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Abstract.

In this doctoral thesis, we study removability of time-dependent singularities of
the non-stationary Stokes and Navier-Stokes equations in an n-dimensional bounded
domain €2 with the smooth boundary for n > 3. We also show the existence of the solu-
tions with time-dependent singularities to the non-stationary Navier-Stokes equations
in R™ for n = 2, 3. In fact, we first prove the following removability of time-dependent
singularities: Suppose that & € C*([0,77;2) for 0 < o < 1/2. If the solution u of the
Stokes or the Navier-Stokes equations in €2 x (0, T) except for £(t) for ¢t € (0,T") satisfies
that

lu(z,t)| = o(|z — £(t)|*"F1/2=2) locally uniformly in t € (0,7T) as = — &(t) ,

or
lu(x,t)| = o|z — £(t)|7"*P)  locally uniformly in ¢ € (0,7) as z — £(t) ,

for § = max{1/a,n — 1}, respectively, then the curve {£{(¢);0 < t < T} is a family
of removable singularities of u in  x (0,7). Next, in the Navier-Stokes equations we
show the existence of the solution with the time-dependent singular point in case n = 2
and of the solution having singularities on the time-dependent sphere whose radius or
center changes in time in case n = 3.
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Chapter 1

Introduction

Let €2 be a bounded domain in R™ for n > 3 with the smooth boundary 0. Suppose
that £ : R — R™ be a continuous function satisfying that £(¢) € Q for ¢ € (0,7). In this
doctorical thesis, we first consider the removability of time-dependent singularities of
the non-stationary Stokes and Navier-Stokes equations in Q7 = Uy, (\{&(1)}) x {t}:

ou—Au+Vr=0 in Qrp,

divu =20 in Qr
’ St
u=0 on 09 x (0,7), (S¢)
u|t=0 = Ugp in Q?
and
ou—Au+ (u, Viu+Vr=0 in Qr,
divu=20 in Qr
' NS
u=0 on 092 x (0,7), (NS)
Uli—o = wg in Q,
where u = u(z,t) = (u(x,t), -+ ,u,(z,t)) and ™ = w(x,t) denote the velocity vector

and the pressure of the fluid at the point (x,t) € Qr, respectively, while vy = ug(z) =
(uo1(x), -+ ,upn(z)) is the given initial data with the singularity at £(0).

We first consider the removability of the time-dependent singularities. For instace,
let us recall a fundamental fact on an isolated removable singularity of harmonic func-
tions. Suppose that u is harmonic in Q \ {zo}. If u behaves like u(z) = o|z — xo[*™)
as ¥ — T, then there exists @ such that @ € C*°(Q) is harmonic in Q and that @ = u in
Q\ {zo}. This is a well-known removable singularity theorem for harmonic functions.
By Hsu [7] the corresponding theorem to the the solution u(z,t) of the heat equation
Owu = Au in Q x (0,T) was proved under the condition that u(z,t) = o(|x — z0|*™")
locally uniformly in ¢ € (0,7) as @ — xo. The singular order o(|x — x¢[*™™) is opti-
mal since the fundamental solution T'(x — x¢) = |z — x> ™ of the Laplace equation
in Q\ {zo} is a typical example of the solution having an irremovable singularity at
x = xg. Later, the simple proof of this removability was given by Hui [9].

7



Chapter 1. Introduction

Concerning the stationary Navier-Stokes equations in the open ball By with radius
R centered at the origin 0, Dyer and Edmunds [3] first proved such a removability of
isolated singularity of v at = 0. However, not only the condition on the velocity u but
also the condition on the pressure p are needed: If the smooth solution (u,p) in Bg\ {0}
satisfies that v € L""¢(Bg) and p € L"(Bpg) for some £ > 0, then the singularity of
uw at x = 0 is removable. Later, this assumption was improved to u € L""¢(Bg) for
some ¢ > 0 by Shapiro [24, 25] and to uw € L"(Bg) or u(x) = o(|z|™') as z — 0 by
Kim-Kozono [15]. In case n = 3, their result is optimal since the well-known Landau
solution U has the irremovable singularity at the origin such as U(z) = O(|z|™!) as
x — 0.

For the 3D nonstationary Navier-Stokes equations, Kozono [19] proved that there
is a constant gy such that if the Leray-Hopf weak solution u satisfies for some §,p > 0
SUDP |y <5 || W) || 8.2 (B, (z0)) < €0, then u € C%(B,ja(x0) X (to — 6/2,t0 + 0/2)), where
L>* denotes the weak L3-space and B,(z¢) is an open ball with the radius p centered at
xo. Notice that L>(0, 0o; L™(R™)) is the marginal case of Serrin’s scaling invariant class
in which both uniqueness and regularity of Leray-Hopf weak solutions are obtained. As
an application, under the hypothesis u(z,t) = o(|z — x| ") locally uniformly near ¢ = ¢,
as r — xg, we see that (zg,ty) is a removable singularity of u.

In comparison with these problems on removable singularities for the time-independent
isolated point, the corresponding question to the time-dependent case becomes more
complicated. In this direction, recently Takahashi-Yanagida [29] considered solutions u
of the heat equation in Q7 defined by

Qr= {J @\ {0y x {t}, (1.1)
0<t<T
where £ : t € (0,T) — Qis a curve in Q with 1/2-H6lder continuity in ¢ € (0,7"). Under
the hypothesis that

u(z,t) = o(|z — £(t)[*™) locally uniformly in ¢ € (0,T) as & — £(t) (1.2)

they proved that u is, in fact, extended to the smooth solution in € x (0,7). The con-
dition (1.2) together with the Holder exponent 1/2 is optimal in the sense that even for
£ € C(0,7); Q) with a > 1/2 there exists a solution of the heat equation in Q7 having
(£(t),t) as irremovable singularities whose singular order is O(|z — £(¢)|*™™). However,
the corresponding problem is still open for the Stokes and Navier-Stokes equations since
it is difficult to handle the pressure. In this thesis, we discuss the removability of the
time-dependent singularities of the Stokes and Navier-Stokes equations. Now we define
the removable time-dependent singularities as follows.

Definition 1.1. Assume that € C R" is a bounded domain with smooth boundary
0. Let £ € C([0,T];€). Suppose that u is a smooth solution of (NS) in Qr, where
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Qr is the non-cylindrical domain in R™ x (0,7") defined by (1.1). We say that the curve
{&(t);0 <t < T} is a family of removable singularities of u in € x (0,7") if there exists
a smooth solution @ of (NS) in 2 x (0,7") such that @ = u in Q.

Our result may be regarded as a generalization of Takahashi-Yanagida [26] to the
Stokes and Navier-Stokes equations. By assuming (1.2), they succeeded to show that u
is in fact a weak solution of the heat equation in the whole space and time €2 x (0,7,
from which with the aid of the well-known Weyl lemma, £(t) is in fact a family of
removable singularities of w. Our method is based on the uniqueness and smoothness
of very weak solutions of the Stokes equations. The crucial difference of weak solutions
between the heat and the Stokes (Navier-Stokes) equations stems from the divergence
free condition. In fact, for the proof that u is a very weak solution of the Stokes
equations in §2 x (0,7, it is necessary to make use of the cut-off procedure around the
time-dependent singularities £(¢). Since test functions of the Stokes equations need to
be solenoidal, the correction recovering divergence free property is carried out by means
of the Bogovskii lemma. It is not obvious that the remainder arising from the cut-off
procedure may be handled as a small perturbation of the integral identity defining the
usual Stokes equations.

We next consider the following Cauchy problem of the Navier-Stokes equations in
R™"(n =2,3):

ou—Au+ (u,V)u+Vr=f in R* xR,
divu=0 in R" x R, (NS2)
Uli—o = a in R,

Concerning the solutions with time-dependent irremovable singularities, the pioneer
work is the Takahashi-Yanagida [29]. For the heat equation they showed that there ex-
ists a singular solution with the same singular order as that of the fundamental solution
of the Laplace equation at the singularities = £(¢). The existence of the solutions
with time-dependent singularities and the asymptotic behavior of those solutions at
the singularities were proved for the semilinear parabolic equations [11],][26],[27], non-
linear deffusion equations [4],[5], and the Navier-Stokes equations [13]. Karch-Zheng
[13] constructed a solution to the 3D Navier-Stokes equations with the aid of the space
of pseudo measures PM* = {a € &';supgps []*|a(£)| < oo}. That solution has the
same singular order as that of the Landau solution, that is, O(|z —£(t)|™!) as z — £(1).

Recently, time-dependent high dimensional singular sets have been studied. For the
superlinear parabolic equation Htoo-Takahashi-Yanagida [8] and Takahashi-Yamamoto
[30] showed the existence of solutions with time-dependent m dimensional submanifold
M; and the asymptotic behavior at M;. In this thesis, we construct a solution to
(NS2) with a time-dependent singular point in R? or singular sets on tine-dependent
sphere in R? similarly to Kozono-Shimizu [18] by using the maximal Lorentz regularity
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theorem in the Besov spaces. Our method is related to that of Takahashi-Yanagida [29]
and Karch-Zheng [13] which constucted solutions with irremovable singularities for the
given external force having time-dependent singularities. Their method seems to be
indirect since it is necessary to show that the Duhamel term in the integral equation
has singularities. On the other hand, we show the existence of singular solution for the
given external force having time-dependent singularities. The advantage of our method
is that we have only to investigate whether or not the external force belongs to some
Lorentz-Besov space. However, we do not know the asymptotic behavior of the solution
at the singularities.

This paper is organized as follows. In Chapter 2, we first introduce some function
spaces such as the Besov spaces in R" or bounded domains. Next we define the very
weak solution of the Stokes equations in whole space and time © x (0,7") and of the
perturbed Stokes equations in Q(r, T') = Uy, Br(£(t)) x {t} where B,({(t)) denotes
the ball in 2 with radius r centered at £(¢). In the case of the Navier-Stokes equa-
tions, we need to take a small subdomain in such a way that the scale invariant norm
L>°(0, 00; L™>°(B,(£(t)))) of u can be small since we do not obtain the existence of
smooth solution in the whole space and time  x (0,7") is not garranteed. We also state
the existence theorem of the strong solution, which yields the existence of the very weak
solution with additional regularity. To handle the solution u as a very weak solution
we need to show an integral identity. To this end, the precise cut-off procedure such as
Takahashi-Yanagida [26] is fully used. Introducing the maximal regularity theorem of
the Stokes equations in the Besov space, we show the existence and uniqueness of the
strong solutions to the Navier-Stokes equations.

In Chapter 3, we prove the removability of time-dependent singularities in the Stokes
and Navier-Stokes equations. Our proof consists of two steps. In the case of the Stokes
eqations, at first, assuming |u(x,t)| = o(|z — £(t)|>"+(/e=2)) as & — £(t) locally
uniformly in ¢ € (0,7"), we show that u satisfies an integral identity, which implies that
u is a very weak solution of the Stokes equations in the whole space and time Q x (0, 7).
Since we make use of the cut-off procedure, it is necessary to recover the divergence
free condition of the test function. Hence we shall establish a variant of Bogovskii’s
lemma in 2 x (0,7"). By the precise estimate of the cut-off function as well as the
remainder caused by the Bogovskii operator, we see that the solution u is in fact a very
weak solution in Q x (0,7). It should be noticed that the class of weak solutions is
large enough such as u € L}, (Q x (0,7)). On the other hand, it is rather well-known
that even for uy € L2(Q2) with 1 < p < oo there exists a very weak solution @ with
u(-,0) = up in © x (0,7, which necessarily becomes a smooth solution in the classical
sense. In the next step, we may show that v = @ in Q x (0,7"). To this end, it is
necessary to prove the uniqueness in the large class Li .(Q x (0,7)) with the initial

loc

data in L2(Q) for some 1 < p < oo. We shall establish such a uniqueness result by
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duality argument like Lions-Masmoudi [21].

In Chapter 4, we consider the corresponding problem on removability of time-
dependent singularities of the Navier-Stokes equations. Indeed, we saw that if u behaves
near singularities {£(¢)}o<t<r C Q like

lu(x,t)| = o(|x — ()| 7"F)  locally uniformly in ¢ € (0,7) as z — £(t)

for f = max{1/a,n — 1}, then u can be extended as the smooth solution in the whole
space and time Q2 x (0,7"). We first regard the Navier-Stokes equations as the perturbed
Stokes equations for v with the convection term (u, V)v in € x (0,7"). Since u is not
regular, it is difficult to show the existence, uniqueness, and regularity of the perturbed
Stokes equations. Hence, it is necessary to take a small non-cylindrical space-time
region @Q(r,T") near singularities so that the norm of w in L*°(0,7"; L™*>(B,.(£(t)))) is
sufficiently small. To this end, the hypothesis plays an important role. Simultaneously,
we show that u is a very weak solution in Q(r,T"). Next, we construct the strong
solution v of the perturbed Stokes equations in Q(r,T"). Using the uniqueness of very
weak solutions in the class L7 (Q(r,T)) to the perturbed Stokes equations with small
coefficient w in L>(0,7"; L™>(B,(£(t)))), we may identify u with v in Q(r,T). As a
result, it turns out that {£(¢)}o<i<7 is a family of removable singularities of w.

In Chapter 5, we construct the solution of the Navier-Stokes equations having the
the time-dependent singularities. Indeed, in R?, our solution behaves like the Dirac
measure with supports at {£(¢)}o<i<r. In R3, we solve the Navier-Stokes equations
with the external forces dg,, ) and ds, () for {p(t) }o<t<r denoting the radius and for
{&(t) }o<t<r denoting the center, respectively, where dg, () is the single layer potential
supported by the sphere S, () = {y € R? |y — &| = p}.

In Chapter 6, as Appendix we prove here the expression of the compensation term
for recovering divergence-free condition of the test function in the Bogovskii lemma
which we have admitted in the main parts without proof.



Chapter 2

Preliminaries

2.1 Function space

Let 8" = §'(R™) be the space of tempered distibutions and P = P(R™) be the space
of polynomials. Let us recall {¢;};ecz the Littlewood-Paley decomposition. We take a
function ¢ € C§°(R"™) with its support supp ¢ = {£ € R*;1/2 < |£] < 2} such that
> ez #(277€) = 1for all § € R™\ {0}. The functions g; is defined by Fp;(§) = ¢(277¢)

where F is the Fourier transform.

Definition 2.1.1. Fors € R and 1 < p,q < oo, the homogeneous Besov space B;VQ(R”)
18 defined by
B (R") = {f € 8/P: | fl5, < o0}

where

; 1/q
i =1 (Sealler e o)), 15a<oc
Pq Supjez<25]||(pj * f||Lp(Rn))7 q = oo.

Let P be the Helmholtz projection. P is bounded from LP(R™)(1 < p < c0) onto the
solenoidal subspace L2(R") = {f € LP(R");divf = 0}. It is known that P is expressed
by

P = (P jh<ij<n, Pij=0i;+RR;, i,7=1---,n,
where ¢; ;, 4,7 = 1,--- ,n, is the Kronecker symbol and R; = %(—A)_% 1=1,--+,nm,

is the Riesz transform. Then the solenoidal subspace B;VQ(R”) of B;Q(R”) is defined by
B (R") = PB: (R").

