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Abstract.

In this doctoral thesis, we study removability of time-dependent singularities of

the non-stationary Stokes and Navier-Stokes equations in an n-dimensional bounded

domain Ω with the smooth boundary for n ≥ 3. We also show the existence of the solu-

tions with time-dependent singularities to the non-stationary Navier-Stokes equations

in R
n for n = 2, 3. In fact, we first prove the following removability of time-dependent

singularities: Suppose that ξ ∈ Cα([0, T ]; Ω) for 0 < α ≤ 1/2. If the solution u of the

Stokes or the Navier-Stokes equations in Ω×(0, T ) except for ξ(t) for t ∈ (0, T ) satisfies

that

|u(x, t)| = o(|x− ξ(t)|2−n+(1/α−2)) locally uniformly in t ∈ (0, T ) as x → ξ(t) ,

or

|u(x, t)| = o(|x− ξ(t)|−n+β) locally uniformly in t ∈ (0, T ) as x → ξ(t) ,

for β = max{1/α, n − 1}, respectively, then the curve {ξ(t); 0 < t < T} is a family

of removable singularities of u in Ω × (0, T ). Next, in the Navier-Stokes equations we

show the existence of the solution with the time-dependent singular point in case n = 2

and of the solution having singularities on the time-dependent sphere whose radius or

center changes in time in case n = 3.
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Chapter 1

Introduction

Let Ω be a bounded domain in R
n for n ≥ 3 with the smooth boundary ∂Ω. Suppose

that ξ : R → R
n be a continuous function satisfying that ξ(t) ∈ Ω for t ∈ (0, T ). In this

doctorical thesis, we first consider the removability of time-dependent singularities of

the non-stationary Stokes and Navier-Stokes equations in QT ≡ ⋃0<t<T (Ω\{ξ(t)})×{t}:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−Δu+∇π = 0 in QT ,

div u = 0 in QT ,

u = 0 on ∂Ω× (0, T ),

u|t=0 = u0 in Ω,

(St)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−Δu+ (u,∇)u+∇π = 0 in QT ,

div u = 0 in QT ,

u = 0 on ∂Ω× (0, T ),

u|t=0 = u0 in Ω,

(NS)

where u = u(x, t) = (u1(x, t), · · · , un(x, t)) and π = π(x, t) denote the velocity vector

and the pressure of the fluid at the point (x, t) ∈ QT , respectively, while u0 = u0(x) =

(u0,1(x), · · · , u0,n(x)) is the given initial data with the singularity at ξ(0).

We first consider the removability of the time-dependent singularities. For instace,

let us recall a fundamental fact on an isolated removable singularity of harmonic func-

tions. Suppose that u is harmonic in Ω \ {x0}. If u behaves like u(x) = o(|x− x0|2−n)

as x → x0, then there exists ū such that ū ∈ C∞(Ω) is harmonic in Ω and that ū ≡ u in

Ω \ {x0}. This is a well-known removable singularity theorem for harmonic functions.

By Hsu [7] the corresponding theorem to the the solution u(x, t) of the heat equation

∂tu = Δu in Ω × (0, T ) was proved under the condition that u(x, t) = o(|x − x0|2−n)

locally uniformly in t ∈ (0, T ) as x → x0. The singular order o(|x − x0|2−n) is opti-

mal since the fundamental solution Γ(x − x0) = |x − x0|2−n of the Laplace equation

in Ω \ {x0} is a typical example of the solution having an irremovable singularity at

x = x0. Later, the simple proof of this removability was given by Hui [9].

7



Chapter 1. Introduction

Concerning the stationary Navier-Stokes equations in the open ball BR with radius

R centered at the origin 0, Dyer and Edmunds [3] first proved such a removability of

isolated singularity of u at x = 0. However, not only the condition on the velocity u but

also the condition on the pressure p are needed: If the smooth solution (u, p) in BR\{0}
satisfies that u ∈ Ln+ε(BR) and p ∈ Ln+ε(BR) for some ε > 0, then the singularity of

u at x = 0 is removable. Later, this assumption was improved to u ∈ Ln+ε(BR) for

some ε > 0 by Shapiro [24, 25] and to u ∈ Ln(BR) or u(x) = o(|x|−1) as x → 0 by

Kim-Kozono [15]. In case n = 3, their result is optimal since the well-known Landau

solution U has the irremovable singularity at the origin such as U(x) = O(|x|−1) as

x → 0.

For the 3D nonstationary Navier-Stokes equations, Kozono [19] proved that there

is a constant ε0 such that if the Leray-Hopf weak solution u satisfies for some δ, ρ > 0

sup|t−t0|<δ ‖u(t)‖L3,∞(Bρ(x0)) ≤ ε0, then u ∈ C∞(Bρ/2(x0) × (t0 − δ/2, t0 + δ/2)), where

L3,∞ denotes the weak L3-space and Bρ(x0) is an open ball with the radius ρ centered at

x0. Notice that L
∞(0,∞;Ln(Rn)) is the marginal case of Serrin’s scaling invariant class

in which both uniqueness and regularity of Leray-Hopf weak solutions are obtained. As

an application, under the hypothesis u(x, t) = o(|x−x0|−1) locally uniformly near t = t0
as x → x0, we see that (x0, t0) is a removable singularity of u.

In comparison with these problems on removable singularities for the time-independent

isolated point, the corresponding question to the time-dependent case becomes more

complicated. In this direction, recently Takahashi-Yanagida [29] considered solutions u

of the heat equation in QT defined by

QT ≡
⋃

0<t<T

(Ω \ {ξ(t)})× {t}, (1.1)

where ξ : t ∈ (0, T ) 
→ Ω is a curve in Ω with 1/2-Hölder continuity in t ∈ (0, T ). Under

the hypothesis that

u(x, t) = o(|x− ξ(t)|2−n) locally uniformly in t ∈ (0, T ) as x → ξ(t) (1.2)

they proved that u is, in fact, extended to the smooth solution in Ω× (0, T ). The con-

dition (1.2) together with the Hölder exponent 1/2 is optimal in the sense that even for

ξ ∈ Cα((0, T ); Ω) with α > 1/2 there exists a solution of the heat equation in QT having

(ξ(t), t) as irremovable singularities whose singular order is O(|x− ξ(t)|2−n). However,

the corresponding problem is still open for the Stokes and Navier-Stokes equations since

it is difficult to handle the pressure. In this thesis, we discuss the removability of the

time-dependent singularities of the Stokes and Navier-Stokes equations. Now we define

the removable time-dependent singularities as follows.

