8. The boundedness of the function σ itself and its derivative are
obvious. We show that the Hölder continuity of the function b/σ. For every x, y ∈
R, θ ∈ (m,M) and λ ∈ (1− 1

2H , 1/2),

θ

∣∣∣∣∣
x√

1 + x2
− y√

1 + y2

∣∣∣∣∣ = θ

∣∣∣∣∣
x√

1 + x2
− y√

1 + y2

∣∣∣∣∣

λ+(1−λ)

≤ M21−λ

∣∣∣∣∣
x√

1 + x2
− y√

1 + y2

∣∣∣∣∣

λ

,

and by the mean value theorem, we conclude that

θ

∣∣∣∣∣
x√

1 + x2
− y√

1 + y2

∣∣∣∣∣ ≤ 2M |x− y|λ.

Therefore, in this case, the estimator θ̂ε is the MLE and has asymptotic properties
described in Theorem 4.1.
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Example 4.2. Let d = 1, H ∈ (3/4, 1) and consider the fractional geometric Brow-
nian motion that is, the drift and the diffusion functions are given by

b(x, θ) = θx, σ(x) = x,

with θ ∈ Θ. Then we can confirm that Assumptions 4.2-4.5 are satisfied. Moreover,
for every θ ∈ Θ, the asymptotic variance ΓH(θ0) and YH(θ) have the following form:

ΓH(θ0) = c21θ
2
0

∫ T

0

t1−2Hdt =
c21T

2−2H

2− 2H
θ20

YH(θ) = − c21T
2−2H

2(2− 2H)
(θ − θ0)

2.

Thus Assumptions 4.6, 4.7 are also satisfied. On the other hands, since the fuction
σ(x) = x is not bounded, we can not apply Theorem 4.2. However, in this case, we
can confirm that θ̂ε is the true MLE. Indeed, the function Qε

H,θ0 has the form

Qε
H,θ0(t) = c1ε

−1t1/2−Hθ0,

and the condition (4.21) holds true. Therefore, θ̂ε is the MLE and has asymptotic
properties described in Theorem 4.1.

4.5 Proofs

We first establish a lemma on the evaluation of Xε.

Lemma 4.1. Under Assumptions 4.1-4.3, for every p > 0, there exist constants
Ci > 0, i = 1, 2, 3, 4 depending on T > 0, α ∈ (1 − H, 1/2 ∧ (2 − γ)/4) and
β ∈ (1− α, H) such that for s, t ∈ [0, T ],

E|Xε
t − xt|p ≤ C1ε

p (4.8)

E|Xε
t |p ≤ C2 (1 + εp) (4.9)

E

(∫ t

0

|Xε
t −Xε

s |
(t− s)α+1

ds

)p

≤ C3 (1 + εp) , (4.10)

and

E|Xε
t −Xε

s |p ≤ C4|t− s|p(H−β+1−α) ≤ C4T
p(H−β+1/2−α)|t− s|

pH
2 . (4.11)
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Proof. By the equations (4.1) and (4.6), we see that

|Xε
t − xt| ≤

∫ t

0

|b(Xε
s , θ0)− b(xs, θ0)|ds+ ε

∣∣∣∣
∫ t

0

σ(Xε
s )dB

H
s

∣∣∣∣ := Ψt + Φt.

Note that it follows from the Lipschitz continuity of the function b that

|Ψt| !
∫ t

0

|Xε
s − xs|ds. (4.12)

Hence Fubini’s theorem yields that
∫ t

0

|Ψt −Ψs|
(t− s)1+α

ds !
∫ t

0

(t− s)−1−α

(∫ t

s

|Xε
u − xu|du

)
ds

=

∫ t

0

|Xε
u − xu|

(∫ u

0

(t− s)−1−αds

)
du

!
∫ t

0

|Xε
u − xu|(t− u)−αdu.

(4.13)

As for the stochastic integral term Φt, we see from Assumption 4.3 and the inequality
(4.2) that

|Φt| ! ε‖BH‖β,[0.t]
∫ t

0

|Dα
0+σ(X

ε
· )(s)|ds

= ε‖BH‖β,[0.t]
∫ t

0

∣∣∣∣
σ(Xε

s )

sα
+ α

∫ s

0

σ(Xε
s )− σ(Xε

u)

(s− u)1+α
du

∣∣∣∣ ds

! ε‖BH‖β,[0.t]
{
t1−α +

∫ t

0

(
|Xε

s |γ

sα
+ α

∫ s

0

|Xε
s −Xε

u|
(s− u)1+α

du

)
ds

}

! ε‖BH‖β,[0.t]
{
1 +

∫ t

0

(
|Xε

s − xs|γ + |xs|γ

sα
+

∫ s

0

|Xε
s − xs −Xε

u − xu|+ |xs − xu|
(s− u)1+α

du

)
ds

}
.

We use the mean value theorem to obtain that

ε‖BH‖β,[0.t]
{
1 +

∫ t

0

(
|Xε

s − xs|γ + |xs|γ

sα
+

∫ s

0

|Xε
s − xs −Xε

u − xu|+ |xs − xu|
(s− u)1+α

du

)
ds

}

! ε‖BH‖β,[0.t]

{
1 + sup

s∈[0,T ]
|xs|γt1−α + sup

s∈[0,T ]
|ẋs|t2−α

+

∫ t

0

(
|Xε

s − xs|γ

sα
+

∫ s

0

|Xε
s − xs −Xε

u − xu|
(s− u)1+α

du

)
ds

}
,
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and by the Hölder’s inequality, we can get

|Φt| ! ε‖BH‖β,[0.t]

{
1 +

∫ t

0

(
|Xε

s − xs|
sα

+

∫ s

0

|Xε
s − xs −Xε

u − xu|
(s− u)1+α

du

)
ds

}
. (4.14)

On the other hand, it follows by the additivity of integral that

|Φt − Φs| = ε

∣∣∣∣
∫ t

s

σ(Xε
u)dBu

∣∣∣∣

=

∣∣∣∣
∫ t

s

Dα
s+σ(X

ε
· )(u)D

1−α
t− BH(u)du

∣∣∣∣

≤ ε‖BH‖β,[0.t]
∣∣∣∣
∫ t

s

(
σ(Xε

u)

(u− s)α
+ α

∫ u

s

σ(Xε
u)− σ(Xε

v)

(u− v)α+1
dv

)
du

∣∣∣∣ .