Proposition 2.1.2. (i) Let 1 < py < p; < o0, 1 < ¢ < o0, and sg,s1 € R satisfy
so — 7c = s1 — o-. Then, it holds that By (R") C B! ((R") with the estimate

Po p1,q

/]

bitutee) < Oy,

13
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for all f € B (R™), where C = C(n, po, p1, 50, 51).

Po,q
(ii) Let 1 < p < o0, 1 <qg<o0,58>0,0>0,andp > 0. We take 1 <
p1,p2,7“1,7“2 < o0 so that 1/p = 1/p1 + 1/p2 = 1/’/“1 + 1/’/‘2 FOT all f € Bs+o(Rn)

P1,9

B:# (R") and g € B, (R")NBZ#(R™), it holds that f-g € B > o(R™) with the estimate

71,00 p2,00 72,9

9+“<Rn)>

1F - 9l sy omy < C(HﬂB*‘“{I(R” 191l 5 oy + 1l 0 ey 91

where C' = C’(n,p,pl,Pzarl,T%S»U, M)'

Outline of the proof of Proposition 2.1.2. (i) If py = p;, then the two Besov
spaces coincide and the claim is correct. Let py # p;. From the Young inequality,
we obtain

/11

i
o1 gy = (Z 229 (pj-1 + @5 + Qi) * @5 f|f%m(mn)>

171 q
JET

1
q

< (Z 29| + @ + Pi+1llTr gyl * f”qLPo(R”))

JET

Q=

IN

(Z?Slq [ej—tllr@n) + |5l r@ny + ll@jaillr@n)lle; *fHLpo(Rn>
JEZ

Qe

< (Z 2is19(20 -1 4 9dy 4 2(j+1)%)¢1||¢j * f”%I,O(Rn))

JET

<C <Z 2j51q2j%¢1||¢j * fH%pO(]Rn))

jez

Q=

1
q

- (Z (1) =05 093504 | o F1|% 4 emy )

JEZ
= Clflls

where 1/r' =1—1/r =1/py — 1/p1.
(ii)Since this estimate was shown by Kaneko-Kozono-Shimizu [12], we omit its proof.
]

550
P()q

We next define the Besov space in the bounded domain. To this end, we introduce
the real interpolation spaces. Let X, and X; be a pair of Banach spaces with the norm
| - |x, and || - ||x,, respectively, and continuously embedded in the same topological
vector space. There are two well-known methods of defining the real interpolation space
(X0, X1)pq for 0 < <land1<gq<oo.



Chapter 2. Preliminaries 15

Definition 2.1.3. Fort € RT and u € Xo + Xy, let
K(t,u) = inf{||u||x, + |ullx,;u = uo + ur,up € Xo,u1 € X1} (2.1)
The real interpolation space (Xo, X1)p, consists of u € Xo + Xy such that the norm

supt VK (t,u) if g = o0,
>0

[ullo,g;x = * de) Ve
{/ (t~ K(t,u))q?} if 1 <q < oo,
0
18 finite.

This method is called K-method. The other method is called J-method. J-method
is as foliows.

Definition 2.1.4. Fort € R™ and u € Xy, N X4, let
J(t,u) = max{||u|| x,, [|[v]|x,; v = wo + ui,up € Xo,u; € X1} (2.2)

The real interpolation space (Xo, X1)p, consists of u € Xo+ Xy such that u is expressed

by
< dt
u :/ v(t)—
0 t
with v(t) € XoN Xy for allt > 0 and that the norm

supt " J(t, v(t)) if ¢ = oo,
>0

||u||97q7J = inf o] dt 1/q
{/ (t_eJ(t,v(t)))qT} if 1 <q < oo,
0
18 finite.
Now the Besov space B; (€2) and the solenoidal Besov space B; (§2) are defined by

B}, (Q) = (H"7(Q), H*7(Q)),
B3, (Q) = (HP(Q), H(Q)a, 2.3)

with s = (1 — 0)s1 + 0ss.

2.2 Cut-off function

We construct and estimate the cut-off function along some continuous curve intro-
duced by Takahashi-Yanagida [29].
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Lemma 2.2.1. Let n > 1, and t1,t2 € R(t1 < t2). Suppose that £(t) is locally o-
Hélder continuous in t € R for some o € (0,1]. Then there exist 1o = ro(ct, n, 11, t2)
and C' = C(a,n, ty,ts) with the following properties; For any r € (0,7¢), there exists a
family of cut-off functions {n,},~o C C°(R™ x R) such that 0 <, <1,

1 if |z = ()] >
() = { 0 if 2 — £(6)] < r/2, (2:4)
Ve (z, )] < Crt | An(, 1)) < Cr2, |0, (, 1)) < CrYe, (2.5)
AV, (z,t)] < Cr3, |0,V (x,t)] < Cr~1-1/e (2.6)

for all (z,t) € R™ x [ty,ts].

Proof. We make use of the argument due to Takahashi-Yanagida [26, Lemma 2.1]. Let
us take p € Cg°([—1,1]) with [ p(t)dt = 1 such as

o) o JAT At <L
0o if |t > 1.

We define £°(t) = & * p°(t) where p°(t) = e 'p(e~ ) for € € (0,1). Then we have
1

£(t) - €5(1)] < / p($)E(E) — £(t — e5)|ds.

-1

Since ¢ is loccally a-Holder continuous in ¢ € R, there exists a constant L = L(ty, t)
such that [£(t) — &(t —es)| < Le®|s|* < Le®, which yields
1

60~ €0 < Le* [ pls)ds = Len (2.7)

-1
for t € [ty,ts]. Since p' is an odd function, we have

R
To-5 [ v(5) o

—&

== /_ st = er)ar
=2 [ e —en - sty

Similarly, we obtain from the Holder continuity of £ that
des !
| < e [ o

-1

dt
1

< 4ALe*! / (;e_l/(l_TQ)dT (2.8)
0

1—172)2

2
= ZALe!
e
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for all t € [t1,t5]. Now we define a function 1, € C®(RY x R) for r > 0 by

( e~V o 0 . 4
P [ if o <l —=&(t)| < ="
4
ne(2,t) = q 1 if |2 — €50 2 £r, (2.9)
7
flo—&@)) < —
0 i o — €] < o,
where 10 .
0:= —(le = &) = 57

Set 7o = 10L and let r < ro. Taking ¢ = ¢, = (r/10L)Y/*, it holds by (2.7) that
|€(t) =& (t)] < r/10. From this estimate, we have |z —&%(t)| < |[x—&(t)|+|E(t)—E&5(8)| <
7r/10if |z —£&(t)] < r/2and |z —E(t)| > |x—&(t)|—|£(t) —&5(¢)| > 4r/5if |[z—&(2)] > 7.
Therefore, we see that (2.4).

Finally we estimate the spacial and time derivatives of n,. It suffices to show (2.5)
and (2.6) in the case where 7r/10 < |x — £ (t)| < 4r/5. By the direct calculation, for
0<o <1, ie, 7r/10 < |z — & (t)] < 4r/5, we have that

Vi (o,t) = X (o) e

100
Anr(iﬂ, t) = WY(U)

with

—1/o ,—1/(1—0) 1 1
X(o) = j ¢ — —t—
(6 /o +e 1/(1 0))2 o2 (1 _ 0)2

e 1/oe1/(1=0) n—1 1 1 1 1
Y = - - = Y(1=9
0= emoap (o37) (7 aep) () 0%
9 671/0' 671/0' _ 671/(170') 671/(170')
Ce—1/o 4 e—1/(1-0) ( o )}

ot o 0%(1 —0)? (1—0)4

72 o+7 |z — &= ()] |z — & (t)]
1 d ..
U—MX<U)E£ (t)},

AV, (2, 1) = 17% {%X(U) + :;17 (Y(a) - Z;;X(@) } % (2.11)

ava¢%=EE{(Y®>— ) e e )
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with
d2 671/0671/(170) 6 6
do? (6 1/o +e 1/(1 o‘))2 ol (1 _ 0-)4

. ] 9 e~lo  o—1/(1-0) 1 1
- {F T (1—0)2 e Vo4 e 1/0-0) ( o2 (1-— 0)2)} (F - 0>3>
A 1 1 el o—1/(1-0)
+ {—61/0 T e-1/(-0) <§ - (1— 0)2) ( o> (1-— 0)2)
2 2 1 1 2 6 eV gm0\ ?
-t (Fme) ey (e T
21 —20) [eV7 V00 L L
e o 4 e 1/0-0) ( ot (1_0)4>} <§+ (1_0)2>} '

Since XY, L X € C*(0,1) satisfies

do?
(lfl{(%X(U) = ilfrriX(a) =0,
lel{l(l) Y(o)= ilfrr% Y (o) =0,
o o
oy ga X (@) = I g X (@) =0
X(o), Y(0), and %X(U) are bounded for o € (0,1). Therefore, it follows from (2.4),

(2.10), and (2.11) that for (z,t) € RY x [ty, o],
IV (z,8)] < Cr=Y, | A, (z,8)] < Cr=2, |0, (z, )] < Cr=Ye,
AV, (z,t)| < Cr=3, |0,V (z,t)| < Cp—1-1/a
where C' = C(a, n, tq,1ts). -

2.3 Very weak solutions

2.3.1 Stokes equations

We first introduce some definitions. Let € be a bounded domain in R" with smooth
boundary for n > 3. We define a very weak solution of the Stokes equations in £2x (0,7")
as follows.

Definition 2.3.1. Let w € LP(Q x (0,T)) for some p € (1,00]. Assume that w is
smooth in some neighborhood of 0L with w(-,t)|aq =0 for 0 <t < T. We say that w
is a weak solution of the Stokes equations in Q0 x (0,T) with the initial data wy € L2 ()
if w satisfies that

/Qwo(a:) ~(x,0)dr + /OT/Qw (1 + Ap)dxdt =0 (2.12)
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fOT' all %2 S COO<§ X [O,T]) wlth le p = O m ﬁ X [OyTL o = O on aQ % [O,T]} (lnd
(-, T) =0 in Q, and that

/w(t)~Vg de =0, 0<t<T (2.13)
Q
for all o € C>(Q2).

2.3.2 Perturbed Stokes equations

Let us consider the following Stokes equations with the convection term whose
coefficient is the solution u of the Navier-Stokes equations.

(

ow—Aw+ (u,V)w+Vp=0 inQ(rT)= U B.(&(t)) x {t},
divw =0 in Q(r,T), o (PS)
w=u on | J 9B.(& (1)) x {t},
o<t<T
| wli=0 = uo|B, (= (0)) in B,(&(0)),

where B,.(§57(t)) = {z € R™; | =& (t)| < r}for 0 <t < T. Here & (t) = {xpr (1) is the
same in Proposition 2.2.1, and we suppose that u is smooth on | J,_,_, 0B, (£ (t)) x {t}.
We reduce (PS) to the problem in the cylindrical domain by using the method of

Inoue-Wakimoto [10] and Miyakawa-Teramoto [22]. Let ¥ : Q(r,T) — Q(r,T) be a
diffeomorphism defined by (y,s) = V(x,t) = (x; — &7 (t), - , 2, — &7 (t),t), where
Q(r,T) = B, x (0,T) with B, = {z € R"; |z| < r}. It is casy to see that ¥ is a volume-
preserving C* diffeomorphism satistying (0V;/0z;)1<i j<n = I, where I, is the identity
matrix on R". Defining @ = V,w, u = W,u, Uy = Y,ug and ply, s) = p(T~1(y, s)), we
may transfer (PS) to the following system in @(r, T);

(O, — A @+(ﬁ vy)w+(%vvy)w+vyﬁ:0 n @(T’T>’
8w, A
div w = = in Q(r,T),
=1 on 9B, x (0,T),
| @lamo = o], n 5.

The system (PS’) has the inhomogeneous boundary condition on dB,, and hence we
further transform it with the homogeneous one. Since it holds that

/ u(s)-vdS = / u(s) - vdS — div u(s)dy
B {z—¢or(s);2c00} {z—¢or (s);zeN\Br (¢ ()}
— 0,
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there exists w* € C?!(B, x [0,T)]) such that

{ diva* =0 inQ(r,T), 214)

T =7 on B, x (0,T).

For such @* we define W := @ — @*. Then, (PS’) can be transformed to the following

system,;
(O — AW + (@, V)W + (£ V)W +V,5=F  in Q(r,T),
il _
div W = Z:O iHQTyTv
> D
W =0 on 0B, x (0,7T),
Wls—o = To| 5, — @[5 in B,,

\

where F = —9,0" + A,0* — (0, V)@ — (£, V,) @,

Based on (PS”), we introduce the notion of very weak solutions of (PS) in Q(r,T")
by the following definition.

Definition 2.3.2. Let w € L} (Q(r,T)). Assume that w = W,w is smooth in some
neighborhood of OB,. We say w is a very weak solution of (PS) in Q(r,T) with the
initial data uy € L2(B,.(£7(0))) if W = w—w* with w = W,w and w* in (2.14) satisfies

that

— _ T — _ o _ deer _
/BTWIS_o(y)-SO(y,O)dyﬂL/O /BTW- {8s<p+A<p+ (u, V)o + ( - ,V) sO} dyds
(2.15)

T
+//F~95dyds:()
0 r

for all g € HY2(0,T; L2(B,)) N L*(0,T; H**(B,) N Hy*(B,) N L>®(B,)) with 3(-,T) = 0

n B, and if W satisfies that

W(s)-Vody=0, 0<s<T (2.16)

B

for all 0 € HY*(B,).

2.4 Strong solutions

We first consider the existence and uniqueness of the Stokes equations in 2 x (0, 7).
In paticular, there exists a smooth very weak solution of the Stokes equations in the
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sense of Definition 2.3.1. Recall the Stokes operator A in L2(Q) defined by A, = —PA,
with the domain D(A,) = {u € H*?(Q) N LE(Q);u|sq = 0}, where P denotes the
Helmholtz projection from LP(2) onto LE(£2).

Lemma 2.4.1. Let 1 < p < co. For every a € LE(Q) and f € C*([0,T); LP(Q2)) with
a > 0, there exists a unique solution u of

d
d—?+Au:Pf int € (0,7),
u(0) = a,

(St")

in the class u € C([0,T); L2(2)) N C((0,T); D(A,)) N CY((0,T); LE(Q)). The solution
u 1s also a weak solution of the Stokes equations in Q x (0,T) in the sense of Definition
2.8.1. Moreover, if f € C*(2 x (0,T)), then such a solution u satisfies in fact u €
C>*(Q x (0,7)).

Lemma 2.4.2. (Giga-Sohr [6, Theorem 2.8, Lemma 3.2]) Let 1 < ¢ < oo and 1 < s <

1
oo. For every a € Bﬁfﬁ 5)(9) and f € L*(0,T; LY)), there exists a unique solution u
of (St’) in the class

ue L*(0,T;D(A,)), dw e L*(0,T; L1(Q)),
2 2
we L9(0,T;L0(Q)) for —+ —==4" 9
S0 4o s q
Since Lemma 2.4.1 and 2.4.2 are the well-known results, we omit the proof. Finally,
we introduce the existence theorem of the Navier-Stokes equations in the Lorentz-Besov

spaces.