Definition 1.1. Assume that Ω ⊂ R
n is a bounded domain with smooth boundary

∂Ω. Let ξ ∈ C([0, T ]; Ω). Suppose that u is a smooth solution of (NS) in QT , where
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QT is the non-cylindrical domain in R
n× (0, T ) defined by (1.1). We say that the curve

{ξ(t); 0 < t < T} is a family of removable singularities of u in Ω× (0, T ) if there exists

a smooth solution ũ of (NS) in Ω× (0, T ) such that ũ ≡ u in QT .

Our result may be regarded as a generalization of Takahashi-Yanagida [26] to the

Stokes and Navier-Stokes equations. By assuming (1.2), they succeeded to show that u

is in fact a weak solution of the heat equation in the whole space and time Ω × (0, T ),

from which with the aid of the well-known Weyl lemma, ξ(t) is in fact a family of

removable singularities of u. Our method is based on the uniqueness and smoothness

of very weak solutions of the Stokes equations. The crucial difference of weak solutions

between the heat and the Stokes (Navier-Stokes) equations stems from the divergence

free condition. In fact, for the proof that u is a very weak solution of the Stokes

equations in Ω× (0, T ), it is necessary to make use of the cut-off procedure around the

time-dependent singularities ξ(t). Since test functions of the Stokes equations need to

be solenoidal, the correction recovering divergence free property is carried out by means

of the Bogovskii lemma. It is not obvious that the remainder arising from the cut-off

procedure may be handled as a small perturbation of the integral identity defining the

usual Stokes equations.

We next consider the following Cauchy problem of the Navier-Stokes equations in

R
n(n = 2, 3): ⎧⎨⎩

∂tu−Δu+ (u,∇)u+∇π = f in R
n × R

+,

div u = 0 in R
n × R

+,

u|t=0 = a in R
n,

(NS2)

Concerning the solutions with time-dependent irremovable singularities, the pioneer

work is the Takahashi-Yanagida [29]. For the heat equation they showed that there ex-

ists a singular solution with the same singular order as that of the fundamental solution

of the Laplace equation at the singularities x = ξ(t). The existence of the solutions

with time-dependent singularities and the asymptotic behavior of those solutions at

the singularities were proved for the semilinear parabolic equations [11],[26],[27], non-

linear deffusion equations [4],[5], and the Navier-Stokes equations [13]. Karch-Zheng

[13] constructed a solution to the 3D Navier-Stokes equations with the aid of the space

of pseudo measures PMk = {a ∈ S ′; supξ∈R3 |ξ|k|â(ξ)| < ∞}. That solution has the

same singular order as that of the Landau solution, that is, O(|x− ξ(t)|−1) as x → ξ(t).

Recently, time-dependent high dimensional singular sets have been studied. For the

superlinear parabolic equation Htoo-Takahashi-Yanagida [8] and Takahashi-Yamamoto

[30] showed the existence of solutions with time-dependent m dimensional submanifold

Mt and the asymptotic behavior at Mt. In this thesis, we construct a solution to

(NS2) with a time-dependent singular point in R
2 or singular sets on tine-dependent

sphere in R
3 similarly to Kozono-Shimizu [18] by using the maximal Lorentz regularity
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theorem in the Besov spaces. Our method is related to that of Takahashi-Yanagida [29]

and Karch-Zheng [13] which constucted solutions with irremovable singularities for the

given external force having time-dependent singularities. Their method seems to be

indirect since it is necessary to show that the Duhamel term in the integral equation

has singularities. On the other hand, we show the existence of singular solution for the

given external force having time-dependent singularities. The advantage of our method

is that we have only to investigate whether or not the external force belongs to some

Lorentz-Besov space. However, we do not know the asymptotic behavior of the solution

at the singularities.

This paper is organized as follows. In Chapter 2, we first introduce some function

spaces such as the Besov spaces in R
n or bounded domains. Next we define the very

weak solution of the Stokes equations in whole space and time Ω × (0, T ) and of the

perturbed Stokes equations in Q(r, T ) ≡ ⋃0<t<T Br(ξ(t))× {t} where Br(ξ(t)) denotes

the ball in Ω with radius r centered at ξ(t). In the case of the Navier-Stokes equa-

tions, we need to take a small subdomain in such a way that the scale invariant norm

L∞(0,∞;Ln,∞(Br(ξ(t)))) of u can be small since we do not obtain the existence of

smooth solution in the whole space and time Ω× (0, T ) is not garranteed. We also state

the existence theorem of the strong solution, which yields the existence of the very weak

solution with additional regularity. To handle the solution u as a very weak solution

we need to show an integral identity. To this end, the precise cut-off procedure such as

Takahashi-Yanagida [26] is fully used. Introducing the maximal regularity theorem of

the Stokes equations in the Besov space, we show the existence and uniqueness of the

strong solutions to the Navier-Stokes equations.

In Chapter 3, we prove the removability of time-dependent singularities in the Stokes

and Navier-Stokes equations. Our proof consists of two steps. In the case of the Stokes

eqations, at first, assuming |u(x, t)| = o(|x − ξ(t)|2−n+(1/α−2)) as x → ξ(t) locally

uniformly in t ∈ (0, T ), we show that u satisfies an integral identity, which implies that

u is a very weak solution of the Stokes equations in the whole space and time Ω×(0, T ).