Thus, by Fubini’s theorem, we obtain that

∫ t

0

|Φt − Φs|
(t− s)1+α

ds = ε

∫ t

0

(t− s)−1−α

∣∣∣∣
∫ t

s

σ(Xε
u)dB

H
u

∣∣∣∣ ds

! ε‖BH‖β,[0.t]
∫ t

0

(t− s)−1−α

∣∣∣∣
∫ t

s

(
σ(Xε

u)

(u− s)α
+ α

∫ u

s

σ(Xε
u)− σ(Xε

v)

(u− v)α+1
dv

)
du

∣∣∣∣ ds

≤ ε‖BH‖β,[0.t]

{∫ t

0

|σ(Xε
u)|

(∫ u

0

(t− s)−1−α(u− s)−αds

)
du

+

∫ t

0

∫ u

0

|σ(Xε
u)− σ(Xε

v)|
(u− v)α+1

(∫ v

0

(t− s)−α−1ds

)
dvdu

}
.

Note that, by the change the variable s = u− (t− u)y, we have

∫ u

0

(t− s)−1−α(u− s)−αds = (t− u)−2α

∫ u
t−u

0

(1 + y)−α−1y−αdy

≤ (t− u)−2α

∫ ∞

0

(1 + y)−α−1y−αdy = B(2α, 1− α)(t− u)−2α.

and ∫ v

0

(t− s)−α−1ds = α−1
{
(t− v)−α − t−α

}
≤ α−1(t− v)−α.
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It follows that

∫ t

0

|Φt − Φs|
(t− s)1+α

ds ! ε‖BH‖β,[0.t]

{∫ t

0

|σ(Xε
u)| (t− u)−2αdu

+

∫ t

0

(∫ u

0

(t− v)−α |σ(Xε
u)− σ(Xε

v)|
(u− v)α+1

dv

)
du

}

! ε‖BH‖β,[0.t]
{
1 +

∫ t

0

|Xε
u|

γ (t− u)−2αdu+

∫ t

0

(∫ u

0

(t− v)−α |Xε
u −Xε

v |
(u− v)α+1

dv

)
du

}
.

By using the mean value theorem, we obtain that

ε‖BH‖β,[0.t]
{
1 +

∫ t

0

|Xε
u|

γ (t− u)−2αdu+

∫ t

0

(∫ u

0

(t− v)−α |Xε
u −Xε

v |
(u− v)α+1

dv

)
du

}

! ε‖BH‖β,[0.t]

{
1 + sup

u∈[0,T ]
|xu|γt1−2α + sup

u∈[0,T ]
|ẋu|

∫ t

0

(∫ u

0

(t− v)−α(u− v)−αdv

)
du

+

∫ t

0

|Xε
u − xu|γ (t− u)−2αdu+

∫ t

0

(∫ u

0

(t− v)−α |Xε
u − xu −Xε

v + xv|
(u− v)α+1

dv

)
du

}

! ε‖BH‖β,[0.t]

{
1 +

∫ t

0

|Xε
u − xu|γ (t− u)−2αdu

+

∫ t

0

(∫ u

0

(t− v)−α |Xε
u − xu −Xε

v + xv|
(u− v)α+1

dv

)
du

}
.

(4.15)
Define

κγ :=






2α if γ = 1

> 1 + 2α−1
γ if 1−2α

1−α ≤ γ < 1

α if 0 ≤ γ < 1−2α
1−α ,

and we can show the following inequality

∫ t

0

|Φt − Φs|
(t− s)1+α

ds ! ε‖BH‖β,[0.t]

{
1 +

∫ t

0

|Xε
u − xu| (t− u)−κγdu

+

∫ t

0

(t− u)−α

(∫ u

0

|Xε
u − xu −Xε

v + xv|
(u− v)α+1

dv

)
du

}
.

(4.16)
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Indeed, if γ = 1, the inequality follws immediately from (4.15). If 1−2α
1−α ≤ γ < 1, by

the Hölder’s inequality with δ = κγγ > γ + 2α− 1,

∫ t

0

|Xε
u − xu|γ(t− u)−2αdu ≤

(∫ t

0

|Xε
u − xu|(t− u)−

δ
γ du

)γ (∫ t

0

(t− u)−
2α+δ
1−γ du

)1−γ

!
(
1 +

∫ t

0

|Xε
u − xu|(t− u)−κγdu

)
,

and (4.16) holds true. If 0 ≤ γ < 1−2α
1−α , (4.16) follows from the same argument as in

the case 1−2α
1−α ≤ γ < 1. Define the funtion

ht := |Xε
t − xt|+

∫ t

0

|Xε
t − xt − (Xε

s − xs)|
(t− s)α+1

ds.

Then by estimates (4.12), (4.13), (4.14) and (4.16), we have

|ht| ≤ |Ψt|+ |Φt|+
∫ t

0

|Ψt −Ψs|+ |Φt − Φs|
(t− s)1+α

ds

! ε‖BH‖β,[0.t] +
∫ t

0

|Xε
s − xs|ds+

∫ t

0

|Xε
s − xs| (t− s)−αds

+ ε‖BH‖β,[0.t]
∫ t

0

(
|Xε

s − xs|
sα

+

∫ s

0

|Xε
s − xs −Xε

u − xu|
(s− u)1+α

du

)
ds

+ ε‖BH‖β,[0.t]
{∫ t

0

|Xε
s − xs| (t− s)−κγds+

∫ t

0

(t− s)−α

(∫ s

0

|Xε
s − xs −Xε

u + xu|
(s− u)α+1

du

)
ds

}

! ε‖BH‖β,[0.t] +
(
ε‖BH‖β,[0.t] + 1

) ∫ t

0

hs(t− s)−κγds+ ε‖BH‖β,[0.t]
∫ t

0

s−αhsds

! ε‖BH‖β,[0.t] +
(
ε‖BH‖β,[0.t] + 1

)
tκγ

∫ t

0

hs(t− s)−κγs−κγds.