Proposition 2.4.3. (Kozono-Shimizu [17, Theorem 3|) Let 1 < p < 00, 1 < o < 00,
s> —1 satisfy 2/a+n/p—s=3. Let 1 < q<oo. Assume that 1 < r < p satisfies
2
o2yl (2.17)
r o a p
Then there exists a constant n = n(p, o, s,r,q) with the following property: if a €
BZ;M/T(R”) and f € L0, 00; By (R")) satisfy

lallgssore + 17 ooy .y < 1 (218)
there exists a solution u of

d .
d—:f + Au+ P(u,V)u=Pf ae teRtin B (RY),

) (NS3)
u(0) = a in By (R),
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in the class
ug, Au € L*(0, oo; B;’OO(R")) (2.19)

Moreover, u satisfies that

ue Lao,q(ojoo; 550 (Rn)) fOT 2/0&0 +n/p0 — S50 = 1 (220)

Po,1
with p < pg, a < g, and max{s,n/r — 1} < sq.
Outline of the proof of Proposition 2.4.3. We first consider the linear problem:

du . 35 n
ut Au = Pf 1a.e. t € (0,T) in B; 4(R™), (S)
w(0) = a in Brg ™" (RM).

Take 0 <0 < 1land kg < —14+n/r < k; < s+2sothat —14+n/r = (1—0)ko+0k,. By
the estimate of the heat semigroup in Besov space proved by Kozono-Ogawa-Taniuchi
[16][Lemma 2.2 (ii)] it holds that

HAeftAa’ ) < Ct—%(%—%)—%(s-‘ﬂ—ki)

Bs ) = e all gy all g @y

for i = 0, 1. Thus, we see that the mapping

ac Bf,loo(Rn) - HAeitAa‘ B;yl(R") € Lai,oo(oa OO)

is a bounded sub-additive operator for

1 n/1 1 1
— === )+= 2—k), i=0,1.
(T p)+2(5+ b

By the real interpolation thorem it holds that

a € (B (R"), B (R"))og — [l Ae™al

B @) € (L77(0,00), L%%(0,00))a.q.

Since (B, (R"), B (R™))g,, = Bt ™" (R") and (L0 (0, 00), L7(0, 00))gg = L(0, 50),
we see that the mapping

a € B;;+"/T(R”) — ||Ae_tAa|

B;,I(Rn) € La7q(07 OO)

is a bounded sub-additive operator.
Let sp < s < s1 < 1+n/rand 1 < < oo. The usual maximal regularity in H, (R™)
implies that the mapping

St f € L*0,T; Hy (R") — (u, Au) € L*(0, T; H(R™))?, i =0,1,
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is a bounded operator with its norm independent of 7". Since (H;O (R™)), H;I(Rn))g’g =
Bs (R") with s = (1 — 0)sg + /51, we see from the real interpolation that

St feL*0,T;B; 5(R") — (uy, Au) € L0, T; B3 4(R™))?

is a bounded operator with its norm independent of 7'. Similarly, by using the real
interpolation in terms of the time we see that

St f€L™(0,T;B54(R")) = (ug, Au) € L*(0,T; B: 5(R™))*

is a bounded operator with its norm independent of T. For a € Bra ™" (R") and
f € L0, T; By 5(R"™)), it holds that

ut) =e “a+Sf(t), 0<t<T
solves (S). As a consequence, we see that the followng result holds in the case of the

linear problem:

Lemma 2.4.4. Let 1 <p<oo,l <a<oo, 1 <f<00,1<qg<o00,s€eR satisfy
2/a+n/p—s=23. Assume that 1 <r < p satisfies

n 2 n

r « P

For every a € BE;+"/T(R”) and every f € L""q(O,oo;B;ﬁ(R”)) there exists a unique
solution u of

du : s n
a%—Au:Pf a.e..tleRJ“ in By 5(R") , (S)
u(0) =a in By (R,

i the class
up, Au € L0, 00; BS 5(R™)). (2.21)

In the next step, we consider the nonlinear problem (NS3). Let 1 < p < py < o0,
l<a<ay<oo,and —00 < s < 59 < 00 satisfying

2 n 2 n
—F+ ——5=—+—-——5-2=1
Qo Po @ P

Let 1 < r < p satisfy
Let f(t) = u; + Au. Then, it holds that u(t) = e *a + Ff(t) where Ff(t) =
t

/ e~ U=DAf(7)dr. Similarly to Proposition 2.4.3, we see that
0

—tA
le” aHLaO»q(O,oo;B;gyl(R")) < C||@||3;;+n/T(Rn) (2.22)
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where C'= C(n, p, a, 8,7, q) is independent of u, a, and T'. Hence we determine F'f(t).
From Kozono-Ogawa-Taniuchi [16][Lemma 2.2] it follows that

IEf ()]

B0, ®m) AT

t
b e < [ A7)
o> 0

t
<C / (t— 7)1 5653 ()
0

By oo (R™)

It is noted that 1— %(% — pio) —1(so—s) =1— aio < 1. By the Hardy-Littlewood-Sobolev

inequality in the Lorentz space we have that

HFf(t)HLQO’G(O,T;B;SJ(R")) < CHf(T)HL“»‘I(O,T;BSOQO(R’E))

Py
<C <||ut||La,q(O,T;B~;0’w(R")) + ||AU||La7q(o,T;B;m(Rn))> - (2:23)
We next estimate the non-linear term in the following lemma:

Lemma 2.4.5. Let 1 < p < o0, 1 < a < 00, s > —1 satisfy 2/a +n/p —s = 3.
Let 1l <r <p 1<qg<o0and 0 < T < co. For measurable functions u and v in
R™ x (0,T) satisfying that

ug, Au, vy, Av € L0, T, B;’OO(R")),
w(0) = a, v(0) =b € Brg " (R"),

it holds that P(u,V)v € L0, T} B;,OO(R")) with the estimate
[P (u, V)UHL%‘I(O,T;B;%(R"))

<C <HeitAa’HLQM(O,T;B;SJ(R")) + HutHLO@‘I(O,T;B;O‘OO(R”)) + HA“HLa»q(o,T;B;m(Rn)))

X <||e‘“‘b|

Le0:4(0,T5B,0 | (R™)) + Hvt”La»q(O,T;Bg&w(Rn)) + HAUHL%‘I(O,T;B;OO(R”))) (2.24)

for some o < g < 00, 1 < p < pg <00, and s < sy < 00 such that 2/ag+n/py—sy =1,
where C'= C(n, p, a, po, g, 7, q) 18 independent of T

Outline of the proof of Lemma 2.4.5. We take ag = 2a, pg < p, and so € R so
that
max{n/r —1/a,s+2—1/a}, max{s+ 1,n/r—1} < so,

and
2/ag +n/py— so = 1.

Since 0 < s + 1 < sp, we can take o > 0 so that o < 5o — (s + 1). Let us define p; and
o SO that

n/pr=n/po—{so—(s+1)—0c}, n/ps=n/py— (so+ 0) (2.25)
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Hence, we see from (2.25) and Proposition 2.1.2 (i) that
B® _(R") < BsTH9(R"),  B% _(R") < B>7 (R") (2.26)

Po,0 p1,%0 Po,0 p2,%0

It is noticed that 1/p; + 1/p2 = 1/p. By (2.26) and Proposition 2.1.2 (ii) we have that

1P, )0l sy gy = IV - Pu®0)ll g,y = 1P 0) | syt ey
< Cllu @ vl| g1 @ny
< C (Il a1l 57, ey + 1l 19 8o o))

< Clul

B;g,oo(Rn)||U| BpY o (R™)

By the Holder inequality in the Lorentz space it holds that

1P, V)0l oo msg oy < Clltell oo 200,350 o @ 19| Loo2a0,7, 850 ey

pQ,©

< C||uHLaO’lI(QT;B;g,w(R”))||UHL“O*‘I(OI;B;&W(R”))u (2.27)
where C' = C(n,p,, po, 2, q) is independnet of T. Since n/p < n/r < sp+ 1 =
2/ + n/po, it follows from (2.22) and (2.23) that

"UHLao,q(o,T;ng,w(Rn))

Y
<C (”‘3 ! aHL“M(O,T;B;g’l(Rn)) + ||ut||Laﬁq(O,T;Bgyoo(R")) + ”A“Hmyq(o,T;B;m(Rn))) )
(2.28)

HU||Lao>q(o,T;B£8,oo(R"))
<C (|!e’“‘b\!Lao,q(o,T;B;Z‘SJ(Rn)) Vel ooz oy + HA“”Lwo,T;Bz,oo(R")))’ (2.29)

where C' = C(n,p, po, @, g, q) is independent of 7. The desired estimate (2.24) is
obtained from (2.27), (2.28), and (2.29). O

Finally, we construct the solution of (NS3) on (0,7}) for some 0 < T, < T by the
successive approximation. For simplicity we show only the case 1 < g < co. Let a €
B;;JFH/T(R”) and f € L*“(0,T; B;OO(]R”)) for 2/a+n/p—s=3 with 1 <r <p < o0,
1 <a< oo, and —1 < s satisfying (2.17). We define uy by

t
up(t) = e a +/ e"EAPF(rYdT, 0 <t < T.
0

By setting u = wuy + v, we reduce the solvability of (NS3) to the construction of the
solution v in the following equation:

— 4+ Av = —P((ug, V)v + (v, V)ug + (v, V)v + (ug, V)ug) a.e. t € (0,7) in B;oo(]R”),

(NS3)
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dUO

dt

It follows from (2.22) and (2.23) that
+HAU’0HLavq(O,oo;B;’oo(R")) <C <"a"3;3+n/7'(Rn) + Hf(T)HLavq(O,T;Bgom(R”))>

(2.30)
where C' = C'(n,p,a, s,r,q) is independent of 0 < T' < co. Now we solve (NS2’) by the
following successive approximation:

Le1(0,00;B o (R™))

dug : o n
s + Avg = —P(ug, V)ug a.e. t € (0,7) in By  (R"), (NS3))
UO(()) =Y,
dv, o
12;1 + Avj = —P((uo, V)vj + (vj, V)ug + (v, V)v; + (uo, V)ug) ae. t € (0,T) in By (R"),
Uj+1(0) :O, ]:O,l, .
(NS3%)
Set
Xy = {v LR x (0,T) = Ry, Av € L9(0,T; BE, (R™)), 0(0) = 0, [[v]lx, < oo}
where
HUHXT = HthLo"‘I(O,oo;B;’OO(R")) + HAUHLO"‘I(O,OO;B;OO(R")) :
Xr is a Banach space equipped with the norm || - ||x,.. We see from Lemma 2.4.5 and

a € Bry ™7 (R) that .
P(uo, V)ug € L*(0,T; By . (R"))

with the estimate

2
L”O”I(O,T;B;g’l(Rn)) + HUOHXT> I

HP(UO, V)UOHLO"‘I(O,T;BIS,,OO(R”)) S C (He_tAa

where C' = C'(n, p, po, a, g, 7, q) is a constant independent of 0 < T < oo. Therefore, it
follows from Lemma 2.4.4 that there exists a unique solution vy of (NS3j) in the class
Xp. Assuming that v; € Xy, it follows from Lemma 2.4.5 that

P((uo, V)v; + (vj, V)ug + (vj, V)v; + (ug, V)ug) € L%(0, T B  (R™))
with the estimate
1P ((uo, V)vj + (vj, V)uo + (v, V)v; + (o, V)uo) || peao iy mmy)
<C (2 <He‘t‘4a

peoaorn oy + [ollxe ) sl + [0,

2
(e 0l mtorg aoy + ol
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for some ag > a, py > p, and sy > s such that 2/ag + n/py — so = 1, where C' =
C(n, p,po, , g, 7, q) is a constant independent of 0 < 7" < co. Hence, we see from
Lemma 2.4.4 that there exists a unique solution v;i; of (NS3;) in the class X with
the estimate

lossllxr <C (2 (Il moagorin oy + luollr ) Isllxe + sl (231)
2
(I alntorg ooy + luolle) ).

where C' = C(n, p, po, @, v, 1, q) is a constant independent of 0 < 7" < co. By induction,
we have that v; € X for all j € N. Therefore, if there is 0 < T}, < T" such that

1
—tA
le™! a”LQOv‘I(O,T*;B;g’l(R”)) + lluollxr, < Mok (2.32)
then we obtain from that
1 _
loslxe, <56 (120 (le almouoisin oy + luollxs, ) (2:33)
- ¢ 1= 4C (lle=all onago g oy + ol )
=K

It should be noted that all constants C' in (2.31), (2.32), and (2.33) are the same and
independent of 0 < T < oo.
Define w; = v; — v;_1(v_1 = 0). Then, we obtain from (NS3}) that
dwj i1 -
g AW = =P, V)w; + (wj, Viuo + (v, VIws + (wy, V)vja)
a.e. t € (0,7)in By (R"),
U)j+1(0) :O, ]:O,l, .

Similarly to (2.31), we have by (2.33) that

|wjs1 || xp, <C <2 ("e_tAaHLQOa‘I(O,T*;B;g”l Rn)) T HUOHXT*> [Jw; ||z,

+ sl xr,

ijXT*)7

[, + B gl 5= 0,1,

Wyl xp, + Vi1 llxs,

<20 (”eitAaHLQM(O,T*;B;&I(R")) + [Juo

This yields that

_ J :
lwsllcr, < {26 (el roaor. o any + Nollxe, +K) } ool 5= 1,20+
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By (2.33) it holds that

20 (lle™4all ooz amy + loll . + )

=1- \/1 —4C (He_tAaHLao’q(O,T*;B;g,l(R")) + ||UQ||XT*> < 1,

from which it follows that -
> wjllag, < oo
j=0

Thus, there exists a limit function v € Xz, of {v;}32, in Xr,. Letting j — oo in both
sides of (NS3’), we see from Lemma 2.4.5 that v is a solution of (NS3’) on (0, 7.) if the
hypothesis (2.32) is fulfilled. Since 1 < ¢ < 0o, we see from (2.22) and (2.30) that there
exists 0 < T, < T such that the condition (2.32) holds. Therefore, we have shown the
existence of a solution u of (NS3) on (0, 7%).

OJ



Chapter 3

Removable time-dependent singularities in
the Stokes equations

Theorem 3.1. Let n > 3 and let Q be a bounded domain in R™ with the smooth
boundary 9. Suppose that & € C*([0,T};R") for 0 < o < § with the property that
{&(t);0 <t < T} C Q. Assume that ug € LE(SY) for some p satisfying 1 < p < oo. If u
is a solution of (St) satisfying

lu(z,t)| = o(|lz — E() P 1/2=2) as & — £(t) locally uniformly in ¢t € (0,7), ()
then the curve {£(t);0 <t < T} is a family of removable singularities of u in Q2 x (0,T).

Remark 3.2. (1) For n = 2, we need to change the condition (x) of the solution w.
Indeed, if u satisfies for any ¢ € (0,1), |u(z,t)| < |z — £(t)[V*72 log m for (z,t)
with 0 < |z — £(t)| < € uniformly in ¢ € (0,7), then the curve {£(¢);0 <t < T} is a
family of removable singularities of u in € x (0,7).

(2) For @ > 3, Theorem 3.1.1 also holds if we assume that
lu(z,t)| = o(|lz — £()*™™) as & — £(t) locally uniformly in t € (0, 7).

(3) It should be noticed that the behavior |z — £(¢)[*™™ as 2 — £(t) coincides with
that of the fundamental solution of the Laplace equation. Takahashi and Yanagida [29]
obtained almost optimal condition on removability of moving singularities in the sense
that there exist a curve & € C*((0,7); Q) and a solution u(z,t) of the heat equation in
Q7 such that

lu(x,t)| = O(Jx — E@)P™) as & — &(t) locally uniformly in t € (0, 7).