Since we make use of the cut-off procedure, it is necessary to recover the divergence

free condition of the test function. Hence we shall establish a variant of Bogovskii’s

lemma in Ω × (0, T ). By the precise estimate of the cut-off function as well as the

remainder caused by the Bogovskii operator, we see that the solution u is in fact a very

weak solution in Ω × (0, T ). It should be noticed that the class of weak solutions is

large enough such as u ∈ L1
loc(Ω × (0, T )). On the other hand, it is rather well-known

that even for u0 ∈ Lp
σ(Ω) with 1 < p < ∞ there exists a very weak solution ū with

ū(·, 0) = u0 in Ω× (0, T ), which necessarily becomes a smooth solution in the classical

sense. In the next step, we may show that u ≡ ū in Ω × (0, T ). To this end, it is

necessary to prove the uniqueness in the large class L1
loc(Ω × (0, T )) with the initial

data in Lp
σ(Ω) for some 1 < p < ∞. We shall establish such a uniqueness result by
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duality argument like Lions-Masmoudi [21].

In Chapter 4, we consider the corresponding problem on removability of time-

dependent singularities of the Navier-Stokes equations. Indeed, we saw that if u behaves

near singularities {ξ(t)}0<t<T ⊂ Ω like

|u(x, t)| = o(|x− ξ(t)|−n+β) locally uniformly in t ∈ (0, T ) as x → ξ(t)

for β = max{1/α, n− 1}, then u can be extended as the smooth solution in the whole

space and time Ω×(0, T ). We first regard the Navier-Stokes equations as the perturbed

Stokes equations for v with the convection term (u,∇)v in Ω × (0, T ). Since u is not

regular, it is difficult to show the existence, uniqueness, and regularity of the perturbed

Stokes equations. Hence, it is necessary to take a small non-cylindrical space-time

region Q(r, T ) near singularities so that the norm of u in L∞(0, T ;Ln,∞(Br(ξ(t)))) is

sufficiently small. To this end, the hypothesis plays an important role. Simultaneously,

we show that u is a very weak solution in Q(r, T ). Next, we construct the strong

solution v of the perturbed Stokes equations in Q(r, T ). Using the uniqueness of very

weak solutions in the class L2
loc(Q(r, T )) to the perturbed Stokes equations with small

coefficient u in L∞(0, T ;Ln,∞(Br(ξ(t)))), we may identify u with v in Q(r, T ). As a

result, it turns out that {ξ(t)}0<t<T is a family of removable singularities of u.

In Chapter 5, we construct the solution of the Navier-Stokes equations having the

the time-dependent singularities. Indeed, in R
2, our solution behaves like the Dirac

measure with supports at {ξ(t)}0<t<T . In R
3, we solve the Navier-Stokes equations

with the external forces δSρ(t)(0) and δSρ(ξ(t)) for {ρ(t)}0<t<T denoting the radius and for

{ξ(t)}0<t<T denoting the center, respectively, where δSρ(ξ) is the single layer potential

supported by the sphere Sρ(ξ) ≡ {y ∈ R
3; |y − ξ| = ρ}.

In Chapter 6, as Appendix we prove here the expression of the compensation term

for recovering divergence-free condition of the test function in the Bogovskii lemma

which we have admitted in the main parts without proof.



Chapter 2

Preliminaries

2.1 Function space

Let S ′ = S ′(Rn) be the space of tempered distibutions and P = P(Rn) be the space

of polynomials. Let us recall {φj}j∈Z the Littlewood-Paley decomposition. We take a

function φ ∈ C∞
0 (Rn) with its support supp ϕ = {ξ ∈ R

n; 1/2 ≤ |ξ| ≤ 2} such that∑
j∈Z φ(2

−jξ) = 1 for all ξ ∈ R
n \{0}. The functions ϕj is defined by Fϕj(ξ) = φ(2−jξ)

where F is the Fourier transform.

Definition 2.1.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃs
p,q(R

n)

is defined by

Ḃs
p,q(R

n) ≡ {f ∈ S ′/P ; ‖f‖Ḃs
p,q

< ∞}
where

‖f‖Ḃs
p,q

≡
⎧⎨⎩
(∑

j∈Z(2
sj‖ϕj ∗ f‖Lp(Rn))

q
)1/q

, 1 ≤ q < ∞
supj∈Z(2

sj‖ϕj ∗ f‖Lp(Rn)), q = ∞.

Let P be the Helmholtz projection. P is bounded from Lp(Rn)(1 < p < ∞) onto the

solenoidal subspace Lp
σ(R

n) ≡ {f ∈ Lp(Rn); divf = 0}. It is known that P is expressed

by

P = (Pi,j)1≤i,j≤n, Pi,j = δi,j +RiRj, i, j = 1, · · · , n,
where δi,j, i, j = 1, · · · , n, is the Kronecker symbol and Ri =

∂
∂xi

(−Δ)−
1
2 , i = 1, · · · , n,

is the Riesz transform. Then the solenoidal subspace Ḃs
p,q(R

n) of Ḃs
p,q(R

n) is defined by

Ḃs
p,q(R

n) ≡ PḂs
p,q(R

n).

Proposition 2.1.2. (i) Let 1 ≤ p0 ≤ p1 ≤ ∞, 1 ≤ q ≤ ∞, and s0, s1 ∈ R satisfy

s0 − n
p0

= s1 − n
p1
. Then, it holds that Ḃs0

p0,q
(Rn) ⊂ Ḃs1

p1,q
(Rn) with the estimate

‖f‖Ḃs1
p1,q

(Rn) ≤ C‖f‖Ḃs0
p0,q

(Rn)

13
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for all f ∈ Ḃs0
p0,q

(Rn), where C = C(n, p0, p1, s0, s1).

(ii) Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s > 0, σ > 0, and μ > 0. We take 1 ≤
p1, p2, r1, r2 ≤ ∞ so that 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2. For all f ∈ Ḃs+σ

p1,q
(Rn) ∩

Ḃ−μ
r1,∞(Rn) and g ∈ Ḃ−σ

p2,∞(Rn)∩Ḃs+μ
r2,q

(Rn), it holds that f ·g ∈ Ḃs
p,q(R

n) with the estimate

‖f · g‖Ḃs
p,q(R

n) ≤ C
(
‖f‖Ḃs+σ

p1,q
(Rn)‖g‖Ḃ−σ

p2,∞(Rn) + ‖f‖Ḃ−μ
r1,∞(Rn)‖g‖Ḃs+μ

r2,q
(Rn)

)
where C = C(n, p, p1, p2, r1, r2, s, σ, μ).