By Lemma 2.3, there exists a constant C > 0 depending on α and T such that

|Xε
t − xt| ≤ |ht| ! ε‖BH‖β,[0.t] exp

{
C
(
1 + ε‖BH‖β,[0.t]

) 1
1−κγ

}
. (4.17)

For every p ≥ 1, it follows that from Lemma 2.2

(
E‖BH‖pβ,[s,t]

)1/p

! (t− s)H−β.
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Since 1
1−κγ

< 2, we can get

E exp
{
pC

(
1 + ε‖BH‖β,[0.t]

) 1
1−κγ

}
< ∞,

by Fernique’s theorem and we conclude (4.8). The inequality (4.9) and (4.10) follows
immediately from (4.17). We will prove the estimate (4.11). Using the additivity of
the integral, we obtain that

|Xε
t −Xε

s | ≤
∣∣∣∣
∫ t

s

b(Xε
u, θ0)du

∣∣∣∣+ ε

∣∣∣∣
∫ t

s

σ(Xε
u)dB

H
u

∣∣∣∣

!
∫ t

s

(1 + |Xε
u|) du+ ε‖BH‖β,[s,t]

∫ t

s

∣∣Dα
s+σ(X

ε
· )(u)

∣∣ du

! sup
u∈[0,T ]

(1 + |Xε
u|) (t− s) + ε‖BH‖β,[s,t]

{∫ t

s

(
|σ(Xε

u)|
(u− s)α

+

∫ u

s

|σ(Xε
u)− σ(Xε

v)|
(u− v)1+α

dv

)
du

}
.

The Assumption 4.2 and the estimate (4.17) lead

|Xε
t −Xε

s | ! sup
u∈[0,T ]

(1 + |Xε
u|) (t− s) + ε‖BH‖β,[s,t](t− s)1−α

(
1 + sup

u∈[0,T ]
|Xε

u|
)

+ ε‖BH‖β,[s,t]
∫ t

s

(∫ u

0

|Xε
u −Xε

v |
(u− v)1+α

dv

)
du

!
(
1 + ε‖BH‖β,[0.t] exp

(
C
(
1 + ε‖BH‖β,[0.t]

) 1
1−κγ

))
(t− s)

+ ε‖BH‖β,[s,t](t− s)1−α
{
1 + ε‖BH‖β,[0.t] exp

(
C
(
1 + ε‖BH‖β,[0.t]

) 1
1−κγ

)}
.

From Lemma 2.2 and Fernique’s theorem, we conclude (4.11). Thus the proof is
completed.

Remark 4.3. The function LH,ε is differentiable in θ under Assumption 4.4, and we
have

∇θLH,ε(θ) =

∫ T

0

∇θQ
ε
H,θ(t)dZt −

∫ T

0

Qε
H,θ(t)∇θQ

ε
H,θ(t)dt,

∇2
θLH,ε(θ0) =

∫ T

0

∇2
θQ

ε
H,θ(t)dZt −

∫ T

0

(
∇θQ

ε
H,θ(t)

)⊗2
dt−

∫ T

0

Qε
H,θ(t)∇2

θQ
ε
H,θ(t)dt.

We prepare some lemmas which give sufficient conditions to obtain the polynomial-
type large deviation inequality.
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Lemma 4.2. For every p ≥ 2,

sup
0<ε<1

E
[(
ε−1

∣∣ε2∇2
θLH,ε(θ0)− (−ΓH(θ0))

∣∣)p] < ∞.

Proof. By Remark 4.3, it folows that

ε2∇2
θLH,ε(θ0)− (−ΓH(θ0)) = ε2

∫ T

0

∇2
θQ

ε
H,θ0(t)dWt −

(
ε2

∫ T

0

(
∇θQ

ε
H,θ0(t)

)⊗2
dt− ΓH(θ0)

)
.

Note that the function Qε
H,θ0 has the form

Qε
H,θ0(t) = (εdHΓ(3/2−H))−1

(
t1/2−H b(Xε

t , θ0)

σ(Xε
t )

+ (H − 1

2
)tH−1/2

∫ t

0

b(Xε
t ,θ0)

σ(Xε
t )

t1/2−H − b(Xε
s ,θ0)

σ(Xε
s )

s1/2−H

(t− s)H+1/2
ds

)

= c1ε
−1t1/2−H b(Xε

t , θ0)

σ(Xε
t )

+ c2ε
−1tH−1/2

∫ t

0

b(Xε
t ,θ0)

σ(Xε
t )

− b(Xε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds.

By Burkholder’s and Minkowski’s inequalities, we have

E

(
ε2

∣∣∣∣
∫ T

0

∂θi∂θjQ
ε
H,θ0(t)dWt

∣∣∣∣

)p

!
(
ε4

∫ T

0

∥∥∂θi∂θjQε
H,θ0(t)

∥∥2

Lp(Ω)
dt

)p/2

! εp
{∫ T

0

t1−2H

∥∥∥∥
∂θi∂θjb(X

ε
t , θ0)

σ(Xε
t )

∥∥∥∥
2

Lp(Ω)

dt

+

∫ T

0

t2H−1

∥∥∥∥∥∥

∫ t

0

∂θi∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θi∂θj b(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds

∥∥∥∥∥∥

2

Lp(Ω)

dt

}p/2

From Assumptions 4.4 and the mean value theorem, we obtain that

E

(
ε2

∣∣∣∣
∫ T

0

∂θi∂θjQ
ε
H,θ0(t)dWt

∣∣∣∣

)p

! εp
{

sup
0≤t≤T

∥∥1 + |Xε
t |N

∥∥2

Lp(Ω)

∫ T

0

t1−2Hdt

+

∫ T

0

t2H−1

∥∥∥∥∥

∫ t

0

(
1 + |Xε

t |N + |Xε
s |N

)
|Xε

t −Xε
s |

(t− s)H+1/2
s1/2−Hds

∥∥∥∥∥

2

Lp(Ω)

dt

}p/2

! εp




1 +

∫ T

0

t2H−1

(∫ t

0

‖Xε
t −Xε

s‖L2p(Ω)