On the other hand, by assuming the stronger condition as (%) for 0 < o < %, we

may handle more general moving singularities £(¢) with £ € C*([0,T];€2). Hence, our
result makes it clear the relation on removable time-dependent singularities between
the Holder exponent « of £(¢) and the singular order of the solution u around z = £(t).

29
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In this section, we give some lemmas for the proof of the main theorem. Our first
aim is to show that the solution u of (St) is in fact a weak solution in the sense of
Definition 2.3.1. To this end, we need to choose an appropriate family {7, },~o of cut-
off functions with the property that n,(x,t) = 0 near z = £(¢).

Proof of Theorem 3.1. We first prove that u is a very weak solution of the Stokes
equations in € x (0,7, in the sense of Definition 2.3.1. To show it we use the following
proposition.

Proposition 3.3. Let ¢ € C*(Q x [0,T]) with div o = 0 in Q x [0,T], ¢ = 0 on
00 x [0,T), and (-, T) = 0 in Q, and f, := div (n,0) = V1, - © where n, is the same
cut-off function as in (2.9). Let D,; = {x € R";7r/10 < |z — & (t)| < 4r/5} for
t € [0,T], where & is the same as in the proof of Proposition 2.2.1. Then there exists
constant r1 = ri(a,n, T) with the following properties: for every r € (0,11), there exists
a function v, € C*(Uy<cper Dre X {t}) such that div v, = f, in Q x [0,T], v, =0 in
Q\ D, forte|0,T], and such that

|Av,(z,t)| < Cr=2, |0, (x,t)] < Cr~ Y for (z,t) € R" x [0, 7], (3.1)
where C' is a constant independent of x, t, and r.

Proof. We first show the method of the construction of v, following from Borchers-Sohr
2, Theorem 2.4]. Let ro = 10L with the Holder constant of & in [0,7], e, = (r/ro)"/*,
and r < ry := min{ro, d} with d = minsc ) d(£(t), 0Q). Then, f,.(-,t) € C=(D,;) with
() =0in Q\ D, for t € [0, T] satisfies

fr(t) doe = Vn, - ¢ dx

Dr,t D'r,t

:/ N - v dS — nrgp-VdSJr/ nydiv ¢ dx
OByy/5(E57 (1)) 0Bry/10(6°7 (1)) Dyt

:/ (p-VdS:/ cp-VdS—/ div ¢ dz = 0.
0By, 5(£57 (1)) oQ O\By,./5(&57(¢))

Since D, is an annulus region in R", there exist an integer Ny = Ny(n) independent
of r € (0,7;) and t € [0,7], and a family {U7}Y°, of Ny domains in R™ such that
Uﬁ\fl Uf D D, and such that Dfﬂ’t = DT,tF‘IUti is starshaped with respect to some ball Bit
in R" for all = 1,--- , Ny. It should be noticed that Ny may be chosen independently
of r and ¢ since the time variable ¢ plays a roll only for translation along the curve £
and since the radius 7 has no influence to the number of decomposition so that D],
may be starshaped. Furthermore, there exists a family {¢?}°, of Ny smooth functions
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compactly supported in U? such that 0 < ¢/ < 1, and such that S_r° ¢i(z) = 1 for
all z € Dyy. Let J := {(i,7) € {1,--- ,No} x {1,--- ,No}; D, N D}, # 0}. Define
wrl € Cy°(Di, N D},) for (i,5) € {1,---, No}* in such a way that

( . .
/ GH@)de =1, (i) € J,
Dr,t

drt(x) =0, (i,7) € {1, Ng}2\ J, (32)

Yl(x) = Pli(a), ij=1,--. N,

Now, let us define a family {f,}% b

L) =)+ D ay, (/D

1<5<No (1)
1<k<Ng

L0 o). (33)
Here {a} ; }1<ijk<n, may be chosen in such a way that

Z fiy) forall ye D,,,
(3.4)

/ f:‘t dy 7::1,"',N0.

For the detail, see the Appendix below. Then we define the function v,; by

Ui (2 Z/Z fh(y)dy, x € D,y (3.5)

Here G, has an expression

; r—Y R r—y -1
Gl (z,y) = / h;. (y + 5) s" s, (3.6)
! ’iE - y‘n |lz—y| ! ‘x - y’
where hl, € C3°(B},) with fBl (z)dx = 1. Since for every i = 1,..., Ny hi.,(y +

=Y. g) = 0 without relation to r and t€[0,T]if s € [l —y|l,00), z € Q\ D,y, and

le—y]®

y € D,y, Gr’t(az, y) also does, which implies that v, = 0in Q\ D, for all » > 0 and
t € [0,7]. We next show the divergence condition. Set v} (x) = |, D, Gl (z,y) [ (y)dy

and vy, () = [, Gre(@,9) f14(y)dy for e > 0. Then, we have that lim,_, v

r,t,e
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v},,. By the direct culculation we have that

OGr i) { 1 n(xk_yk)2}/oo : ( r—y ) 1
——(z, = — h,. + s |s" " ds
o e R Pl ) AL

Tr — Yk > ahi«,t r—=y n
T |/ 52 (yﬂx— |S)5d5
\w yl 9Tk Yy

(20 — yo) (zr — yi)? /OO Ohy, ( r—y ) n
— — y+ ——s | s"ds
Z |ZL’ _ y|n+3 o] 63:1

where (G,); is the k-th element of G., for k¥ = 1,--- ,n. Changing variables z =
(x —y)/e and s = ¢ + 7, we have that

/ — (GL)k(z, y)dS, —/ zk/ [(a+72)(e+7) T f) (x—e2)dS..
lz—y|=¢ l2l=1

| —
(3.8)
From (3.4), (3.7), and (3.8) it follows that

it =3 ([ Tt anwms [ PRG0S,

|z—y|=¢ | y|
/ / W+ 72)(e+ 1) fl (@ — £2)dS,
|2|=1

hZ [z +T12)m" 1de2 (x)dS,

E*)+O |Z| 1Jo

= [ Bdufio) = fife)
Therefore, div v,, = 31, div vi, = S0 te = fra-

Finally, we show the estimation (3.1). Define v,(z,t) = v, (x), GL(z,y,t) =
G y), filx,t) = [ (), ¢z(l’ t) = ¢i(x), hi(z,t) = by (x), ¥p7(x,t) = (@),
and v (z,t) := v, (). Slnce S0 i = v, and since Nj is independent of ¢t and r, it
suffices to show that the following estimates hold: for every 1 < i < Ny,

|AvVE (2, )] < Or~2, |0t (z,t)] < Cr~?  for (x,t) € R™ x [0,7]. (3.9)

where C' is a constant independent of x, ¢, r.

Let B, be the open ball with the radius r centered at the origin 0 for r > 0. Let us
take h; € Cg°(B1) and ¢ ; € C5°(Dj, N D{’ ) in such a way that [, hi(z)dz =1 for
i=1,---, Ny, fDi,tﬁD{,t Vi ;(x)dx =1 for (i,7) € J. The functions {h’}ZN‘)1 in (3.6) and



Chapter 3. Removable time-dependent singularities in the Stokes equations 33

{wi,j}(i’j)eJ in (3.3) may be chosen as

hi(:c,t):Tinh,;(f”_xi%gr(o)_fsr(t)), ie{l,--,No},  (3.10)

r

i (1) = rin% (M) , (i,5) € J, (3.11)

r

for (x,t) € R™ x [0, T] respectively. Here z}, is the center of the ball B}y, i =1,---, N.
It is noticed that

D, c{yeR" |z —y| <2r} foranyxe Di,. (3.12)

We have by (3.3), (3.5), and (3.12) that

Bi@ol=|a [ G, )ff(y,t)dy‘
|x—y|<2r

IN

Ax/ Gz, o+ 2/, t)f (x+ 2, t)ds
|z |<2r

IN

Ax/ Gz, z+ 2" t)pi(x + 2/, t) fr(z + 2 t)da
|z |<2r

+ Ax/ Gz, o +',t) Z al (/ ¢Z(z)fr(z,t)dz) YRz + 2 t)da!
|z |<2r 1<j<No D(r,t)
1<k< Ny

= [1(T7 t) + IQ(Ta t)7

pairol <o [ Gitew0fi t)dy]
|z—y|<2r

IN

8t/ Gz, x+ 2 t)fi(x + 2, t)da’
|| <2r

IN

o / Gi(x, 2 + 2, )di(x + 2, ) f(a + ', t)da’
|| <2r

+ 8t/ Gz, + 2, t) Z aly (/ ¢{(z)fr(z,t)dz> YR (v + 2 t)da!
|| <2r D(r,t)

1<j<No
1<k<Ng

=I3(r,t) + Iy(r, t).

In the next step, we investigate I;(r,t) for j = 1,--- ,4. Since h; € C§°(By), we have
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by (2.8), (3.6), and (3.10) that

G (2 + 2, 8)]

;,nTL

/n
|2/| ||

|’ |+2r
SC‘x/|1nrn/ Snflds7
|

z’|

(V.G (z, 2+ 2/, 1)

r

o /Iw'lwr L <x+x’—é—ﬁs—xiJr@(O)—f”(t)

) s"lds

T
|| 2| rn

|z’ |4-2r
SC‘xlylfnrfnfl / SnildS,
|

z'|

A, Gz, 2+ 2 t)|

r

/ |’ |+2r 1 $+$/—i—:8—$i+§& 0 _é'E'rt
€T / _hi< Ed (0) ()) =17
|

o

|’ |+2r

SC‘]},’lnrnZ/ Snilds,

0,GE(z, 2 + 2, 1)]

r

' /lw’l+2r 1 <x+w’—é—is—xi+fﬂ(0>—§&<t>> -
— —h; s"tds

/”-n

deer |’ |+2r .
——(t "d
ai /w v

|’ |+2r
SC‘.%,’lnTnl/a/ Snilds.

||

Sc‘x/|lfnrfn71

Hence, it follows from (2.8), (3.11), (3.13) - (3.16), and Lemma 2.1 that

L(rt) < ‘Agﬁ/'

x| <2r

SC/ ) R r3)r”/
|’ |<2r |

r

z'|

|z’ |+2r

1ol x4+ — i—is—xi—k{‘“ 0) =& (t
T / _hi< Ed (0) ()) =1

Gz, + 2 t)gi(x + 2/, )V, (x + 2/, t) - p(x + 2/, t)da’

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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|2/ |+2r |z’ |+2r
-l-(?“_l 4 r—2)r—n—1 / s"tds + 7“_17’_"_2/ s”_lds} da’

|2'] |2']

<Cr2,

IQ<T7 t) <

Aw/ Gz, +2,t) (3.18)
/| <2r

3 ( 5 @(z,t)vﬁ?«(z,t)-so(zi)dZ) G

1<j<No
1<k< No
|2’ |+2r
< CT_Z”_?’/ dz/ |l2/|t / s"tds 3 da’
Dyt || <27 ||
< Cr2,
I3(r,t) < 8t/ Gi(z,z + 2", t)gi(x + 2", )V, (v + 2, t) - p(z + o', t)da’ (3.19)
|z’ |<2r
|’ |+2r
SC/ |a:/|1—n r—lr—n—l/a/ Sn_ldS
'] <2r [2]
|2’ |+2r
+(rt +7’11/°‘)7’”/ s"ds b da’
||
Iy(r,t) < 6t/ Gz, x+ ',t) (3.20)
o' <2r
; 1 x+a —E(t

Z aj . </ o (2, t)Vn.(2,1) - go(z,t)dz) ﬁwi,k <%> dx’'
1<j<No Dre
1<k<No

|2’ |+2r
SCT”/ ‘xl|17n 7"nl/oz/v Snlds/ Tﬁle
|z’ |<2r |2/ Dyt
|'|+2r dger
+7“_”/ s”_lds/ rt
‘le Dr,t

/
o (t)‘ dz} dx
< Cr Ve,

Now, the desired estimate (3.1) is a consequence of (3.17) - (3.20). This proves Propo-
sition 3.3. [
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Next, we show that w is in fact a weak solution of the Stokes equations in 2 x (0, 7).

Proposition 3.4. Let n > 3 and let ) be a bounded domain in R™ with the smooth
boundary 0S). Suppose that & € C*([0,T];Q) for 0 < a < 1. Ifu is a solution of (St)
satisfying the condition (%), then u is necessarily a very weak solution of the Stokes
equations in Q0 x (0,T) in the sense of Definition 2.3.1.

Proof. Let o € C*°(Q). Since |u(z,t)| = o(|z—£&(t) [ 1/2=2) as x — £(t) uniformly in

€ (0,T), for any £ > 0 there exists 0 = §(¢) such that |u(z,t)| < |z — &(t)|>+1/e=2)
for all (x,t) € Uyeyer Bs(&(1)) x {t} where Bs(&(t)) = {z € R"; | —§(t)| < 0}. Then,
we easily see that u € LI(Q x (0,T)) for 1 < ¢ < oo in the case 0 < a < <, or for
1 <qg< n_’i/a in the case % < a < 1. By the boundedness of Q, uy € LP'(2) and
ue LP(Q x (0,77)) hold for some 1 < p; < p < 0.

Take r; > 0 and the function v, given by Proposition 3.3 and let » < r;. Since
N — v, is identically zero near some neighborhood of £(t) fot ¢ € [0, 7] with div (9, —
v,) = 01in Q x [0, 7], by multiplying (St) by 7,.¢ — v, and then by integrating by parts,
we have that

/QUO'(HT(UO)@(WO)_Ur('vO))dx—’_/o /Qu'(at<777"90_v7")+A(77r90_vr))dwdt =0. (321)

Taking r < min{ry,e,0}, we have by (2.4), (2.5) and (3.1) that

1—1
< CHUOHLP(Q) (/ dx)
B-(£(0))

S Crn(l—%)

/Q o - (( 0)p(-,0) = v (-, 0))d

< Cemt=y),

u {0 — vy) — atgo}dxdt‘ < Ce(14r7Yo) / / ()P oD gyt
r( t))

< C¢,

T
u-{A(np —v,) — Ago}dxdt‘ < Ce(l+rt+r72) / / |z — &) P e D dgdr
Q (£(1))

< Cert/o—2,

Since ¢ is arbitrary and since 0 < a < 1/2; from the above estimate, we obtain the
identity (2.12).
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From (St) we have that

/ u(t) - Vo dx :/ div u(t) o dx +/ u(t) - Vo dz (3.22)
Q B (£(1)) Br(&())
= / u(t) - Vo dz.
By (&(1))

For r < 9, we have by (3.22) that

/ u(t) - Vo dx
Br(£(1))

Since ¢ is arbitrary and since 0 < « < 1/2, this shows (2.13). Consequently, we see that
u is a very weak solution of the Stokes equations in €2 x (0,7) in the sense of Definition
2.3.1. O

< 0/ elz — @) PV Ddy < Cert/e,
B (€(t)

Finally, for the proof of Theorem 3.1 we may show the following proposition.

Proposition 3.5. Let u and v be very weak solutions of the Stokes equations in §2 X
(0,T) in the sense of Definition 2.3.1. Then, it holds that u = v in Q x (0,T").