Outline of the proof of Proposition 2.1.2. (i) If p0 = p1, then the two Besov

spaces coincide and the claim is correct. Let p0 �= p1. From the Young inequality,

we obtain

‖f‖Ḃs1
p1,q

(Rn) =

(∑
j∈Z

2js1q‖(ϕj−1 + ϕj + ϕj+1) ∗ ϕj ∗ f‖qLp1 (Rn)

) 1
q

≤
(∑

j∈Z
2js1q‖ϕj−1 + ϕj + ϕj+1‖qLr(Rn)‖ϕj ∗ f‖qLp0 (Rn)

) 1
q

≤
(∑

j∈Z
2js1q(‖ϕj−1‖Lr(Rn) + ‖ϕj‖Lr(Rn) + ‖ϕj+1‖Lr(Rn))

q‖ϕj ∗ f‖qLp0 (Rn)

) 1
q

≤
(∑

j∈Z
2js1q(2(j−1) n

r′ + 2j
n
r′ + 2(j+1) n

r′ )q‖ϕj ∗ f‖qLp0 (Rn)

) 1
q

≤ C

(∑
j∈Z

2js1q2j
n
r′ q‖ϕj ∗ f‖qLp0 (Rn)

) 1
q

= C

(∑
j∈Z

2
j{(s1− n

p1
)−(s0− n

p0
)}q

2js0q‖ϕj ∗ f‖qLp0 (Rn)

) 1
q

= C‖f‖Ḃs0
p0,q

,

where 1/r′ = 1− 1/r = 1/p0 − 1/p1.

(ii)Since this estimate was shown by Kaneko-Kozono-Shimizu [12], we omit its proof.

We next define the Besov space in the bounded domain. To this end, we introduce

the real interpolation spaces. Let X0 and X1 be a pair of Banach spaces with the norm

‖ · ‖X1 and ‖ · ‖X2 , respectively, and continuously embedded in the same topological

vector space. There are two well-known methods of defining the real interpolation space

(X0, X1)θ,q for 0 < θ < 1 and 1 ≤ q ≤ ∞.
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Definition 2.1.3. For t ∈ R
+ and u ∈ X0 +X1, let

K(t, u) = inf{‖u‖X0 + ‖u‖X1 ; u = u0 + u1, u0 ∈ X0, u1 ∈ X1}. (2.1)

The real interpolation space (X0, X1)θ,q consists of u ∈ X0 +X1 such that the norm

‖u‖θ,q;K =

⎧⎪⎨⎪⎩
sup
t>0

t−θK(t, u) if q = ∞,{∫ ∞

0

(t−θK(t, u))q
dt

t

}1/q

if 1 < q < ∞,

is finite.

This method is called K-method. The other method is called J-method. J-method

is as foliows.

Definition 2.1.4. For t ∈ R
+ and u ∈ X0 ∩X1, let

J(t, u) = max{‖u‖X0 , ‖u‖X1 ; u = u0 + u1, u0 ∈ X0, u1 ∈ X1}. (2.2)

The real interpolation space (X0, X1)θ,q consists of u ∈ X0+X1 such that u is expressed

by

u =

∫ ∞

0

v(t)
dt

t

with v(t) ∈ X0 ∩X1 for all t > 0 and that the norm

‖u‖θ,q,J = inf

⎧⎪⎨⎪⎩
sup
t>0

t−θJ(t, v(t)) if q = ∞,{∫ ∞

0

(t−θJ(t, v(t)))q
dt

t

}1/q

if 1 < q < ∞,

is finite.

Now the Besov space Bs
p,q(Ω) and the solenoidal Besov space Bs

p,q(Ω) are defined by

Bs
p,q(Ω) = (Hs1,p(Ω), Hs2,p(Ω))θ,q,

Bs
p,q(Ω) = (Hs1,p

σ (Ω), Hs2,p
σ (Ω))θ,q (2.3)

with s = (1− θ)s1 + θs2.

2.2 Cut-off function

We construct and estimate the cut-off function along some continuous curve intro-

duced by Takahashi-Yanagida [29].
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Lemma 2.2.1. Let n ≥ 1, and t1, t2 ∈ R(t1 < t2). Suppose that ξ(t) is locally α-

Hölder continuous in t ∈ R for some α ∈ (0, 1]. Then there exist r0 = r0(α, n, t1, t2)

and C = C(α, n, t1, t2) with the following properties; For any r ∈ (0, r0), there exists a

family of cut-off functions {ηr}r>0 ⊂ C∞(Rn × R) such that 0 ≤ ηr ≤ 1,

ηr(x, t) =

{
1 if |x− ξ(t)| > r,

0 if |x− ξ(t)| < r/2,
(2.4)

|∇ηr(x, t)| ≤ Cr−1, |Δηr(x, t)| ≤ Cr−2, |∂tηr(x, t)| ≤ Cr−1/α, (2.5)

|Δ∇ηr(x, t)| ≤ Cr−3, |∂t∇ηr(x, t)| ≤ Cr−1−1/α (2.6)

for all (x, t) ∈ R
n × [t1, t2].

Proof. We make use of the argument due to Takahashi-Yanagida [26, Lemma 2.1]. Let

us take ρ ∈ C∞
0 ([−1, 1]) with

∫
R
ρ(t)dt = 1 such as

ρ(t) :=

{
Ae−1/(1−t2) if |t| ≤ 1,

0 if |t| > 1.

We define ξε(t) = ξ ∗ ρε(t) where ρε(t) = ε−1ρ(ε−1t) for ε ∈ (0, 1). Then we have

|ξ(t)− ξε(t)| ≤
∫ 1

−1

ρ(s)|ξ(t)− ξ(t− εs)|ds.