(t− s)H+1/2
s1/2−Hds

)2

dt






p/2

! εp,
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for every i, j = 1, · · · , d and some constantsN > 0. We estimate the term ε2
∫ T

0

(
∇θQε

H,θ0(t)
)⊗2

dt−
ΓH(θ0). For every i, j = 1, · · · , d

ε2
∫ T

0

∂θiQ
ε
H,θ0(t)∂θjQ

ε
H,θ0(t)dt− Γi,j

H (θ0)

= c21

(∫ T

0

t1−2H

{
∂θib(X

ε
t , θ0)∂θjb(X

ε
t , θ0)

σ(Xε
t )2

−
∂θib(xt, θ0)∂θjb(xt, θ0)

σ(xt)2

}
dt

)

+ c1c2

(∫ T

0

∂θib(X
ε
t , θ0)

σ(Xε
t )

∫ t

0

∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hdsdt

−
∫ T

0

∂θib(xt, θ0)

σ(xt)

∫ t

0

∂θj b(xt,θ0)

σ(xt)
− ∂θj b(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hdsdt

)

+ c1c2

(∫ T

0

∂θjb(X
ε
t , θ0)

σ(Xε
t )

∫ t

0

∂θib(X
ε
t ,θ0)

σ(Xε
t )

− ∂θib(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hdsdt

−
∫ T

0

∂θjb(xt, θ0)

σ(xt)

∫ t

0

∂θib(xt,θ0)

σ(xt)
− ∂θib(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hdsdt

)

+ c22

(∫ T

0

t2H−1




∫ t

0

∂θib(X
ε
t ,θ0)

σ(Xε
t )

− ∂θib(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds








∫ t

0

∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds



 dt

−
∫ T

0

t2H−1




∫ t

0

∂θib(xt,θ0)

σ(xt)
− ∂θib(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds








∫ t

0

∂θj b(xt,θ0)

σ(xt)
− ∂θj b(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds



 dt

)
.

(4.18)
By using Lemma 4.1, the mean value theorem and Assumptions 4.4, we have

E

∣∣∣∣
∫ T

0

t1−2H

{
∂θib(X

ε
t , θ0)∂θjb(X

ε
t , θ0)

σ(Xε
t )2

−
∂θib(xt, θ0)∂θjb(xt, θ0)

σ(xt)2

}
dt

∣∣∣∣
p

= E

∣∣∣∣∣

∫ T

0

t1−2H

{
∂θib(X

ε
t , θ0)

σ(Xε
t )

(
∂θjb(X

ε
t , θ0)

σ(Xε
t )

−
∂θjb(xt, θ0)

σ(xt)

)

+
∂θjb(xt, θ0)

σ(xt)

(
∂θib(X

ε
t , θ0)

σ(Xε
t )

− ∂θib(xt, θ0)

σ(xt)

)}
dt

∣∣∣∣∣

p

!
(∫ T

0

t1−2H
∥∥(1 + |Xε

t |N + |xt|N) |Xε
t − xt|

∥∥
Lp(Ω)

dt

)p

! εp,
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for some constants N > 0. We shall estimate the second term of (4.18). By Lemma
2.5

∥∥∥∥
∂θjb(X

ε
t , θ0)

σ(Xε
t )

−
∂θjb(X

ε
s , θ0)

σ(Xε
s )

−
(
∂θjb(xt, θ0)

σ(xt)
−

∂θjb(xs, θ0)

σ(xs)

)∥∥∥∥
Lp(Ω)

=

∥∥∥∥
∫ t

s

∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
dXε

u −
∫ t

s

∂x

(
∂θjb(xu, θ0)

σ(xu)

)
dxu

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥
∫ t

s

{
∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
b(Xε

u, θ0)− ∂x

(
∂θjb(xu, θ0)

σ(xu)

)
b(xu, θ0)

}
du

∥∥∥∥
Lp(Ω)

+ ε

∥∥∥∥
∫ t

s

∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
σ(Xε

u)dB
H
u

∥∥∥∥
Lp(Ω)

.

By the mean value theorem and Assumptions 4.2 and 4.4, we have

∥∥∥∥
∫ t

s

{
∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
b(Xε

u, θ0)− ∂x

(
∂θjb(xu, θ0)

σ(xu)

)
b(xu, θ0)

}
du

∥∥∥∥
Lp(Ω)

!
∥∥∥∥
∫ t

s

(
1 + |xu|N + |Xε

u|N
)
|Xε

u − xu|du
∥∥∥∥
Lp(Ω)

! ε(t− s).

From the mean value theorem and Assumptions 4.3 and 4.4, we can estimate the

stochastic integral for ∂x
(

∂θj b(X
ε
u,θ0)

σ(Xε
u)

)
σ(Xε

u) as with respect to BH for α ∈ (1−H, 1/2)

and β ∈ (1− α, H)

∣∣∣∣
∫ t

s

∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
σ(Xε

u)dB
H
u

∣∣∣∣ ! ‖BH‖β,[s,t]
∫ t

s

∣∣∣∣D
α
s+

{
∂x

(
∂θjb(X

ε
· , θ0)

σ(Xε
· )

)
σ(Xε

· )

}
(u)

∣∣∣∣ du

! ‖BH‖β,[s,t]
∫ t

s





1 + |Xε

u|
N

(u− s)α
+

∫ u

s

∣∣∣∂x
(

∂θj b(X
ε
u,θ0)

σ(Xε
u)

)
σ(Xε

u)− ∂x
(

∂θj b(X
ε
v ,θ0)

σ(Xε
v)

)
σ(Xε

v)
∣∣∣

(u− v)α+1
dv




 du

! ‖BH‖β,[s,t]
{(

1 + sup
s≤u≤t

|Xε
u|

N

)(
(t− s)1−α +

∫ t

s

(∫ u

s

|Xε
u −Xε

v |
(u− v)α+1

dv

)
du

)}
.