Proof. Let u and v be two very weak solutions of the Stokes equations in € x (0,7") in
the sense of Definition 2.3.1. It suffices to show that

/OT/Q(u—v)~Fdxdt:O

for all ' € C§°(2x (0,7)). By Lemma 2.2.1, for every F' € C5°(2x (0,7)), there exists
a unique solution {¢,p} € C®(Q x [0,7]) x C=(Q x (0,T)) such that

Op+Ap+Vp=F inQx(0,7),

div o =0 in Q x (0,7, "
t
=0 on 0f2, (5¢7)
@’t:T =0 n Qa
By (2.13), it holds that
T
/ /(u —v) - Vpdzdt =0, (3.23)
o Ja

Applying (2.12) with w replaced by u—v, together with the fact that wy = u(0)—v(0) =
0, we obtain from (3.23) that

//u—v - Fdxdt = /OTA(U—U)-(atw+Aw)dxdt
0

This proves Proposition 3.5. [
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Completion of the proof of Theorem

Since ug € L2(2) for some p satisfying 1 < p < oo, by Lemma 2.2.1 there exists
a unique solution v of the Stokes equations with v(0) = ug having the property that
v e C®(Q x (0,7)). Hence, it follows from Proposition 3.5 that u(t) = v(t) for all
t € (0,7), which shows that u € C*°(2x (0,7")). This completes the proof of Theorem.



Chapter 4

Removable time-dependent singularities in
the Navier-Stokes equations

Theorem 4.1. Let n > 3 and let €2 be a bounded domain in R™ with smooth boundary
0. Suppose that £ € C*([0,T];92) for 1/n < a <1 and that

L7>°(Q) for n =3, i1
S _1 .
S\ BUTV@) = (L8, DA 1, forn >4, 1)

where 2 + 2 = 3 with max{%§,2} < ¢ <n. If uis a smooth solution of (NS) in Qr
satisfying

lu(x,t)| = o(|z — E&)|7"FP)  locally uniformly int € (0,T) as x — £(t) (4.2)

for B = max{1/a,n — 1}, then the curve {£{(t);0 < t < T} is a family of removable
singularities of u in 0 x (0,T).

Remark 4.2. (1) In the Stokes equations, we see in the previous chapter that the
exponent « of Holder continuity of singularities for £(¢) may be handled for all 0 <
a < 1. On the other hand, in the case of the Navier-Stokes equations, it seems to be
difficult to deal with the exponent for 0 < o < 1/n. Indeed, our method is related to the
cut-off procedure, and it is necessary to take some d-neighborhood around singularities
{&(t) }o<t<r on which the L™>-norm of the solution w is sufficiently small. In such a
procedure, we need to handle remainder term with its singular order §na arising from
the time-derivative of the cut-off function. It should be noticed that such a harmful
term dose not appear in the case of the Stokes equations since we do not need any
smallness of the solution in the whole region € x (0,77). This is the reason why we
impose the Holder continuity « on the restriction that o > %

(2) Even if the Holder exponent a of moving singularity £(¢) satisfies a > —1-, it
is required that |u(z,t)] = o(|z — &£(t)|7!) as x — £(t) locally uniformly in ¢ € (0,7,

39
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that is, § = n — 1. This seems to be natural since there exists a singular solution
with the homogeneous degree —1, so-called the Landau solution to the 3-D stationary
Navier-Stokes equations.

(3) Takahashi-Yanagida [29] introduced a family {n,},~¢ of cut-off functions near
singularities {£(¢)}o<t<r, and showed that the singular behavior near r = 0 of d;7, is in
proportion to —1/a. To cancel such a behavior as 8y, = O(r~ ) as r — +0, we need
to impose 8 > 1/a on u as in (4.2). Therefore, « = 1/(n — 1) is an expected borderline
of the Hoélder exponent of £(t).

We first introduce some lemmta and propositions to show Theorem 5.1. The follow-
ing lemma is essentially due to Bogovskii [1].

Proposition 4.3. Letn > 3 and 1 < p < n. Let Q be a bounded domain in R™ with
the smooth boundary OS2 and let v < d with d = mingejo ) d(§(t),00). Assume that
ns be the same cut-off function as in Lemma 2.1 with r replaced by 6. Suppose that
£€ C0,T);Q) for 0 < a <1 and that p € H“*(0,T; LE(B,)) N L*(0,T; H*?(B,) N
Hy?(B,)NL*(0,T; L(B,)) with &(-,T) = 0 in B,. Then there exists ry = r(a, 7,0, T)
with the following properties: for every 6 € (0,ry), there exists a function vs such that

supp vs(-,t) C Dsy = {x € R";76/10 < |z — £7(t)| < 40/5} for t €[0,T]; (i)

divvs = ¢ - Vs in U Ds; x {t} with ¢ = V', (ii)
0<t<T

[05() || o (Ds.0) < CO7 [[0(E) | oo (B (or 1)) (iil)

IVus ()| Lr(ps.) < 05%_1H90<t)HL°°(Br(£57'(t))) + CH(p(t)||H1vp(335(§56(t)))7

)

n_g

MNzr(ps.) < COr o)l (81 gor @) + Clle@ | 20 (85 (€25 (1)
1

t)llo(0y) < CO 7

OB, = 1)) + CllOwp(t) || Lr(Bys(e%s 1))

for allt € (0,T), where C = C(a,n,T) is independent of t and 6, &, = (r/10L)"*, and
= (6/10L)Y* with the Hélder constant L of & in [0,T).

Proof. Similar construction of vs for the given ¢ € C*(Q x [0, T]) with the properties
(i) and (ii) is carried out by Proposition 3.3. However, we need more precise estimates
in L? such as (iii). Let ro = 10L and 0 < rg. Define f5 = ¢ - Vns. Then, from the proof
of Proposition 3.3 vs is expressed by

Z Géw, Ofiy.tdy, (@t e | Dax{t}  (43)

0<t<T

where G% and f} are similarly defined by (3.2), (3.3), (3.4), and (3.6) with r repleced
by 0.
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Define vj(x,t) == [, Gi(x,y,t)fi(y,t)dy. Since SN vi = v; and since Ny is
4,

independent of ¢ and 8, it suffices to show that there exists a constant r; > 0 such that
the following estimates hold: for every 1 <i < Ny and every § € (0,7),

o5l e(g ) < O ()l (8, €= 1) (4.4)
IVes D)l ) < O @) lrm (i@ + CleOllmoysesy,  (45)
HAUES@)HLP(D(@J) < Cor- o) oo (B, (eer ) + CHSD(t)HHM(B?,(;(gfa(t))): (4.6)
10005 ()| oz ) < Co% o)l o (e + ClOC® |l omasiesny (A7)

for 1 <p<nandforall t € (0,7), where C' is a constant independent of ¢ and 6. We
may show only (4.6) and (4.7) since (4.4) and (4.5) can be handled in the same way.

We take ¢;; € C°(Diy N D) in such a way that [, ., ¥ij(v)de = 1 for
) ) 1,0/ 10
(i,7) € J. Let us recall the function {15’} j)es in (3.3) may be chosen as

g’j(x,t) = 6%%] (x + 566(05) —& (t)) ; (1,7) € J (4.8)

for (x,t) € R" x [0, T}, respectively. Here x§ is the center of the ball By, i =1,---, Ny.
It is noticed that for each ¢ € [0, 7]

Dj, C {y e R" |z —y| <26} forallz € Dj,. (4.9)

We have by (3.3), (3.5), and (4.9) that

0§l ooy < H [ Gwiswna
’ lz—y|<20

Lp(Dj )

— H/ Gi(z,x+ 2/ t)gi(x + 2, t) fs(x + 2, t)da
|| <26

LP(D}'H)

< H/ Gi(w x4+ 2 t)gi(w + 2, t) fs(x + 2/, t)da’
|26

L#(D},)

+ / Gy(x,x+a,t) Y al, ( ¢§(2)fa(z,t)d2> U5tz + 2 t)da!
|="|<26 1<5<No Dsy¢

1<k<No Lr(Di)

= 1,(6,t) + L, (5, 1),
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Hvﬂﬁwmﬂ%ﬂsuv¢/ G, 9, 1) filw: Dy

r—y|<20

Lr(D§ )

~[v. [ e s+ oar
|| <26

Lr(Dj )

< Hvx/ Gi(w,z+ o', t)pi(x + 2/, t) fs(x + o', t)da’
/|26

Lp(Dj )
7 / 7 Vi ik / /
+ VI/ Gs(x,x + 2 t) Z a5k ( o1 (2) f5(z, t)dz) s (x+ 2 t)dx
|z]<26 1<5< Ny Dy ¢
1<k<Np Lr(Di,)
= I3(0,t) + 14(6, 1),
I8k Oliog, < 8 [ Gyt it
' |z —y| <28 L»(Dj ,)
o [ cwr a0+ far
|2/ |<26 Lp(D(’L'S’t)
< HAm/ Ghi(z,x + 2/, t)gi(x + 2/ t) f5(x + 2, t)da
|2/|<26 L»(Dj )
i / 7 J i,k / /
+ Ax/ Gs(z,z +2',t) Z ajp < o1 (2) fs(z, t)dz | 5" (x + o', t)dx
|2'|<26 1<j<No Dsyt
1<k<No Lr(D,)
= 15((5, t) + IG((S, t),
Hatvg(t)”LP(Dgt) < 8t/ Gg(il?,y,t)fg(y,t)dy
’ |z —y| <28 Lp(Dfs,z)
- ‘ 8t/ Gi(w,x + ' ) fi(x + 2, t)da’
l2/|<26 L (D} ,)
< a75/ Gf;(fl),l‘+£L’l,t)¢i($+[l},,t)f5($+.%'/,t)d$/
|/|<26 L?(Dj )
+ @/ GY(x,x + ') t) z:a?( ¢%@ﬁ@ﬂ&) V(x4 2! t)da!
) ) 7,k t ’ ) )
x| <26 1<§<No Ds ¢
1<k<No Lo(Di,)

=1.(5,t) + Is(6,1).
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In the next step, we investigate I;(6,¢) for j = 1,---,8. Now we take § < 7 =
min{rg, 97/31} so that Bss({%(t)) C B,(£°7(t)). Then, it follows from (2.8), (3.13) —
(3.16), (4.8), Lemma 2.2.1, and the Holder, the Minkowski, and the Sobolev inequalities
that

I(6,t) = H/ Gi(w,z+ ' t)gi(w + 2/, 1) Vns(x + 2/, t) - o(z + 2/, t)da’
|z']<28

LP(ngt)
(4.10)
SC/| <25 HGg(a -+ xla t)v%( + Z'I, t>||L°°(DfH) HQO( + fL',, t)HLp(Dg t)d.CC/
' [<2 > s
|’ |+26
<C |2/ 76 o ()| o (Basezs (1)) / s" dsdx’
|z’|<28 |2/
<Co7 |l Lo (B, (5 (1))
I(6,t) = H/ Gi(w,x + ',t) (4.11)
x| <26

i 1 / &5 (() — £26
Z o ( Ds ¢ 0i(2,8)Vns(z, 1) ‘P(Zat)d2> 5—n¢i,k (x o te (5( )¢ (t)) dx’'

1<j<No
1<k<Nj

LP(D}'H)
-2 4 £55(0) — £ (¢
D D ] O e
<26 o p(Di
1<k<Np ¥ I#'I< LP(D§ )
Ny |z’ |+28
§C57"(1*5)’1||g0(t)||Loo(Br(Ear(t))) / /|t / s"tds p da’
|z[<26 ||
N
<C [|o(t) || oo (B, eor 1))
I3(6,t) = Hvx / Gi(z,x+ 2 t)gi(x + 2/, 1) Vns(x + 2/, t) - p(z + 2, t)da’
|='1<26 Lr(D§,)
(4.12)
<C Z Haang<'7' +$/7t)aa2vn5(' +x,’t)HL°°(Dgt)H<P( +x/7t)HLP(D3t)dxl
152 oy [ aa)=1
1 2
+C w/|<26 HG;L5<7 iy wlv t)v%( + x,7t)HL°°(Df”)HVSO< + xlvt)HLP(Dgt)dx/
x| <2 ) )

LP(Bs35(£%5 (1))

<c / /" 5-n=alHazh—1 | 1)
|| <26 Z

|ot|+]az|=1

da’
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|z’ |+26

F T i) [ s

xT

n_q
<O ()| o (Breer ) + CNO N 1o (Bys655 1))

I4(6,t) = va/l o Gh(z,x + 2, t) (4.13)

Z ity ( 5 di(z,t) Vs (2, 1) - (10(27t)d2> 5%%/9 (33 +a' + 562(0) — &% (t)) da’

1<j<No
1<k<No Lp(Dj )
Jt

o5 i Y / le®llze(o40

1<k<Np * |#'|<26

>

o1 [+]az[=1

B |2’ |+26
§05_1||80(t)||L°°(BT(§ET(t))) Z 5n+p(|a1|+a2|)/l|<26 |l’/|1_n {/lll Sn_ldS} de’

|ot|+]az|=1

dz’
Lr(Di )

0, G-y + &', )y i < o 5665(0) & (t))

<Cov o (t)ll 2o (B, e 1)

I5(6,t) = HAw /|'<25 Gi(z, v+ 2 t)pi(x + 2/, )Vns(x + 2/, t) - p(x + 2/, t)da’

LP(D};J)
(4.14)

SC/u 5 > 00 Gs( -+ 2 000, Vs (- + 2 )| e (s ) 10+ 2, ) oy da!
2/|<2 h ’

a1 [+|az|=2

+c/ 5 > 0w Gi(r -+ 2 00, Vs (- + 2 )| e (ps ) IV(- + 2, ) Loy o
2|<2 ’ 7

oy [+lag[=1

+C |G-, -+ 2/, t)Vns(- + 2, Oll ooy ) 1 A@(- + 2" 1) 1o (s ) do’

|z’| <25

= /| <25 Y oD o) s o)

ot |+]az|=2

/ / |=’|4+25
+ D oD T (1) | n(sgsen o + 5T IAG) o (Bustens o) / §"dsds’

/
o [+ |=1 ’

<C8» 2 lp(t) | o mrteer ) + OO I nmasiess i | Ve (D) + Ol AG(O) | o(Bsstess )

L77P (Bss (655 (1))

<C87 2 |lo(t) | oo Boieer 1) + ClOWO g2 (Bagess (1))
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Is(d,t) = HAQJ/|/<26 Gi(z, v +2',t) (4.15)

> af (/ 0;(2,t)Vns(z, 1) - (zt)) %k($+x’+€”(0)—£“(t>)dx,

1<j<No 0
1<k<Ng LP(D(Z'”)
<ci i Y / ()| 2r (D)
1<k<Np * |#'|<26
. . / g5(0) — €% (¢t
> mx%@-+f¢ﬁ@wm('+x+5§> : ”) '
ot +arzl =2 Lr(D},)

n ‘(E’|+26
<CO oM lmimoeeryy D, TrTImEeD / [ {/ s“ldS} dz’
|at|+|az|=2 |2/ |<268 ||

n_g
<Co» ()| oo (B, (e5r (1))

I;(6,t) = ‘ Gt/ Gi(x,z + ', t)pi(x + 2/, t)Vns(x + 2/, t) - p(x + 2, t)da’
|2/|<26 L?(Dj,)
(4.16)
el
<c [ g (67 e @) ey,
Ja’|<26 ’
|’|+26
F57 e + 2 Dl ) / s dsda’
’ ||
n_1
<Cor = |lp() || oo (Brieer ) + CllOP )| Lo (Bas(ess (1))
I3(6,t) = (9t/ Gi(x,z +2',t) (4.17)
|| <26

> dy ( bi (2, t)Vns(z,t) - @(z,t)dz> %wak <$ Sakient 34 )k (t)) dx’
Ds,

, )
1<5<No
1<k<No

Lp(Dj )
|2’ |+28

SC/| | 5’{E’|1—n (5_n_i_1|’¢(t)||Lp(D5at)+5_n_1||at@(t)“Lp(D6,t)>/ Sn—lds
x| <2

||

n_ 1
<C67ao(t) || (B, e y)) + CllOwo(t) || Lo (Ds.0) -

Now, the desired estimates (4.4)—(4.7) are consequences of (4.10)—(4.17). This proves
Proposition 4.3. [
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Lemmata 2.2.1 and 4.3 play an important role in showing that the solution of (NS)
in Qr is also the very weak solution of (PS) in Q(r, T"). We next investigate the following
Stokes equations with the convection term.

dyw, — Aw, + (hy, Vw, + (he, VIw, + Vo = f  in Q(r,T),

div w, =0 in Q(r,T), (F)
wy, = 0 on 0B,
w,(0) =a in B,,

where @(r, T) =B, x (0,T) with B, = {x € R"; |z| < r}.