Since ξ is loccally α-Hölder continuous in t ∈ R, there exists a constant L = L(t1, t2)

such that |ξ(t)− ξ(t− εs)| ≤ Lεα|s|α ≤ Lεα, which yields

|ξ(t)− ξε(t)| ≤ Lεα
∫ 1

−1

ρ(s)ds = Lεα (2.7)

for t ∈ [t1, t2]. Since ρ′ is an odd function, we have

dξε

dt
(t) =

1

ε2

∫ t+ε

t−ε

ρ′
(
t− s

ε

)
ξ(s)ds

=
1

ε

∫ 1

−1

ρ′(τ)ξ(t− ετ)dτ

=
1

ε

∫ 1

−1

ρ′(τ){ξ(t− ετ)− ξ(t)}dτ.

Similarly, we obtain from the Hölder continuity of ξ that∣∣∣∣dξεdt
(t)

∣∣∣∣ ≤ Lεα−1

∫ 1

−1

|ρ′(τ)|dτ

≤ 4ALεα−1

∫ 1

0

τ

(1− τ 2)2
e−1/(1−τ2)dτ

=
2

e
ALεα−1

(2.8)
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for all t ∈ [t1, t2]. Now we define a function ηr ∈ C∞(RN × R) for r > 0 by

ηr(x, t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−1/σ

e−1/σ + e−1/(1−σ)
if

7

10
r < |x− ξε(t)| < 4

5
r,

1 if |x− ξε(t)| ≥ 4

5
r,

0 if |x− ξε(t)| ≤ 7

10
r,

(2.9)

where

σ :=
10

r
(|x− ξε(t)| − 7

10
r).

Set r0 = 10L and let r < r0. Taking ε = εr = (r/10L)1/α, it holds by (2.7) that

|ξ(t)−ξεr(t)| ≤ r/10. From this estimate, we have |x−ξε(t)| ≤ |x−ξ(t)|+|ξ(t)−ξε(t)| <
7r/10 if |x−ξ(t)| < r/2 and |x−ξε(t)| > |x−ξ(t)|−|ξ(t)−ξε(t)| > 4r/5 if |x−ξ(t)| > r.

Therefore, we see that (2.4).

Finally we estimate the spacial and time derivatives of ηr. It suffices to show (2.5)

and (2.6) in the case where 7r/10 < |x− ξεr(t)| < 4r/5. By the direct calculation, for

0 < σ < 1, i.e., 7r/10 < |x− ξεr(t)| < 4r/5, we have that

∇ηr(x, t) =
10

r
X(σ)

x− ξεr(t)

|x− ξεr(t)| ,

Δηr(x, t) =
100

r2
Y (σ)

with

X(σ) :=
e−1/σe−1/(1−σ)

(e−1/σ + e−1/(1−σ))2

(
1

σ2
+

1

(1− σ)2

)
,

Y (σ) :=
e−1/σe−1/(1−σ)

(e−1/σ + e−1/(1−σ))2

[(
n− 1

σ + 7

)(
1

σ2
+

1

(1− σ)2

)
+

(
1

σ4
+

1

(1− σ)4

)
(1− 2σ)

− 2

e−1/σ + e−1/(1−σ)

(
e−1/σ

σ4
+

e−1/σ − e−1/(1−σ)

σ2(1− σ)2
− e−1/(1−σ)

(1− σ)4

)]
.

∂t∇ηr(x, t) =
100

r2

{(
Y (σ)− n

σ + 7
X(σ)

)
(x− ξεr(t)) · d

dt
ξεr(t)

|x− ξεr(t)|
x− ξεr(t)

|x− ξεr(t)|(2.10)

− 1

σ + 7
X(σ)

d

dt
ξεr(t)

}
,

Δ∇ηr(x, t) =
103

r3

{
d2

dσ2
X(σ) +

n− 1

σ + 7

(
Y (σ)− n− 1

σ + 7
X(σ)

)}
x− ξεr(t)

|x− ξεr(t)| (2.11)
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with

d2

dσ2
X(σ) =

e−1/σe−1/(1−σ)

(e−1/σ + e−1/(1−σ))2

[
6

σ4
+

6

(1− σ)4

−4

{
1

σ2
− 1

(1− σ)2
− 2

e−1/σ + e−1/(1−σ)

(
e−1/σ

σ2
− e−1/(1−σ)

(1− σ)2

)}(
1

σ3
− 1

(1− σ)3

)
+

{
− 4

e−1/σ + e−1/(1−σ)

(
1

σ2
− 1

(1− σ)2

)(
e−1/σ

σ2
− e−1/(1−σ)

(1− σ)2

)
− 2

σ3
− 2

(1− σ)3
+

(
1

σ2
− 1

(1− σ)2

)2

+
6

(e−1/σ + e−1/(1−σ))2

(
e−1/σ

σ2
− e−1/(1−σ)

(1− σ)2

)2

− 2(1− 2σ)

e−1/σ + e−1/(1−σ)

(
e−1/σ

σ4
− e−1/(1−σ)

(1− σ)4

)}(
1

σ2
+

1

(1− σ)2

)]
.

Since X,Y, d2

dσ2X ∈ C∞(0, 1) satisfies

lim
σ↘0

X(σ) = lim
σ↗1

X(σ) = 0,

lim
σ↘0

Y (σ) = lim
σ↗1

Y (σ) = 0,

lim
σ↘0

d2

dσ2
X(σ) = lim

σ↗1

d2

dσ2
X(σ) = 0,

X(σ), Y (σ), and d2

dσ2X(σ) are bounded for σ ∈ (0, 1). Therefore, it follows from (2.4),

(2.10), and (2.11) that for (x, t) ∈ R
N × [t1, t2],

|∇ηr(x, t)| ≤ Cr−1, |Δηr(x, t)| ≤ Cr−2, |∂tηr(x, t)| ≤ Cr−1/α,

|Δ∇ηr(x, t)| ≤ Cr−3, |∂t∇ηr(x, t)| ≤ Cr−1−1/α

where C = C(α, n, t1, t2).

2.3 Very weak solutions

2.3.1 Stokes equations

We first introduce some definitions. Let Ω be a bounded domain in R
n with smooth

boundary for n ≥ 3. We define a very weak solution of the Stokes equations in Ω×(0, T )

as follows.