By the Garcia–Rodenmich–Rumsey inequality and Lemma 4.1, we get

ε

∥∥∥∥
∫ t

s

∂x

(
∂θjb(X

ε
u, θ0)

σ(Xε
u)

)
σ(Xε

u)dB
H
u

∥∥∥∥
Lp(Ω)

! ε(t− s)1+H−(α+β) ! ε(t− s)1/2.
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Thus by Minkowski, Hölder’s inequality, we obtain that

E

∣∣∣∣∣

∫ T

0

(
∂θib(X

ε
t , θ0)

σ(Xε
t )

∫ t

0

∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds

− ∂θib(xt, θ0)

σ(xt)

∫ t

0

∂θj b(xt,θ0)

σ(xt)
− ∂θj b(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds

)
dt

∣∣∣∣∣

p

= E

∣∣∣∣∣

∫ T

0

((
∂θib(X

ε
t , θ0)

σ(Xε
t )

− ∂θib(xt, θ0)

σ(xt)

)∫ t

0

∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds

+
∂θib(xt, θ0)

σ(xt)

∫ t

0

∂θj b(X
ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

− ∂θj b(xt,θ0)

σ(xt)
+

∂θj b(xs,θ0)

σ(xs)

(t− s)H+1/2
s1/2−Hds

)
dt

∣∣∣∣∣

p

!
(∫ T

0

∥∥(1 + |Xε
t |N + |xt|N)|Xε

t − xt|
∥∥
L2p(Ω)

∫ t

0

∥∥(1 + |Xε
t |N + |Xε

s |N
)
|Xε

t −Xε
s |
∥∥
L2p(Ω)

(t− s)H+1/2
s1/2−Hds

)p

+




∫ T

0

(1 + |xt|N)
∫ t

0

∥∥∥
∂θj b(X

ε
t ,θ0)

σ(Xε
t )

− ∂θj b(X
ε
s ,θ0)

σ(Xε
s )

− ∂θj b(xt,θ0)

σ(xt)
+

∂θj b(xs,θ0)

σ(xs)

∥∥∥
Lp(Ω)

(t− s)H+1/2
s1/2−Hdsdt





p

! εp.

Since the third and fourth terms of (4.18) can be evaluated in the similar way as
in the second term of (4.18), the proof is completed.

The rest of the proof of Theorem 4.1 is similar to the proof of Theorem 3.1 and
is therefore omitted.

4.6 A sufficient condition for the absolute continuity

In Section 4.2, we have derived the likelihood ratio (4.4) via the Girsanov theorem
under the assumption (4.3), under which our estimator θ̂ε is the true MLE. However,
to ensure the condition (4.3), we need a stronger assumption for coefficients b and σ.

Assumption 4.8. The function σ in (4.1) is of C1
b (R)-class and there exist some

constants λ ∈ (1− 1
2H , 12), c > 0 such that for every x, y ∈ R and θ ∈ Θ,

∣∣∣∣
b(x, θ)

σ(x)
− b(y, θ)

σ(y)

∣∣∣∣ ≤ c|x− y|λ.

Theorem 4.2. Suppose that Assumptions 4.2,4.4 and 4.8 are fulfilled. Then a
stochastic process {Λθ0

t }t∈[0,T ] is a martingale.
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To prove Theorem 4.2, we prepare the following result which is found in Lemma
3.2 in [11]. In [11], they impose that the function ∂xb is bounded. Actually, it is
enough to impose the Lipschitz continuity of the function b(·, θ).
Lemma 4.3. Under the condition of Theorem 4.2, for every α ∈ (1 − H, 1/2) and
β ∈ (1− α, H), there exists a constant C > 0 such that

‖Xε‖1−α ≤ C
(
1 + ‖BH‖β

)1/β
.

Proof. By Lemma 2.6 and Assumption 4.8, we have

|Xε
t −Xε

s − σ(Xε
s )
(
BH

t − BH
s

)
| ≤

∫ t

s

|b(Xε
u, θ0)| du+

∣∣∣∣
∫ t

s

{σ(Xε
u)− σ(Xε

s )}dBH
u

∣∣∣∣

!
∫ t

s

|b(Xε
u, θ0)| du+ ‖Xε‖1−α,[s,t]‖BH‖β,[s,t](t− s)1−α+β.

Note that

sup
s≤τ≤η≤t

∣∣∣∣
∫ η

τ

b(Xε
u, θ0)du

∣∣∣∣ ! (t− s) + |Xε
s |(t− s) + ‖Xε‖1−α,[s,t](t− s)2−α.

Thus there exists C > 0 depending on T such that

‖Xε‖1−α,[s,t] ≤ C

(
1 + |Xε

s |(t− s)α + ‖BH‖β,[0,T ](t− s)β−(1−α)

+ ‖Xε‖1−α,[s,t]

(
‖BH‖β,[0,T ] + 1

)
(t− s)β

)
.

(4.19)

Set h :=
(
2C(‖BH‖β,[0,T ] + 1)−1/β

)
. Then for |t− s| < h,

‖Xε‖1−α,[s,t] ≤ 2C
(
1 + |Xε

s |hα + ‖BH‖β,[0,T ]h
β−(1−α)

)
.

We aim to estimate ‖Xε‖∞,[0,T ]. By the triangle inequality, we have

|Xε|∞,[s,t] ≤ |Xε
s |+ ‖Xε‖1−α,[s,t](t− s)1−α

! |Xε
s | (1 + h) + hβ(1 + ‖BH‖β,[0,T ]),

for |t− s| < h. Iterating the above estimate for N = T/h, we can get

‖Xε‖∞,[0,T ] ! |x|(1 + h)N + hβ(1 + ‖BH‖β,[0,T ])
N−1∑

k=0

(1 + h)k

! |x|(1 + h)N + hβ(1 + ‖BH‖β,[0,T ])(1 + h)NN

! (1 + h)T/h
(
|x|+ hβ(1 + ‖BH‖β,[0,T ])T/h

)

= eT
(
|x|+ hβ(1 + ‖BH‖β,[0,T ])T/h

)
,

(4.20)
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where we used the fact (1 + 1
h)

h ≤ e for the last inequality. Thus we have

‖Xε‖1−α,h ! 1 +
(
1 + ‖BH‖β,[0,T ]

)
hβ−(1−α)

! 1 +
(
1 + ‖BH‖β,[0,T ]

)(1−α)/β
.