Lemma 4.4. For 1 < s < 00, 1 < q < n satisfying 2/s +n/q > 2, and r > 0, there

_1
is a constant g = €o(s, q,n,r) with the following property. For every a € 837(31 5)(BT),
hy € L>(0,T), hy € L>(0,T; L™>(B,)) with

sup |[|ha(t)[|nee(5,) < €0, (4.18)

o<t<T

and every f € L*(0,T; LY(B,)) there exists a solution {w,, Vr} to (E) in the class

w, € L¥(0,T; H**(B,)), dyw, € L*(0,T; LL(B,)), (4.19)
w, € L*°(0,T; LP(B,)) (4.20)
for %—1—%:2—1-3—2102’25/1 §< 50 <00, q<qy< o0,

S

Ve L*(0,T; LYB,)). (4.21)
In addition, if ¢ > 2, it holds that
w, € C([0, T} L3(B,) N L0, T; Ho 7 (By). (4.22)
Proof. We define a Banach space X; 1.(B,) by
Xor(Br) ={w € L*(0,T; H*'(B,)); dw € L*(0,T; L3(B:))} (4.23)

with the norm [|wl|x: (5, = [[Ow]

LS(O,T;LZ(BT)) + HD2w| Ls(0,T;L49(By))- To ﬁnd the SOhl—

tion {w,, Vr} to (E), we use the successive approximation {w,;, Vr;}22, as

w,o(t) = e Pa (4.24)
Oty g1 + Ay jir + Vjpn = = (hn, V) wpy — (ha, Vw,; + f in Q(r, T),
div Wrj+1 = 0 n Q(T7 T)7 (4 25)
Wy 41 =0 on 0B,, '
Wy, j4+1 (0) =a in Br-

By using the maximal regularity in the usual space L*(0,7; LZ(B,)), we can find unique
solutions {w, jy1, Vmj1} to (4.25) in X7 (B,) x L*(0,T; LI(B,)) if the right hand side
belongs to L*(0,7T; LY(B,)). In fact, the following estimates hold.
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2

Lemma 4.5. Letl <s<oo,1 <q<n, cmd——&—ﬁ =1 withs < sg < 00,q < py < 0.
S0 Po

Then, it holds that

| (h1, V)w|

L5(0.T5L% (B,)) (4.26)

< Ol st + 0Ol 1, )

L50(0,T;LPo (By)) (”w|
[[(ha, V)w

Ls(0,T5L3 (By)) (4.27)

< € s alt)zno (Hollgy o + 1ol o, )

o<t<T
for hy € L*(0,T; L™ (B,)), hy € L>(0,T; L"™>(B,)), and w € X;(B,) where C' =
C(s,q, S0, po,n,7) is independent of hy, ha, and w.

Proof of Lemma 4.5. We first show the estimate (4.26). Now we consider the case
where w(0) = 0. By Holder inequality, we have that

| (has V)0l s 002 (8,)) < CllPallLso0.1;00 B VW 251 0,7;001 (B,)) (4.28)
1 1 1 1 1 1 ~
for —+ — = - and — + — = —. Set f(t) = Qw(t) + Aw(t). Then we have that
S0 S1 S Po D q
t _
IVl < [ IV s, dr (429
0

t _ﬁ(l_i)+;_1
< / (t—7) 2 2 fllpacs,) dr
0
From Hardy-Littlewood-Sobolev inequality, we have by (4.29) that

[Vl

v s, < Cllflsorices,)) < Cllwllxy (4.30)

11 n/f1 1 1. 2 n
for —=-+—-(-——)—=,ie, = +—=1.
s1 s 2\q¢ m 2 So Do
Next we prove the general case. We consider the following function.

O(t)et4w(0) for t <0
Wi(t) = . ¢ i
®) e “w(0) — / e~ =94 f(5)ds for 0 <t
0
where 6 is a C*°(R) function satisfying that 0(t) = 0 for ¢t < —1, 8(t) = 1 for 0 < ¢, and
0 <6 <1. From (4.30), we have that

IVw

L1 (~1,T;Lg" (By)) (4.31)
< C (HatW Ls(~1,T:L4(B,)) T HAW

Laor ) < IIVW

LS(—l,T;Lq(BT))> .
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We also have that

| AW

0 i o
Lo(-10,L4(B,) < /IHAetAw(O)HSLq(BT)dtS/O [ Ae™ 4w (0)||30(5,dt, (4.32)

|0:W

1
0 ~ s _
Lo (=1,0L9(By)) < (/ 16/ (t)e" w(0) i‘l(BT)dt) + [[AW | s (—1,0:20(B,)) (4.33)
-1

1
La(B,) + (/0 \lAe_tAw(O)HSLq(Bmdt) }

[

1—<,s

D, s’
Aq

< C{Hw(O)

< Cllw(0)

From (4.31), (4.32), and (4.33), (4.26) holds.
Finally we show the estimate (4.27). We take rq and ry satisfying that 1 < ro < ¢ <
r1 < n. From the Holder inequality, it follows that

[(he, V)wl[pryee s,y < lhallme VWil s,y < [lh2llLrees) [Vl s,

where i =L — 1(j =1,2). By the Sobolev inequality, it holds that

[(he, V)wllpries,) < Cllhallpnee s Wl g2 s,y

for all w € H*"(B,) with C = C(n,rq,r1), which implies that the map Sy, : w —
(ha, V)w is a bounded operator from H?*"i(B,) to L'""*(B,) for j = 1,2. From the
Marcinkiewicz interpolation theorem we see that the map Sy, is also a bounded operator
from H*%(B,) to LY(B,). This proves (4.27). O

Hence, it follows from (4.26), (4.27), and Lemma 2.4.2 that there exists a pair
of unique solutions {wy jy1, Vmji1} to (4.25) in X7 (B,) x L*(0,T; LY(B,)) with the
estimate

[wy 1] X: p(Br) + [ V741 L5(0,T;L4(By)) (4.34)

<& {(im

+[ £

Ls0(0,T5L70(B,)) T OiItlET Hh2(t)||L"v°°(Br)) [ X3 p(Br)

Ls(0,T;L%(B,)) T ||a”32<1—%)(3 )} )
q,s r

where C = 5’(3, q,n,r) is independent of j and T'. Now we take gy in (4.18) and T* so
that

1 1\
0<ep < vl T = (4 sup |hi(t)] vol(B,)ro C’) : (4.35)

o<t<T
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Defining W, ; by W,.; = w,; — w,j—1 (w,_1 = 0), we have by (4.18) and (4.35) that

W jallxs .8y < C (H}h’ Loz () TSI “hQ(t)HLNvOO(BT)) IWisllxs . 8,)

1 1\’ B
§||W,j||X T*(BT) >~ S (5) ||D26 tAa| L#(0,T;L9(By))
1 J
<0 (3) lallgo b,
for j = 0,1,.... Since w,; = Zk o Wik, there exists a limiting function w, of w,;

in X;7.(B,) as j — oo. Similarly, we obtain a limiting function V7 of Vm; in
L#(0,T; LY(B,)). Taking a limit 7 — oo in (4.25), we see that {w,, Vr} is solutions to
(E) for 0 < t < T™. Since T™* is chosen by (4.35), we see that 7™ is taken independently
of the initial data a. Hence, starting from 7™ with the initial data w,(7™*) we may solve
(E) on [T*,2T*]. Repeating this argument beyond 27, after finitely many steps, we
have a pair of solutions {w,, Vr} of (E) on [0,7] in the class (4.19). Further, (4.20)
is a consequence of Lemma 2.4.2. From (4.19) we obtain that w, € c([0,7); LQ(B )).

Therefore, we have (4.22) by the interpolation ||Vw,| 12z, < ||w,,||

w?"“LZ(B )
This proves Lemma 4.4. ]

Remark 4.6. Similarly to (4.34), it follows from the maximal regularity that

lwllxs ) + [V

“efoe

+lIf

L#(0,75L49(B1))

L50(0,T;LP0(By)) + OiltlfT Hh?ﬂ(t)HL""”(Bl)) Hw:HX;T(Bl)

L2(0,T5L9(By)) T HaTHBQUi‘)(Bl)} 7
q,s

where w?(z,t) = w,(rz,r*t), m.(x,t) = ro(rz,r’t), hi(x,t) = rhi(rz,r’t), h3(z,t) =
rhy(rx,r?t), f.(x,t) = f(ra,r?t), a,(z) = a(rx), and where C = C(s,q, S0, po,n) is
independent of r. From such change of scaling parameter r of dilation, for the solution
{w,, Vr} of (E), we obtain the following estimate

() + 11V

||wr Ls(0,72T;L4(By))

<C { (thl L50(0,2T5LP0 (By)) T 0<S:<1p2T [[h2(2)] L""’O(Br)) [Jwrlx 27 (Br)

awerastoy +lallgo .}
with the same constant C' as above independent of r. Notice also that

1D* ™% a, |

Ls(0,T:L9(By)) < Clla|| 2(1")(B1)’
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where C' = C(s, ¢,n) is independent of r and T'. From such change of scaling parameter
r of dilation, we obtain that

| D% *2a

Ls(0,2T;L9(By)) < CHGHBzu—a(B :
q,s T

with the same constant C' independent of r. Since we may choose 7' arbitrarily, the

constant C' in (4.35) may be chosen independently of r. As a result, the consatnt &y in

(4.35) is also taken independently of r.

The following lemma gives us the regularity of very weak solutions of (PS).

Proposition 4.7. (Serrin [23]-Takahashi [29]) Let a € L%(Q). Suppose that w be a weak
solution of (NS) on Q x (0,T) in the Leray-Hopf class, which means that w belongs to
L>=(0,T; L2() N L*(0,T; Hy 3 () and that it w satisfies

/Qa(x) ~p(z,0) dor + /o /Q (w-pr+Vw-Vo+ (w, V)w - ¢)dedt =0 (4.36)

forallp € C([0,T); Hég(Q)ﬂL”(Q)) with (-, T) = 0. Assume thatw € L*(to, t1; LI(D))
for 2 + % =1 withn < q < oo and that dw € L(to, t1; L*(D)) for a > 1, where
D x (to,t1) € Q x (0,T). Then, it holds that

oMrttasy,

T Oxft - Qo

Oyw € C(K) (4.37)

for all multi-indices (ay, -+ , ) and all compact subsets K in D x (tg, ;).

Serrin [23] first proved this type interior regularity for % + % < 1. Later, Takahashi
29] extended the range to 2 + 7 =1 with ¢ > n.

Proof of Theorem 4.1. Step 1. We first show that the solution u of (NS) in Qr is a
very weak solution of (PS) in Q(r,T) under the hypothesis (4.2).

Proposition 4.8. Suppose that £ € C*([0,T];Q) for 1/n < a < 1. Let u be a solution
of (NS) in Qr satisfying (4.2). Then, u is a very weak solution of (PS) in Q(r,T) for
all r > 0 in the sense of Definition 2.5.2.

Proof of Proposition 4.8. It is easy to show that v € LI (Q(r,T)). Let ¢ €
HY2(0,T; L2(B,))NLA(0, T5 H*2(B,))NL2(0, T; L*(B,)) with 3oz, = 0 and 3(-,T) = 0
in B,, and define ¢ := U '®. By Lemma 2.2.1, there exists some constant r, =
ro(a, n, T) such that under the assumption § < ry we obtain n; € C*°(R™ x R) satisfy-
ing that 0 < ny <1,

1 if |z —&(t)] > 6

() = { 0 if [z — £(t)] < 6/2, (4.38)
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and that
[Vns| < Co~Y, |Ans| < C672, |0ms| < €5 (4.39)

on R" x [0,T] where C' = C(a,n,T). By Proposition 4.3 with p = 2, there is some
constant r; = 71 (c, r,n,T) such that if § < ry, then there exists a function vs with its
support in (Jye,«p D5y x {t} satisfying that

divvs =¢-Vns in U Dsy x {t}

0<t<T
and that
[0s() || L2(Dy.0) < CO2[|0(8)] oo (B, (eor (1)) (4.40)
Vs ()| z2(ps.) < CO2 o) Lo (B (eer 1)) + CleO o (pyyiess ), (441)
[Avs(8) || 2(D5,) < CO2 2lle(t) e Boeer 1)) + Clle Ol 22 mysess iy (442)
n_ 1
10cvs(t)l L2, < C2 7w ll@(E)|| e (m, €or 1)) + CllOP(O) | L2(Bas €5 1)) (443)

for all t € (0,7T), where C' is independent of ¢ and 0.