Definition 2.3.1. Let w ∈ Lp(Ω × (0, T )) for some p ∈ (1,∞]. Assume that w is

smooth in some neighborhood of ∂Ω with w(·, t)|∂Ω = 0 for 0 < t < T . We say that w

is a weak solution of the Stokes equations in Ω× (0, T ) with the initial data w0 ∈ Lp
σ(Ω)

if w satisfies that∫
Ω

w0(x) · ϕ(x, 0)dx+

∫ T

0

∫
Ω

w · (ϕt +Δϕ)dxdt = 0 (2.12)
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for all ϕ ∈ C∞(Ω × [0, T ]) with div ϕ = 0 in Ω × [0, T ], ϕ = 0 on ∂Ω × [0, T ], and

ϕ(·, T ) = 0 in Ω, and that ∫
Ω

w(t) · ∇� dx = 0, 0 < t < T (2.13)

for all � ∈ C∞(Ω).

2.3.2 Perturbed Stokes equations

Let us consider the following Stokes equations with the convection term whose

coefficient is the solution u of the Navier-Stokes equations.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tw −Δw + (u,∇)w +∇p = 0 in Q(r, T ) ≡
⋃

0<t<T

Br(ξ
εr(t))× {t},

div w = 0 in Q(r, T ),

w = u on
⋃

0<t<T

∂Br(ξ
εr(t))× {t},

w|t=0 = u0|Br(ξεr (0)) in Br(ξ
εr(0)),

(PS)

where Br(ξ
εr(t)) = {x ∈ R

n; |x−ξεr(t)| < r} for 0 < t < T . Here ξεr(t) = ξ∗ρεr(t) is the
same in Proposition 2.2.1, and we suppose that u is smooth on

⋃
0<t<T ∂Br(ξ

εr(t))×{t}.
We reduce (PS) to the problem in the cylindrical domain by using the method of

Inoue-Wakimoto [10] and Miyakawa-Teramoto [22]. Let Ψ : Q(r, T ) → Q̃(r, T ) be a

diffeomorphism defined by (y, s) = Ψ(x, t) = (x1 − ξεr1 (t), · · · , xn − ξεrn (t), t), where

Q̃(r, T ) = Br× (0, T ) with Br = {x ∈ R
n; |x| < r}. It is easy to see that Ψ is a volume-

preserving C∞ diffeomorphism satisfying (∂Ψi/∂xj)1≤i,j≤n = In, where In is the identity

matrix on R
n. Defining w̃ = Ψ∗w, ũ = Ψ∗u, ũ0 = Ψ∗u0 and p̃(y, s) = p(Ψ−1(y, s)), we

may transfer (PS) to the following system in Q̃(r, T );⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂sw̃ −Δyw̃ + (ũ,∇y)w̃ + (dξ
εr

ds
,∇y)w̃ +∇yp̃ = 0 in Q̃(r, T ),

div w̃ =
N∑
i=1

∂w̃i

∂yi
= 0 in Q̃(r, T ),

w̃ = ũ on ∂Br × (0, T ),

w̃|s=0 = ũ0|Br in Br.

(PS’)

The system (PS’) has the inhomogeneous boundary condition on ∂Br, and hence we

further transform it with the homogeneous one. Since it holds that∫
∂Br

ũ(s) · νdS =

∫
{x−ξεr (s);x∈∂Ω}

ũ(s) · νdS −
∫
{x−ξεr (s);x∈Ω\Br(ξεr (s))}

div ũ(s)dy

= 0,
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there exists w̃∗ ∈ C2,1(Br × [0, T ]) such that{
div w̃∗ = 0 in Q̃(r, T ),

w̃∗ = ũ on ∂Br × (0, T ).
(2.14)

For such w̃∗ we define W̃ := w̃ − w̃∗. Then, (PS’) can be transformed to the following

system;⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂sW̃ −ΔyW̃ + (ũ,∇y)W̃ + (dξ
εr

ds
,∇y)W̃ +∇yp̃ = F̃ in Q̃(r, T ),

div W̃ =
N∑
i=1

∂W̃i

∂yi
= 0 in Q̃(r, T ),

W̃ = 0 on ∂Br × (0, T ),

W̃ |s=0 = ũ0|Br − w̃∗|s=0 in Br,

(PS”)

where F̃ = −∂sw̃
∗ +Δyw̃

∗ − (ũ,∇y)w̃
∗ − (dξ

εr

ds
,∇y)w̃

∗.
Based on (PS”), we introduce the notion of very weak solutions of (PS) in Q(r, T )

by the following definition.

Definition 2.3.2. Let w ∈ L2
loc(Q(r, T )). Assume that w̃ = Ψ∗w is smooth in some

neighborhood of ∂Br. We say w is a very weak solution of (PS) in Q(r, T ) with the

initial data u0 ∈ L2
σ(Br(ξ

εr(0))) if W̃ = w̃−w̃∗ with w̃ = Ψ∗w and w̃∗ in (2.14) satisfies

that∫
Br

W̃ |s=0(y) · ϕ̃(y, 0)dy +
∫ T

0

∫
Br

W̃ ·
{
∂sϕ̃+Δϕ̃+ (ũ,∇)ϕ̃+

(
dξεr

ds
,∇
)
ϕ̃

}
dyds

(2.15)

+

∫ T

0

∫
Br

F̃ · ϕ̃dyds = 0

for all ϕ̃ ∈ H1,2(0, T ;L2
σ(Br))∩L2(0, T ;H2,2(Br)∩H1,2

0 (Br)∩L∞(Br)) with ϕ̃(·, T ) = 0

in Br, and if W̃ satisfies that∫
Br

W̃ (s) · ∇�̃ dy = 0, 0 < s < T (2.16)

for all �̃ ∈ H1,2(Br).

2.4 Strong solutions

We first consider the existence and uniqueness of the Stokes equations in Ω× (0, T ).

In paticular, there exists a smooth very weak solution of the Stokes equations in the
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sense of Definition 2.3.1. Recall the Stokes operator A in Lp
σ(Ω) defined by Ap = −PΔ,

with the domain D(Ap) = {u ∈ H2,p(Ω) ∩ Lp
σ(Ω); u|∂Ω = 0}, where P denotes the

Helmholtz projection from Lp(Ω) onto Lp
σ(Ω).