By using Lemma 2.4,

‖Xε‖1−α !
(
1 +

(
1 + ‖BH‖β,[0,T ]

)(1−α)/β
) (

1 ∨ h−α
)
!

(
1 + ‖BH‖β,[0,T ]

)1/β
,

and we complete the proof of Lemma 4.3.

Proof of Theorem 4.2. It is enough to show that for every r > 0

E exp

(
r

∫ T

0

Qε
H,θ0(t)

2dt

)
< ∞. (4.21)

Recall that the function Qε
H,θ0 has the form

Qε
H,θ0(t) = (εdHΓ(3/2−H))−1

(
t1/2−H b(Xε

t , θ0)

σ(Xε
t )

+ (H − 1

2
)tH−1/2

∫ t

0

b(Xε
t ,θ0)

σ(Xε
t )

t1/2−H − b(Xε
s ,θ0)

σ(Xε
s )

s1/2−H

(t− s)H+1/2
ds

)

= c1ε
−1t1/2−H b(Xε

t , θ0)

σ(Xε
t )

+ c2ε
−1tH−1/2

∫ t

0

b(Xε
t ,θ0)

σ(Xε
t )

− b(Xε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds

=: F (t) +G(t).

By Lemma 4.3, there exists a universal constant C > 0 such that

exp

(
r

∫ T

0

F (t)2dt

)
= exp

(
rc21ε

−2

∫ T

0

(
b(Xε

t , θ0)

σ(Xε
t )

)2

t1−2Hdt

)

≤ exp

(
Crε−2

∫ T

0

(
1 + |Xt|2λ

)
t1−2Hdt

)

≤ exp

(
Cr(1 + ‖Xε‖2λ1−α)

∫ T

0

t2λ(1−α)+1−2Hdt

)

≤ exp
(
T 2λ(1−α)+2−2HCr

(
1 + ‖BH‖2λ/ββ

))
,
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and by Fernique’s theorem, we have

E exp

(
r

∫ T

0

F (t)2dt

)
< ∞.

In the same way, we can estimate the term G(t) as

exp

(
r

∫ T

0

G(t)2dt

)
≤ exp



Cr

∫ T

0

t2H−1




∫ t

0

b(Xε
t ,θ0)

σ(Xε
t )

− b(Xε
s ,θ0)

σ(Xε
s )

(t− s)H+1/2
s1/2−Hds




2

dt





≤ exp

(
Cr‖Xε‖2λ1−α

∫ T

0

t2H−1

(∫ t

0

(t− s)−1/2−H+λ(1−α)s1/2−Hds

)2

dt

)

= exp
(
CrT 2λ(1−α)+1

(
1 + ‖BH‖2λ/ββ

))
,

and we conclude (4.21) by Fernique’s theorem.
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5 Discretely observed case

Let {Xt}t∈[0,T ] be a solution to the following stochastic differential eqution:

Xt = X0 +

∫ t

0

b(Xs, θ0)ds+ σBH
t , t ∈ [0, T ], (5.1)

where X0 ∈ R is the initial value, {BH
t }t∈[0,T ] is a fBm with Hurst index H ∈ (1/2, 1)

and θ0 ∈ Θ is the parameter which is contained in a bounded and open convex subset
Θ ⊂ R. When H = 1/2 and processes are observed at discrete points, the least
squares estimator (LSE) is asymptotically equivalent to the MLE. For the LSE, the
consistency and asymptotic distributions were proved by Kasonaga [16] and Prakasa
Rao [35].

Neuenkirch and Tindel [30] studied estimators based on discrete samples for (5.1).
They proposed the least squares type estimators and showed its consistency when
1/2 < H < 1. The purpose of this Chapter is to prove the asymptotic normality of
the estimator proposed in [30]. The main tools in the proof of the asymptotic nor-
mality are the limit theorem for quadratic variation of fBm and the ergodic theorem
to sums of the increments of fBm weighted by a function.

5.1 Main results

We assume that {Xt}t≥0 is observed at points {tk : 0 ≤ k ≤ n} and take equally
spaced observations with tk+1 − tk := hn. Define the least squares type procedure,

Qn(θ) :=
1

nh2
n

n∑

k=1

((
Xtk −Xtk−1

− hnb(Xtk−1
, θ)

)2 − σ2h2H
n

)
,

and the LSE for the true θ0 is defined as

θn := argmin
θ∈Θ̄

|Qn(θ)|. (5.2)

Let us state a one sided dissipative Lipschitz condition and the polynomial growth
assumptions for a drift coefficients b, ensuring ergodic properties for process X.

Assumption 5.1. The function b in (3.1) is of C1,2(R×Θ)-class such that, for every
x, y ∈ R and θ ∈ Θ,

(b(x, θ)− b(y, θ)) (x− y) ≤ −c|x− y|2.
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and the following growth conditions hold true

|b(x, θ)| ≤ c(1 + |x|N), |∂xb(x, θ)| ≤ c(1 + |x|N), |∂θb(x, θ)| ≤ c(1 + |x|N)
|∂θ∂xb(x, θ)| ≤ c(1 + |x|N), |∂2

θb(x, θ)| ≤ c(1 + |x|N),

for some constants c > 0, N ∈ N.

Assumption 5.2. There exists a function U ∈ C2,2(R×Θ) such that

∂xU(x, θ) = b(x, θ),

for every x ∈ R, θ ∈ Θ.

We impose the condition on the size of the sampling step, which is required to
control the contribution of fractional Brownian motion.

Assumption 5.3. hn = κn−α with 0 < α < min{ 1
4(1−H) , 1} and κ > 0.

We set the identibility assumption for consistency of our estimator.

Assumption 5.4. For every θ0 ∈ Θ,

E
∣∣b(X̄, θ0)

∣∣2 = E
∣∣b(X̄, θ)

∣∣2 ,

implies that θ = θ0 where X̄ is the random variable appearing in Proposition 5.1.

Assumption 5.5.
E
[(
∂θb(X̄, θ0)

)
b(X̄, θ0)

]
"= 0.

The consistency of LSE (5.2) was given by Neuenkirch and Tindel [30].