From (4.2) we see that u € LOO(O,T;L%(BT(gsr(t)))) C L>(0,T; L*(B.(&(t)))).
Since g5 = (§/10L)Y* with L = L(T) = inf{L;|&(T) — £(0)| < LT}, by (2.7) it
should be noted that Bs(£%(t)) C B (€(t)) and Ds; C Bs(&(t)) for all 0 <t < T and
§ > 0. Define w* := ¥ 'w*, W = u — w* and take § = 12 min{ro, 71 }. Applying ¥, to
both sides of (PS”) and then multiplying the result equation by vs — ¢ns, we have by
integration by parts on Q(r,T") that

/B o) W(z,0) - (¢(x,0)ns(z,0) — vs(x,0))dx (4.44)
" / / W {O0loms — v5) + Al — vs) + (1, V) (o5 — vs) peadlt
0 (€57 (1))

T
+ / / F - (pns — vs)dzdt = 0,
0 (£ (1))

where I = —0w* + Aw* — (u, V)w*. Thus, if we take § < dp, then we have by
(4.38)—(4.43), and the Holder and the Sobolev inequalities that

[ W) (ol 0)s(a,0) — (w,0) = v, 0))d (4.45)
By (7 (0))

<C([luoll L2(Bs(e=s (0y)) + 1w (0)]| 22 (85 e=5 (0))) ) (12 (0) || L2(B5(e25 (o)) + 105 (0) || £2(Ds o))
<Clluollzmeezses @I 2 g s 0y T 107 Oz Bstezs 02 ) |0(0) |2, e o)
<C(6™5 4 6%),
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W - {0,(¢ns) — Opp}drdt

By (€57 (1))

T
S/O lu(t) = W O)llz2s s con 10:(£16) (2) = Tt 2255 (st

1

T
SC/ £ / |z — &) 72" dx p+ [|w* ()| 25,5 € o)
0 (€®) o

Aj
10

_1
X (5 = lollzaiays e + [10:(t )||L2<B%<5<t>>>) dt

T
-z n n_1
<C(ed 2+5+52)/0 (52 allw(t)lle(Br@Er(t)))Jr||3t</9(t)IILQ(BT@%)))) dt

<O(e8% % + 0" a 40 3P 4 4%),

W {A (o) — Aw}dxdt'
(&7 (¢))

T
<C [ 1u(t) = w @2 gy con (5721000 g
0 10 10

HO Vel 2(81,5 ey + 120 12208,

s 116
10 10

<s<t>)>> dt

1

T
SC/ € / o= €@ dw o+ o (@)l 25 o)
0 (€®) e

Aj
10

10

10

<£<t>)>> dt

T
<O 1+ 8%) [ (51 2ol eron + 100 e o)
0

<CO(e6° 2 + 0" 2 +ed 270 4 4%),

2_9 -1
X (52 lo @z, oo + 07 IHlLnB s o IVOON 2 o))

+HA<)0(t)HL2(B11

115
10

(u, V)pns — (u, V)(p}dxdt‘

v §€T(t))

< S Yot Vo(t
—/0 {”“()”me mm»( ”‘p()”Lﬁw%((t»ﬁ” %0()||Lﬁ(306($(t))))

(4.46)

(4.47)

(4.48)

+ [w Ou)llr2my, oy (5_1H<P( Wiz ey + 11Velt )IILQ(BT)&@@)))) } dt
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n+2
2n

T
4n(—n+pB) n_
SC/ e’ / |z = &@)|" 2 da (52 2||<,0(t)HL°o<BT<eEr<t>)>+||s0(t)||H2¢2(Bm(£<t>>))
0 &) T0

75
10

2

+e / 2 = EOPdz b (55 @)l e e + IV Oli25,,5 ) ¢
€ 1

75
10

T
_3n n__
<O€25 5 +28+1 /0 (52 2||g0(t>HL<>O(BT(§8T(t))) ”(p(t)‘|H2’2((Br(§sr(t)))) dt

T
+ 055‘”5/0 (851t |z (o eor ) + IV O 1203, e o)

<o {e (5t 4 5B ) e (5 45750 )

- (Ops + Avs + (u, V)v(;)da:dt' (4.49)
T(isr(t)

<c / lut) = w ()220, { (672 + 6~ )6 F Gl 500

o) peqmaesioy + 1060t l2masies o}

T
2 *
e A (N - PN T G P G R

2

T
SC/ £ / [z — &) dr 5+ [lw* ()| 25y, €0)
0 (€®) o

75
10

X {((5‘2 +672)8% || () || oo (o eor () + 1o g2z, €2 1)) T+ ||3t<P(t)||L2(Br(§6r(t)))} dt

nT+2
4An(—n+pB)
+C’ ]m—f(t)‘ 2 dx HU5<t)HH2»2(D5,t)dt
75 £(t)
10
1
. bl
+C/0 ) / (€®) o — &) 7" da {55_1||<p()llmo<3r<w +|y¢()||H1,2(B35(€ea(t>))}dt
t

76
10

<C {6(55‘2 0P 46 e 6 4 5%}
T
_3n n__
+ Oz T . (52 2||<P(t)”L°°(Br(§€7'(t))) + HSO(t)||H2v2(B%(§(t)))> dt

T
+C€5_2+5/0 (62 @) oo (8o e=r 1)) + IV (E) 2208, (€5 1)) i



Chapter 4. Removable time-dependent singularities in the Navier-Stokes equations

<C {52(5—””5‘1 FOTENEY) L (P2 p 6P p o O ) o p o2 5%} :

T
/ / F-(pns—¢p— Ug)dxdt' (4.50)
0 (57 (1))

T
SC/O (H — dyw*(t) + Aw*(t)Hm(BlTld;(g(t))) + || (u(t), V)w* ()| 128, (§(t)))>

10

< (Il etom + Nes(®)ll120040)

T 3
éc/ {63 te {/ |z — £(t)|2(‘"+5)dx} }52!|s0(t)||Loo<Br<ssr<t>>>dt
0 Ba(€(®)

<C(5" + 6%

Since 0 < § < 4y is arbitrarily taken and since = max{1/a,n — 1}, by letting 6 — 40
in (4.44), we obtain from (4.45)—(4.50) that

T
/ W(x,0) - p(x,0)dr + / / W A{pr + Ap + (u, V)pldadt
By (£57(0)) 0 JBr(¢r (1))

T
+// F - pdvdt = 0.
0 JB.(er ()

Since W = W, W, by changing variable y = Wz in the above, we obtain the first desired
identity (2.15) in Definition 2.3.2.

We shall next show the second identity (2.16). For ¢ € H“?(B,(£(t))), we have
that

/ W(t)-Vodx
By (&5 (1))

= / div u(t) o dx + / u(t) - Vo dr — / div w*(t) o dx
By (&5 1)\ Bs(£(1)) Bs(£(1)) B (& (1))

= / u(t) - Vo dz
Bs(&(t))

1
2
<Ce { [ - €(t)|2‘"“”dw} ol a2 eor
Bs(&(t))

<0y =18,

(4.51)

Since 0 < 0 < 4y is arbitrary and since —% + 8 > 0, implied by # = max{1/a,n — 1},
by letting 6 — 40 in (4.51) we have that

/ Wi(t)-Vodr=0, 0<t<T.
B (& (1))
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Since W = W, W, again by changing variable z — y = ¥~!(x) in the above identity, we
obtain (2.16). As a result, we see that u is a very weak solution of (PS) in Q(r,7T’) in
the sense of Definition 2.3.2. This proves Proposition 4.8. O

Step 2. We next show the uniqueness of very weak solutions of (PS). Indeed, we
have the following proposition.

Proposition 4.9. Let u be a solution of (NS) in Qr satisfying the hypothesis (4.2).
Suppose that v is a very weak solution of (PS) in Q(r,T) with the initial data vy satis-
fying vo = uo|B, (¢ (0))- There exists ro > 0 such that if r < rq, then it holds that u = v

in Q(r,T).

Proof. Let u be a solution of (NS) in Qr satisfying (4.2) and let v be a very weak
solution of (PS) in Q(r,T"). It suffices to show that

T T
/ / (u—v)-dedt:/ /(ﬂ—'ﬁ)-deds:O
0 r (&5 (1)) 0 v

for all H € C(Q(r,T)), where & = W,u, 0 = U,v, and H = W, H. To show this
integral identity, we make use of the duality argument due to Lions-Masmoudi [21].
For every given H € C3°(Q(r, T)) we consider existence of the solution to the following
perturbed Stokes equations;

8,®, + A, + (L7 V), + (7, V)P, - Vi=—H inQ(r,T),

div @, =0 in Q(r,T),
o, =0 on 0B, x [0,T],
®,|s_r =0 in B,.

Set ®,(y,7) = ®,(y,T — 7), U, 7, and H similarly, and £ (r) = (T — 7). Changing
variables s = 1" — 7, we obtain that

0.8, — A, + (L2, V,)D, — (4, V)0, + VFi=H inQ(r,T),

s Y dr

div 6," =0 in Q(T, T), (E’)
®, =0 on OB, x [0,T],
D=0 in B,.

Since w satisfies the hypothesis (4.2), there exists some constant r, > 0 such that

if [z — &(t)] < 422 (t € [0,7]), it holds that |u(z,t)] < elz — &(¢)[" for all small

e > 0. From this inequality, we have that [u(y,T — 7)| < |y — (£&(7) — & (7))|* for
Yy € Bun, (§(1) — &5(7)) and 7 € [0,T]. Note that B, C Bur, (§(7) — £ (7)) for all
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7 € [0, T] provided r < ry. Hence, taking r < r5, we have that
sup |[a(7)l[Lroey = sup |[[u(T" = 7)|[Lroe(s,) (4.52)
0<r<T 0<7<T

< sup [[u(T = 7)l|pnoe (B, (€(r)—€r (1)
o<r<T 10

< (Ce

Hence, if we take € < g¢/C, wee see by (4.52) that u satisfies (4.18). Then it follows
from Lemma 4.4 that for every 7 < 7y there exists a pair of solutions {®,,7} to (E’)
in the class (4.19). Since H € L*(0,T;L%(B,) N L% (B,)), from (4.19) we see that
O e HY2(0,T; L2(B,)) N L2(0,T; H*2(B,)) N L*(0,T; L>(B,)), and so does ®. From
Proposition 4.8 it follows that w is also a very weak solution of (PS) in Q(r,T"). Since
u and v are very weak solutions of (PS) in Q(r,T"), we have by (2.15) and (2.16) that

T T _
/ / (u—v) - Hdxdt = / / (u—)- Hdyds (4.53)
0 (57 (1)) 0 v
L T T £ S U S
—/ / (—u+0)- {85@, +A,®, + (K’ Vy> ¢, + (u,V,)0, — Vﬂ'} dyds = 0.
0 T

This proves Proposition 4.9. [

Step 3. We next show that the very weak solution in Proposition 4.9 may be chosen
as the Leray-Hopf weak solution in the Serrin class given by Lemma 4.7. Let us consider
the problem (PS”) again. We first deal with the case where n = 3. It is easy to show
that F € L*(B, x (0,T)). Since W(0) € L™>*(B,) C L%(B,) and F € L%(B, x (0,T)),
by the standard procedure such as the Galerkin method, we can construct a weak
solution W of (PS”) in the Leray-Hopf class L>(0,T; L2(B,)) N L2(0,T: Hy3(B,)).
Therefore, we may assume that W(é‘) € H&’g(Br) for any € > 0. It is noticed that

1
Héy’i(Br) C B;%(BT). In fact, we see that

< 4 dt . 3 = 3
/ I 4A6tAfH22(BT)7 :/ | div etAVfH22(BT)dt+/ I\AetAszQ(Br)dt
0 0 !

v : o0 :
s/ G d”/ (e N llzas,))° dt
0 1

1 o
4 2 4 4
< HVszz(BT)/O t 3dt+Hf||22(BT)/1 it
4

< Ol

1
for all f € B;.(B;). Let r < ry, where ry is the same constant as in the proof
'3

of Proposition 4.9. Then, similarly to (4.52), it follows from the assumption (4.2)
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that supg.,.p [|@(7)||Lroe(,) < €0. Now we consider (PS”) in B, x (¢,T') for r < 7y
with the initial data W (e). Since w* € C*'(B, x [0,T]), we can easily show that
F e L%<6,T; L?(B,)). Applying Lemma 4.4 to (PS”) in B, x (¢,T) for s = 3, ¢ = 2,

so = 4, and ¢y = 6, we obtain a strong solution W* of (PS”) in the class
W* € LY(e, T; L(B,)). (4.54)

Therefore, if r < ry, we may choose a very weak solution v of (PS) in Q(r,T) in
Proposition 4.9 as

UUW + U in Q(r, ),
v = ,V (4.55)
VoW e i () BT (1) x {t}
e<t<T

with the initial data v|;—¢ = ug

By (¢57(0))-
Since u is a smooth solution of (NS) in Q7 satisfying (4.2), it follows from (4.54),

(4.55) and Proposition 4.9 that u is a weak solution of (NS) in Q x (¢,7) and that
we LYe, T: L5(Q)), O € Li(e,T: L*(Q)). (4.56)

Hence it follows from Lemma 4.7 that
Hort-tany,

u —
DOzt Ozl

Oy € C(K)
for all multi-indices (aq, -+ , ;) and all compact subsets K of Q x (g, T"), which implies
that the curve {{(t);0 < ¢ < T} is a family of removable singularities of u in the sense
of Definition 1.1.
In the case when n > 4, since we assume that the initial data wuy belongs to
_1
BSS )(Q) for %—i—% = 3 with max{%,2} < ¢ < n, it holds that W.ug|p, () €
_1 _
BS,(SI 5)(BT). From Lemma 4.4 for a = V,ug|p, (o)) We obtain a strong solution W* of
(PS”) in B, x (0,T) in the class

W* e L*(0,T; L*(B,)) (4.57)

for % + qﬂo =1 with s < sg < o0 and ¢ < gy < co. Choosing a very weak solution v

of (PS) in Q(r,T) as v = W + U@, we see from Proposition 4.9 that u = v in
Q(r,T), which implies that u is a weak solution of (NS) in €2 x (0, T") with the properties
that

we LY0,T; L*(Q)), du € L3(0,T; L*(Q)).

Hence, the desired result is also a consequence of Lemma 4.7. This completes the proof
of Theorem 4.1. ]
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Solutions with time-dependent singularities

We first define the time-dependent Dirac measure and single layer potential on R™.
Let v: R" — R and R : R — R be continuous functions such that p(t) > 0 for all
t € R. Let Sg(y(t)) = {z € R"; |z —~(t)] = R} and S, = {x € R™;|z| = p(t)} for
each t € R. Then we define the time-dependent Dirac measure 6, and single layer
potentials dg, () and 0 Sy S distributions such as

(0y(), @) = @(7(1)), (5.1)
08n(v(t)), @) = O(x)do(x), 5.2
B @)= [ @ladoto (52)

(05, P) / O (x)do(x) (5.3)
Sp(t)

for & € C3°(R™). Now our theorems read as follows.

Theorem 5.1. Letn =2, 1 <p <2, 1 <r <p, and v : R> = R be a continuous
function. Suppose that a and f are expressed by

a(z) = —e(—=A)"'rot 0y (), (5.4)
f(a??t) - 5t7;6"/(t) (I’), (55)
with a small parameter ¢ > 0. Then there exists a solution on (0,00) of
du 242
priy Au+ P(u,V)u=Pf a.e. .t 16 E%Jr in Bpoo * (R?) (NS4)
w(0) = a in Bod " (R2),
in the class
2,00 =245 9
ug, Au € L=°°(0, 00; Bp,oo " (R?)) (5.6)
Moreover, u satisfies that
u € L*>(0, oo;B;gJ(]RQ)) for 2/ag+2/py — so =1 (5.7)

with p < po, 2 < g, and —1+% < 8.

99
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Theorem 5.2. Letn =3,2<p< g, R >0, v:R?®— R be a continuous function, and
p:R = R be a continuous function satisfying that py < p(t) < py for some pg, p1 > 0.
Suppose that a and f are expressed by
a(z) = e(—A) trot P(ds, ., (7)e;) or e(=A)rot P(ds, 00 (x)es), (5.8)
_1 _1
f(x,t) =et™vds,, (x) or et™Pdsp(y ) (2), (5.9)

with a small parameter € > 0, where e;(i = 1,2,3) is the canonical basis. Then there
exists a solution on (0,00) of

du . T3t s
—p tAut P(u,V)u=Pf ac te€R" in By’ (RY) (NS5)
w(0) = a in By PP (R?),
i the class 5
e, Au € L(0,00; By * (RY)) (5.10)
Moreover, u satisfies that
u € L0, 00; B | (R*)) for 2/ag+3/po — s = 1 (5.11)

with p < po, p < ag, and % < Sp.