Lemma 2.4.1. Let 1 < p < ∞. For every a ∈ Lp
σ(Ω) and f ∈ Cα([0, T );Lp(Ω)) with

α > 0, there exists a unique solution u of⎧⎨⎩
du

dt
+ Au = Pf in t ∈ (0, T ),

u(0) = a,
(St’)

in the class u ∈ C([0, T );Lp
σ(Ω)) ∩ C((0, T );D(Ap)) ∩ C1((0, T );Lp

σ(Ω)). The solution

u is also a weak solution of the Stokes equations in Ω× (0, T ) in the sense of Definition

2.3.1. Moreover, if f ∈ C∞(Ω × (0, T )), then such a solution u satisfies in fact u ∈
C∞(Ω× (0, T )).

Lemma 2.4.2. (Giga-Sohr [6, Theorem 2.8, Lemma 3.2]) Let 1 < q < ∞ and 1 < s <

∞. For every a ∈ B2(1− 1
s
)

q,s (Ω) and f ∈ Ls(0, T ;Lq(Ω)), there exists a unique solution u

of (St’) in the class

u ∈ Ls(0, T ;D(Aq)), ∂tu ∈ Ls(0, T ;Lq(Ω)),

u ∈ Ls0(0, T ;Lq0(Ω)) for
2

s0
+

n

q0
=

2

s
+

n

q
− 2.

Since Lemma 2.4.1 and 2.4.2 are the well-known results, we omit the proof. Finally,

we introduce the existence theorem of the Navier-Stokes equations in the Lorentz-Besov

spaces.

Proposition 2.4.3. (Kozono-Shimizu [17, Theorem 3]) Let 1 < p < ∞, 1 < α < ∞,

s > −1 satisfy 2/α + n/p− s = 3. Let 1 ≤ q ≤ ∞. Assume that 1 ≤ r ≤ p satisfies

n

r
<

2

α
+

n

p
. (2.17)

Then there exists a constant η = η(p, α, s, r, q) with the following property: if a ∈
Ḃ−1+n/r
r,q (Rn) and f ∈ Lα,q(0,∞; Ḃs

p,∞(Rn)) satisfy

‖a‖
Ḃ

−1+n/r
r,q

+ ‖f‖Lα,q(0,∞;Ḃs
p,∞) ≤ η, (2.18)

there exists a solution u of⎧⎨⎩
du

dt
+ Au+ P (u,∇)u = Pf a.e. t ∈ R

+ in Ḃs
p,∞(Rn),

u(0) = a in Ḃ−1+n/r
r,q (Rn),

(NS3)
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in the class

ut, Au ∈ Lα,q(0,∞; Ḃs
p,∞(Rn)) (2.19)

Moreover, u satisfies that

u ∈ Lα0,q(0,∞; Ḃs0
p0,1

(Rn)) for 2/α0 + n/p0 − s0 = 1 (2.20)

with p ≤ p0, α < α0, and max{s, n/r − 1} < s0.

Outline of the proof of Proposition 2.4.3. We first consider the linear problem:⎧⎨⎩
du

dt
+ Au = Pf a.e. t ∈ (0, T ) in Ḃs

p,β(R
n),

u(0) = a in Ḃ−1+n/r
r,q (Rn).

(S)

Take 0 < θ < 1 and k0 < −1+n/r < k1 < s+2 so that −1+n/r = (1− θ)k0+ θk1. By

the estimate of the heat semigroup in Besov space proved by Kozono-Ogawa-Taniuchi

[16][Lemma 2.2 (ii)] it holds that

‖Ae−tAa‖Ḃs
p,1(R

n) = ‖e−tAa‖Ḃs+2
p,1 (Rn) ≤ Ct−

n
2
( 1
r
− 1

p
)− 1

2
(s+2−ki)‖a‖

Ḃ
ki
r,∞(Rn)

for i = 0, 1. Thus, we see that the mapping

a ∈ Ḃki
r,∞(Rn) → ‖Ae−tAa‖Ḃs

p,1(R
n) ∈ Lαi,∞(0,∞)

is a bounded sub-additive operator for

1

αi

=
n

2

(
1

r
− 1

p

)
+

1

2
(s+ 2− ki), i = 0, 1.

By the real interpolation thorem it holds that

a ∈ (Ḃk0
r,∞(Rn), Ḃk1

r,∞(Rn))θ,q → ‖Ae−tAa‖Ḃs
p,1(R

n) ∈ (Lα0,∞(0,∞), Lα1,∞(0,∞))θ,q.

Since (Ḃk0
r,∞(Rn), Ḃk1

r,∞(Rn))θ,q = Ḃ−1+n/r
r,q (Rn) and (Lα0,∞(0,∞), Lα1,∞(0,∞))θ,q = Lα,q(0,∞),

we see that the mapping

a ∈ Ḃ−1+n/r
r,q (Rn) → ‖Ae−tAa‖Ḃs

p,1(R
n) ∈ Lα,q(0,∞)

is a bounded sub-additive operator.

Let s0 < s < s1 ≤ 1+n/r and 1 ≤ β ≤ ∞. The usual maximal regularity in Ḣs
p(R

n)

implies that the mapping

S : f ∈ Lα(0, T ; Ḣsi
p (Rn)) → (ut, Au) ∈ Lα(0, T ; Ḣsi

p (Rn))2, i = 0, 1,
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is a bounded operator with its norm independent of T . Since (Ḣs0
p (Rn)), Ḣs1

p (Rn))θ,β =

Ḃs
p,∞(Rn) with s = (1− θ)s0 + θs1, we see from the real interpolation that

S : f ∈ Lα(0, T ; Ḃs
p,β(R

n)) → (ut, Au) ∈ Lα(0, T ; Ḃs
p,β(R

n))2

is a bounded operator with its norm independent of T . Similarly, by using the real

interpolation in terms of the time we see that

S : f ∈ Lα,q(0, T ; Ḃs
p,β(R

n)) → (ut, Au) ∈ Lα,q(0, T ; Ḃs
p,β(R

n))2

is a bounded operator with its norm independent of T . For a ∈ B−1+n/r
r,q (Rn) and

f ∈ Lα,q(0, T ; Ḃs
p,β(R

n)), it holds that

u(t) = e−tAa+ Sf(t), 0 < t < T

solves (S). As a consequence, we see that the followng result holds in the case of the

linear problem:

Lemma 2.4.4. Let 1 < p < ∞, 1 < α < ∞, 1 ≤ β ≤ ∞, 1 ≤ q ≤ ∞, s ∈ R satisfy

2/α + n/p− s = 3. Assume that 1 ≤ r ≤ p satisfies

n

r
<

2

α
+

n

p
.