Theorem 5.1 (Neuenkirch and Tindel [30]). Under Assumptions 5.1-5.4, the LSE
θn is strongly consistent with θ0:

θn → θ0 a.s., n → ∞.

To state the main results, we further make some notations: let

τHn =






√
nh2−2H

n , H ∈ (1/2, 3/4)√
nhn
log(n) , H = 3/4

(nhn)2−2H , H ∈ (3/4, 1),

and we set

cH :=
1

2

∑

v∈Z

(
|v + 1|2H + |v − 1|2H − 2|v|2H

)2
< ∞.
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Theorem 5.2. Suppose the same assumptions as in Theorem 5.1, and that 1
2 < α <

min{ 1
4(1−H) , 1}, Assumption 5.5 holds true. Then for every H ∈ (1/2, 3/4],

τHn (θn − θ0)
d−→ N

(
0,

σ2c2H
4

(
E
[(
∂θb(X̄, θ0)

)
b(X̄, θ0)

])−2
)
,

as n → ∞. Moreover, if H ∈ (3/4, 1),

τHn (θn − θ0)
d−→

σ
(
E
[(
∂θb(X̄, θ0)

)
b(X̄, θ0)

])−1

2
Z,

as n → ∞ where Z is a Rosenblatt random variable that will be defined in Proposition
5.3.

5.2 Examples

Example 5.1. Let θ0 > 0 and x ∈ R. The simplest example of an equation which
satisfies the above assumptions is fractional Orstein–Uhlenbeck process:

Xt = x− θ0

∫ t

0

Xsds+ σBH
t .

One of the example of nonlinear SDE is

Xt = x− θ0

∫ t

0

(
X3

s +Xs

)
ds+ σBH

t .

5.3 Ergodicity

We shall describe the results of the ergodic theorem in equation (3.1). We will work
on the canonical probability space (Ω,F , P ), where Ω = C0(R) is equipped with the
topology of the compact convergence, F is the corresponding Borel σ-algebra, and
P is the distribution of the fBm. We define the shift operator St : Ω → Ω for each
t ∈ R and ω ∈ Ω as

Stω(·) = ω(t+ ·)− ω(t).

The shifted process (Bs(St(·)))s∈R is a 1–dimensional fBm, and, for any integrable
random variable F : Ω → R and any ω ∈ Ω, we have

lim
T→∞

∫ T

0

F (St(ω))dt = E[F ].

We state the existence and uniqueness of the ergodic limit for X investigated in [7].
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Proposition 5.1. Under Assumption 5.1, for any θ ∈ Θ, the equation (5.1) has a
unique solution X ∈ Cλ(R+;R) for all λ < H. In addition, There exists a random
variable X̄ : Ω → R such that

lim
t→∞

∣∣Xt(ω)− X̄(Stω)
∣∣ = 0,

for all ω ∈ Ω where St is the canonical shift operator.

An ergodic theorem for discrete sampling is found in Lemma 3.3 in Neuenkirch
and Tindel [30].

Lemma 5.1. Let f ∈ C1,1(R×Θ) be such that

|f(x, θ)| ≤ C(1 + |x|N), |∂xf(x, θ)| ≤ C(1 + |x|N), |∂θf(x, θ)| ≤ C(1 + |x|N),

for some c > 0, N ∈ N. Then

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑

k=1

f(Xtk−1
, θ)− Ef(X̄, θ)

∣∣∣∣∣ → 0, a.s.

In addition, assume that there exists a function U ∈ C2,1(R×Θ) such that

∂xU(x, θ) = f(x, θ), x ∈ R, θ ∈ Θ.

Then

sup
θ∈Θ

∣∣∣∣∣
1

nhn

n∑

k=1

f
(
Xtk−1

, θ
)
(Btk − Btk−1

) + E
[
b(X̄, θ0)f(X̄, θ)

]
∣∣∣∣∣ → 0 a.s.

as n → ∞.

We prepare some estimate results for the pth moment of the solution to (3.1). To
support these results, we refer to [7] and [30].

Proposition 5.2. Under Assumption 5.1, for any θ ∈ Θ and p ≥ 1, there exist
constants cp, kp > 0 such that

E|Xt|p ≤ cp, E|Xt −Xs|p ≤ kp|t− s|pH

for all s, t ≥ 0.

We need the following convergence results for one–dimensional fBm (cf. Theorem
7.4.1 in [32]).
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Proposition 5.3. For every 0 < H < 3/4,

1√
ncH

n∑

k=1

[(BH
k − BH

k−1)
2 − 1]

d−→ N(0, 1),

while for H = 3/4 it holds

1√
n log(n)c3/4

n∑

k=1

[(BH
k − BH

k−1)
2 − 1]

d−→ N(0, 1).

Finally, for 3/4 < H < 1

1

n2H−1

n∑

k=1

[(Bk − Bk−1)
2 − 1]

converges in L2(Ω) to some random variable Z, which belongs to the Wiener chaos
of BH with order 2. The random variable Z is called a Rosenblatt random variable.

5.4 Proofs

Note that

∂θQn(θ) =
−2

nhn

n∑

k=1

(
Xtk −Xtk−1

− hnb(Xtk−1
, θ)

)
∂θb(Xtk−1

, θ).

Since θn minimizes Qn(θ)2, we obtain that

Qn(θn)∂θQn(θn) = 0.

To solve the above equation, we prepare the following lemma.

Lemma 5.2. Define ζn = τHn (θ0 − θn). Then, under assumptions of Theorem 5.2,






τHn Qn(θn) = τHn
1

nh2
n

n∑

k=1

[
σ2(BH

tk
− BH

tk−1
)2 − σ2h2H

n

]
+

2σ

nhn

n∑

k=1

(BH
tk
− BH

tk−1
)∂θb(Xtk−1

, θ0)ζn

+ ζnoP (1) + oP (1)

∂θQn(θn) = − 2σ

nhn

n∑

k=1

(Btk − Btk−1
)∂θb(Xtk−1

, θn) + oP (1).
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Proof. By using (3.1), we have

Qn(θn) =
1

nh2
n

n∑

k=1

((
Xtk −Xtk−1

− hnb(Xtk−1
, θn)

)2 − σ2h2H
n

)

=
1

nh2
n

n∑

k=1






(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds+ σ(BH

tk
− BH

tk−1
)

)2

− σ2h2H
n






=
1

nh2
n

n∑

k=1

{(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds

)2

+ σ2(BH
tk
− BH

tk−1
)2

+ 2σ(BH
tk
− BH

tk−1
)

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds− σ2h2H

n

}
.