Remark 5.3. (1)We construct a solution with time-dependent singular point or sets
to the Navier-Stokes equations easier than [13]. Moreover, in our main theorem it is
enough for us to suppose that v is continuous. However, we don’t know how the solution
behaves near the singularities.

(2)We cannot replace n = 3 in Theorem 5.1 in our method since we cannot find 1 <
a < oo satisfying the condition 2/a+ 3/p — s = 3 in Proposition 2.4.3.

Proof of Theorem 5.1. Let {¢;};cz be the Littlewood-Paley decomposition. Since
@ is the translation operator by v(t) of convolution for each t € R, we have

01 % 6,0 (@) = 05(x — A1) = F 6279 (x — 7(8)) = 29[F 1 6)(2 (& — 1(1)))-
Hence, it holds that
lios % 8y [y = 2 [F S0 (- = YOy = 27D F 9oy (5.12)

From (5.12) we obtain that

5,0(x) € Bpoo "(R"), 1<p< oo, neN (5.13)
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for all t € RT. If we take ¢ > 0 so small, it holds by (5.4), (5.5), and (5.13) that

a(x) = —e(=A) ot 0y (x) € Boat (®Y), 1< 7 <p,

9.2
2+2

fla,t) = et r6, ) (x) € L*¥(0,00; Bpow * (R%))
for 1 < p < oo with
all _i.2 + o2 <n.
o0 518y TN g2ty =
Therefore, from Proposition 2.4.3 with s = —2 + %, a = 2, and ¢ = oo we obtain the

global solution
u € L*%(0, 0o; ';g’l(Rz)) for 2/ag +2/py — sp =1

of (NS4) with p < pg, 2 < g, and —1 + % < 8. ]

Proof of Theorem 5.2. Let dg,(, () and 55,0@) be the time-dependent single layer po-
tentials defined by (5.2) and (5.3). By the Minkovski inequality we have that

l0j * Sspven |l Lrwsy = {/ / pj(r —y)do(y)
R3 |JSr((t))

</ { m(m—ywdx} do(y)
Sr(y(t)) R3

= |Srlllejll e @3
p 1
d:l?} (5.15)

HQOJ' * 5Sp(t) HL”(RB) = {/
R3

<[ { L ete-wprar} ast)

=[S, llejll e
< 1Sp @l o e

pdm}; (5.14)

and

/S =9ty

for all t € RT and 1 < p < oo where |Sg| = fSR do. Taking p = oo, it holds that

195 * OspyinllLoe@s) < [Sklll@illeo sy = ISrIIF P27 )]l oo sy = 27 Cy|Sal,
17 * 0, lzoe@3) < 190 11051l @3y = [Sp [IF D277 )] || oo msy = 27 Cy| S, I,

where Cy = ||[F~1¢](27-)|| Lo ms). Therefore, we obtain that

SUp 2% [|p; * Oyt | e (2, SUP 27 [0 # 85, [l o) < 00
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for all ¢t € R*, that is,
553(‘@))7 5Sp(t) € Bo_o?oo(RS) (5.16)

In order to obtain more precise estimates, we use the Fourier transform. We first deal
with the case of dg,(y). By the symmetry of the sphere we may set Sg(y(t)) = {z =
Rw+~(t)}, w = (sinfcosyp, sinfcosp, cosh), and & = &' +(t) with the angles 0 < 0§ < 7
and 0 < ¢ < 27 and £ = (0,0, —|¢'|). Hence, we have

Fl0spt0) (€ = 7(8)) = / =i (E=10) g
Sn(r(®)

s 2m
:/ dg/ ei(Rli/ICOS9—73(t)|£/|)R25m9d(gdgp

()¢’ |Sm_lel

= 47 Re
€|

which yields
—s(oyig S FEE]

Flospanl(§) = 4mRe H

By the Plancherel theorem we have

[p(277¢)|?
195 * Osnrin T2y = IF [0 Fl0sntven]llT2@s) < CRQ/

T

— ¢
(5.17)

: [¢(©
= CR*Y c2’
’ /;<g<2 I35 k=

It follows from (5.17) that
272l * Ospriopllzaee) < ©
for all t € R™ and j € Z, which shows that
L1
5SR('Y(t)) - BQ’OQO(RB). (5.18)
From the interpolation of (5.16) and (5.18) we obtain that
. 345
Osp(v(t)) € Bpoo " (R?), 2 < p < o0, (5.19)

Next we deal with the case of dg, . Similarly, we may set S, = {z = p(t)w},
w = (sin € cos ¢, sin 6 cos ¢, cos #), and £ = (0,0, —|£]). Hence, we have

Flos, (€)= / ey

Sp(ty

/ / w(t)|€|0059 ) sin 6 dfdy

= 47T,0(t)—sm ‘Pg(’ <l



Chapter 5. Solutions with time-dependent singularities 63

By the Plancherel theorem we have

627791
s # s,y 23y = I1F L] F 105, 723y < Cp(t)Q/_ , 46 (5.20)
piggzat [
2
1<igl<2 ‘5’
It follows from (5.20) that
2_%”90]' * 5Sp(t)||L2(R3) <C
for all t € R™ and j € Z, which shows that
35,1 (R3). (5.21)
From the interpolation of (5.16) and (5.21) we obtain that
-3+2 g
08, € By 7 (R?), 2<p < o0. (5.22)

If we take € > 0 so small, it holds by (5.8), (5.9), and (5.22) that
_ _ 1
a(x) = e(—A) "ot P(3,, (x)es) or &(—A) 10t P(Sgya0y)(2)es) € By * (R?),
_1 _1 45
f(x,t) =et™vds,, (x) or et™ P g,y () € LP(0, 00; Bpoo ?(R?))
for 2 < p < oo with

Ha”B;ijS/?(RS) + Hf” = (0,001 chs):E’(RS)) <.

Therefore, from Proposition 2.4.3 with s = —3 + 2 a=p, q=o00,and r = 2 we obtain
the global solution

u € L(0, oo; Bpol( %)) for 2/ag + 3/po — S0 = 1

of (NS5) with p < pg, p < g, and 1/2 < sg. This proves Theorem 5.2. ]
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Appendix

In this Appendix, we prove the existence of functions f,it, i =1,---, Ny satisfying
in the proof of Proposition 3.3. More precisely, we have the following proposition.

Proposition. Let 1/)”, (4,7) € {1,--- , No}* be as in (3.2). There exist {a; }1<ijr<ng
such that the family {fﬁt}f\]:ol defined by (3.3) satisfies the property (3.4).

Proof. Since D, is the annulus region with the radius between 7r/10 and 4r/5 for all

€ [0, 7], it suffices to prove (3.4) for t = 0. Let L% := / ¢'(z,0) f.(x,0)dw. Since
DT,O

{fio}, satisfies /D flode=0,i=1--- No, {a, h<ijr<n, needs to fulfill that
7,0

Li+ > dl,Lii k) =0, (6.1)
1<j<No
1<k<Np

where
N A orDoﬂDO_(Z),
(i.J) _{ 1 otherwise.

Moreover, since f,.(z,0) Z fﬁo , we see that {a}; }1<ijr<n, needs to fulfill that

Y a Livys(x) 44 > a]NOLiwlN%)

1<j<No 1<]<N0
§ J No, § { No,No
-+ a L 1/) Tt agNo r r,0 (.’L’) (62)
1< <No 1<5<No
=0.

65
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Since 1/)%(90) = %(w) for 1 <, < Ny, it follows from (6.2) that

Z aéﬂ-Lfn’ =0 for 1 <14 < Ny,

L e . . (6.3)
Z (a5 +aj;)Li =0 for 1 <i,k < Ny, i # k.

1<j<No

Hence, for the validity of (3.4), it suffices to show that there exist {a},}1<;jr<n, such
that (6.1) and (6.3) fulfilled for any r > 0. By using S1°, L = Ip,, fr(2,0) dv =0,
we obtain the following equations from (6.1) and (6.3): 7

- Z aé,k<iak> + Z a§'7k<i,k> =1 for 1 < 1, < N(), 7 7&]’

1<k<ng 1<k<NG 6
a’ik:‘f‘:alf\fo,k ‘ , for 1 < k < Ny, -
Al a1 = = g+ g for 1 <i,j < No, i #

It is easy to see that (6.4) is equivalent to the following linear system:

Ax =b (6.5)
with
F F
A— |t NG Cb="[0 e e S, 001 e 1],
Gl GNg ~ ~N Hf_/
%NO(NO — 1)(N() + 1) NO(NO - 1)
N
x =" [a%,l a}vog a%,Q a}VO,NO a’%,l GN&NOL
N3

Here, by a direct calculation, we see that the $No(No — 1)(Np + 1) x Ny matrix F;
(1 <4< NZ) and the No(Ny — 1) x Ny matrix G; (1 <4 < NZ) are expressed by

O }(k—l)(No—n
1 —1 O

Fre—tyng+r = | . y Ny —1

Vs

O }5(% — 1)(INg + No — 2k)

7
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for 1 <k <N,
O PF (No =i+ 1)(Np — 1)

JU =k —1)(No — 1)

1 -1 O |

O

Floe—1yno+t = Fu-nne+k =

: No—1
1 O —1 )
O }5(No = D{NG + (1 = 2k)No + k* + k — 21}
& ~ |

for 1 <k <1< Ny, and

O (k=1)(No—1)

(k. 1) O |- ‘
O (k1) : No—1
Ge-1)No+l = : (k1) O
O :
—wn | O (k, 1) ’
0, (No — k) (No — 1)
_ ko1 No—k )

for 1 < k,1 < Ny. To solve the linear system (6.5), we need to investigate the rank of
the matrix A. For this purpose, we find an elementary matrix A’ equivalent to A by
elementary row and column operations.

1. Add the (kK — 1)Np + 1-st column of A to the (k — 1)Ny + 2-nd column and then
subtract the (k — 1)Ny + 2-nd column from (k — 1) Ny + 1-st column 1 < k& < NZ. By
adding the (k — 1)Ny + l-th column of A to the (k — 1)Ny + [ + 1-th column and then
subtract the (k — 1)Ny + 1 + 1-th column from (k — 1) Ny + I-th column in order from
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l=2tol= Ny— 1, we have that

Fle—vnog+k —

}(k —1(No — 1)

}No—l

}%(No — 1)(N§ + No — 2k)

for 1 <k < N, with the identity matrix Ey,_1 of size Ny — 1,

Fe—vyne+1 = Fa—1yng+r —

for 1 <k <1< N,

Gk—>

_<17k>

No—1
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for 1 < k < Ny, and
(k—1)(No—1)
0 0 (k, 1)
G(k—l)No—H — O _<k> l> Ny —1
: —(k,1) O 0
w0 | O kD)0 )
O (Mo~ B)(No — 1)
k-2 No—k+1
for 2 <k < Nyand 1 <[ <N,.
2. We can transform
Flo—iyno+1 — Fe—ymo1 — Fr = O,
G+
Gr-1)No+1 — Gr—1)ng41 — Gr = G(_k_l)NOH
(k—1)No+1
with
[(1,k) O 0]
Nog—1
Gl = | O (1,k) | 0
O (k—2)(No — 1)
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and

G

for 2 < k < Ny. Organizing G by using Fi, 1 < k < Ny, we have that for 1 < k < N

No+1 -

0 0 | k1)
_<k71> O :
O
O (k1)
(k1) O 0
O .
1y | O —(k,1) 0
O
e } ) No—k+1

3. As in the operation 2, we can transform

Fo_yynosk — Fu—1yno+k — Fle—1)no+1 = O,

Gu-vno+k — Gu-y)No+k — Gr-1)No1 =

G?Z—l)No-i-k]

G(_lfl)NoJrk

No—1

(No — k)(No — 1)
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with
O }(kl)(Nol)
0 0 _<kvl>
(k. 1) O '
| O
571)1\[ +h O Ll | o
| (k) O 0
O : :
—0 | O (ki) 0 )
O }(lk:l)(Nol)
- S J ) No—k+1 ]

and

0 0 | (k)

_<l>k> O :
0,
n O —(LE)Y |
(I-1)No+k — : —(l, k) O 0
0,
<l,]€> O _<lvk> 0 )
O }(No —1)(No—1)

122 No—1+1

for 2 < kK < I < Ny. Organizing G—1)ny+1 by using Flp_1)ny+1, we have that for
2<k<I<Ng
Gr-1Ngr1 — O.
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From the operations 1, 2, and 3 we see that by excluding 0 vectors and then by
organizing A we can transform

E%No(No—l)(NOH) 0
A— A =

0, B

with the identity matrix E1 v, v, -1)(n+1) 0f size 2 No(No—1)(No+1) where the No(No—
1) x %NO(NO — 1)? matrix B is the arrangement of Ge—1)Not1 for 1 <1 <k < Ny, e,
B is expressed by

B = [GNOH Gang+1 Gang2 - Gz } :

Finally, to show the existence of {a’; }1<ijr<n, satisfying (6.4) we show that A’ has the
same rank as the augmented matrix [A’|b], that is, rank A" = rank [A’|b]. It is noted
that b is unchanged by the operation 1-3 and that No(No — 1) < $No(Np — 1)? since in
general it holds that Ny > 3.

If necessary by changing the annulus Df,o to another, we may suppose that (1,2) = 1.
By elementary row and column operations we can transform

G(k—l)no-H — G(k—l)No-H - <17 k>GNo+1

for 3 < k < Ny. Since the Ist, ---, (Nyg — 1)-th row of G(y_1)ny4: is O vector for
1 <l <k < Ny with k£ > 3, organizing G y,+1 we have that

Eny-1 0 }N0_1

GN0+1 —

@, }(No ~1)?

No
Now we define H; by H; := (1,1) + --- (Il — 1,1) and let £k > 3. Generally, since
Uﬁ;i Df«,o and Uf\i)l Df«,o have an intersection, if necessary we can rearrange Di,o so that
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Uﬁ;i D;, and D!, have an intersection. Then, it holds that H; > 1 for 2 <1 < Ny. By

T
elementary row and column operations we have that

Gle-1)Ng+1 — ki G (k—1)No-+i (6.6)
i=1
and then we obtain that
Ge—1)No+m — Gh—1)No+m — %G(l@—l)%ﬂ =0 (6.7)
for2<m<k-—1and
Gu-1)Notm — Ga-1)No+m — %G(kl)N(ﬁl (6.8)
for1<m<k—1and k+1 <1< Ny. Since the 1st, ---, (k — 1)(Ng — 1)-th row of

G—1)No4+m 18 0 vector for 1 < m < I < Ny with [ > k + 1, multiplying G —1)ny+1 by
1/Hj, and then organizing G'(;—1)n,+1, We have that

O }(k 2)(No — 1)

G—1)No+1 — ENo—l O }No -1

O }(No—k+1)(No—1)

No

We see from repeating elementary row and colume operations (6.6)—(6.9) from k = 3
to k = Ny that rank B = rank [ GNO—H G2N0+1 G2N0+2 GNOQfl } = (Ny—1)2

Since by these operations b is transformed into

b_>t[0 ...... ;.0 0012100021 -0 0--- 0],
~- - S~ ~—— N
1No(No — 1)(No + 1) No—2 No—3 No -1

rank A’ = rank [A’|b] = 1(No—1)(Ng + 3N, —2) holds. This shows the conclusion. [
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