For the first term, we can calculate that

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds

)2

=

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds+

∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)2

=

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)2

+

(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)2

+ 2

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)

Through Minkowski’s inequality, mean value theorem, Assumption 5.1, Hölder’s in-
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equality and Proposition 5.2 we can estimate that

∥∥∥∥∥

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

∥∥∥∥∥

2

L2(Ω)

≤
(∫ tk

tk−1

∥∥b(Xs, θ0)− b(Xtk−1
, θ0)

∥∥
L2(Ω)

ds

)2

!
(∫ tk

tk−1

∥∥(1 + |Xs|N + |Xtk−1
|N
) (

Xs −Xtk−1

)∥∥
L2(Ω)

ds

)2

≤
(∫ tk

tk−1

∥∥1 + |Xs|N + |Xtk−1
|N
∥∥
L2(Ω)

∥∥Xs −Xtk−1

∥∥
L2(Ω)

ds

)2

!
(∫ tk

tk−1

(s− tk−1)
H ds

)2

! h2H+2
n .

(5.3)
Therefore, under the assumption nh2

n → 0 as n → ∞, we obtain

τHn
1

nh2
n

n∑

k=1

∥∥∥∥∥∥

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)2
∥∥∥∥∥∥
L1(Ω)

! τHn h2H
n → 0,

as n → ∞. Applying Taylor’s formula, we have
(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)

= hn

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)
∂θb(Xtk−1

, θ̃n)(θ0 − θn),

where θ̃n := θ0 + βn(θn − θ0), 0 < βn < 1. Similar calculation of (5.3), we have

1

nh2
n

n∑

k=1

E

∣∣∣∣∣hn

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)
∂θb(Xtk−1

, θ̃n)

∣∣∣∣∣

! 1

nhn

n∑

k=1

∥∥∥∥∥

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

∥∥∥∥∥
L2(Ω)

∥∥1 + |Xtk−1
|N
∥∥
L2(Ω)

! 1

nhn

n∑

k=1

∫ tk

tk−1

∥∥b(Xs, θ0)− b(Xtk−1
, θ0)

∥∥
L2(Ω)

ds ! hH
n .
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Therefore

τHn
1

nh2
n

n∑

k=1

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)
L1

−→ 0,

as n → ∞. With Taylor’s formula again, we have

τHn
1

nh2
n

n∑

k=1

(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)2

=
τHn
n

n∑

k=1

(
∂θb(Xtk−1

, θ̃n)(θ0 − θn)

)2

.

Through Theorem 5.1 and Proposition 5.1, we obtain that

τHn
1

nh2
n

n∑

k=1

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds

)2

= ζnoP (1).

Let us consider the cross term. At first, we decompose as follows

τHn
2σ

nh2
n

n∑

k=1

(Btk − Btk−1
)

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds

= τHn
2σ

nh2
n

n∑

k=1

(Btk − Btk−1
)

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

+ τHn
2σ

nh2
n

n∑

k=1

(Btk − Btk−1
)

∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds.

From Cauchy–Schwartz and Minkowski’s inequalities and (5.3), we obtain

E

∣∣∣∣∣(Btk − Btk−1
)

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

∣∣∣∣∣

≤
∥∥Btk − Btk−1

∥∥
L2(Ω)

∫ tk

tk−1

∥∥b(Xs, θ0)− b(Xtk−1
, θ0)

∥∥
L2(Ω)

ds ! h2H+1
n .

Thus

τHn
2σ

nh2
n

n∑

k=1

(Btk − Btk−1
)

∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds = oP (1),
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and we conclude that

τHn Qn(θn) = τHn
1

nh2
n

n∑

k=1

[
σ2(Btk − Btk−1

)2 − σ2h2H
n

]
+

2σ

nhn

n∑

k=1

(Btk − Btk−1
)∂θb(Xtk−1

, θ0)ζn

+ ζnoP (1) + oP (1).

We will prove the second equality. Using (3.1), we have

∂θQn(θn) =
−2

nhn

n∑

k=1

(
Xtk −Xtk−1

− hnb(Xtk−1
, θn)

)
∂θb(Xtk−1

, θn)

=
−2

nhn

n∑

k=1

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds+ σ(Btk − Btk−1

)

)
∂θb(Xtk−1

, θn).

Let us now apply Taylor’s formula to obtain that

−2

nhn

n∑

k=1

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θn)
)
ds

)
∂θb(Xtk−1

, θn)

=
−2

nhn

n∑

k=1

(∫ tk

tk−1

(
b(Xs, θ0)− b(Xtk−1

, θ0)
)
ds

)
∂θb(Xtk−1

, θn)

+
−2

nhn

n∑

k=1

(∫ tk

tk−1

(
b(Xtk−1

, θ0)− b(Xtk−1
, θn)

)
ds

)
∂θb(Xtk−1

, θn)

= − 2

n

n∑

k=1

∂θb(Xtk−1
, θ0)(θ0 − θn)∂θb(Xtk−1

, θ0) + oP (1).

By Lemma 5.1 and Theorem 5.1, we obtain the results of Lemma 5.2.

Proof of Theorem 5.2. Since the relationship τHn Qn(θn)∂θQn(θn) = 0 holds, we have

(
τHn

1

nh2
n

n∑

k=1

[
σ2(Btk − Btk−1

)2 − σ2h2H
n

]
+

(
2σ

nhn

n∑

k=1

(Btk − Btk−1
)∂θb(Xtk−1

, θ0) + oP (1)

)
ζn + oP (1)

)

×
(
− 2σ

nhn

n∑

k=1

(Btk − Btk−1
)∂θb(Xtk−1

, θn) + oP (1)

)
= 0.

By using Lemma 5.1, Proposition 5.3, we conclude the statement of Theorem 5.2.
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