For every a ∈ Ḃ−1+n/r
r,q (Rn) and every f ∈ Lα,q(0,∞; Ḃs

p,β(R
n)) there exists a unique

solution u of ⎧⎨⎩
du

dt
+ Au = Pf a.e. t ∈ R

+ in Ḃs
p,β(R

n) ,

u(0) = a in Ḃ−1+n/r
r,q (Rn),

(S)

in the class

ut, Au ∈ Lα,q(0,∞; Ḃs
p,β(R

n)). (2.21)

In the next step, we consider the nonlinear problem (NS3). Let 1 < p ≤ p0 < ∞,

1 < α < α0 < ∞, and −∞ < s < s0 < ∞ satisfying

2

α0

+
n

p0
− s0 =

2

α
+

n

p
− s− 2 = 1

Let 1 < r ≤ p satisfy

Let f(t) = ut + Au. Then, it holds that u(t) = e−tAa + Ff(t) where Ff(t) =∫ t

0

e−(t−τ)Af(τ)dτ . Similarly to Proposition 2.4.3, we see that

‖e−tAa‖Lα0,q(0,∞;Ḃ
s0
p0,1

(Rn)) ≤ C‖a‖Ḃ−1+n/r
r,q (Rn)

(2.22)
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where C = C(n, p, α, s, r, q) is independent of u, a, and T . Hence we determine Ff(t).

From Kozono-Ogawa-Taniuchi [16][Lemma 2.2] it follows that

‖Ff(t)‖Ḃs0
p0,1

(Rn) ≤
∫ t

0

‖e−(t−τ)Af(τ)‖Ḃs0
p0,1

(Rn)dτ

≤ C

∫ t

0

(t− τ)
{1−n

2
( 1
p
− 1

p0
)− 1

2
(s0−s)}−1‖f(τ)‖Ḃs

p,∞(Rn)

It is noted that 1− n
2
(1
p
− 1

p0
)− 1

2
(s0−s) = 1

α
− 1

α0
< 1

α
. By the Hardy-Littlewood-Sobolev

inequality in the Lorentz space we have that

‖Ff(t)‖Lα0,q(0,T ;Ḃ
s0
p0,1

(Rn)) ≤ C‖f(τ)‖Lα,q(0,T ;Ḃs
p0,∞(Rn))

≤ C
(
‖ut‖Lα,q(0,T ;Ḃs

p0,∞(Rn)) + ‖Au‖Lα,q(0,T ;Ḃs
p,∞(Rn))

)
. (2.23)

We next estimate the non-linear term in the following lemma:

Lemma 2.4.5. Let 1 < p < ∞, 1 < α < ∞, s > −1 satisfy 2/α + n/p − s = 3.

Let 1 < r ≤ p, 1 ≤ q ≤ ∞ and 0 < T ≤ ∞. For measurable functions u and v in

R
n × (0, T ) satisfying that

ut, Au, vt, Av ∈ Lα,q(0, T ; Ḃs
p,∞(Rn)),

u(0) = a, v(0) = b ∈ Ḃ−1+n/r
r,q (Rn),

it holds that P (u,∇)v ∈ Lα,q(0, T ; Ḃs
p,∞(Rn)) with the estimate

‖P (u,∇)v‖Lα,q(0,T ;Ḃs
p,∞(Rn))

≤ C
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖ut‖Lα,q(0,T ;Ḃs
p0,∞(Rn)) + ‖Au‖Lα,q(0,T ;Ḃs

p,∞(Rn))

)
×
(
‖e−tAb‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖vt‖Lα,q(0,T ;Ḃs
p0,∞(Rn)) + ‖Av‖Lα,q(0,T ;Ḃs

p,∞(Rn))

)
(2.24)

for some α < α0 < ∞, 1 < p ≤ p0 < ∞, and s < s0 < ∞ such that 2/α0+n/p0−s0 = 1,

where C = C(n, p, α, p0, α0, r, q) is independent of T .

Outline of the proof of Lemma 2.4.5. We take α0 = 2α, p0 ≤ p, and s0 ∈ R so

that

max{n/r − 1/α, s+ 2− 1/α}, max{s+ 1, n/r − 1} < s0,

and

2/α0 + n/p0 − s0 = 1.

Since 0 < s+ 1 < s0, we can take σ > 0 so that σ < s0 − (s+ 1). Let us define p1 and

p2 so that

n/p1 = n/p0 − {s0 − (s+ 1)− σ}, n/p2 = n/p0 − (s0 + σ) (2.25)
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Hence, we see from (2.25) and Proposition 2.1.2 (i) that

Ḃs0
p0,∞(Rn) ↪→ Ḃs+1+σ

p1,∞ (Rn), Ḃs0
p0,∞(Rn) ↪→ Ḃ−σ

p2,∞(Rn) (2.26)

It is noticed that 1/p1 + 1/p2 = 1/p. By (2.26) and Proposition 2.1.2 (ii) we have that

‖P (u,∇)v‖Ḃs
p,∞(Rn) = ‖∇ · P (u⊗ v)‖Ḃs

p,∞(Rn) = ‖P (u⊗ v)‖Ḃs+1
p,∞(Rn)

≤ C‖u⊗ v‖Ḃs+1
p,∞(Rn)

≤ C
(
‖u‖Ḃs+1+σ

p1,∞ (Rn)‖v‖Ḃ−σ
p2,∞(Rn) + ‖u‖Ḃ−σ

p2,∞(Rn)‖v‖Ḃs+1+σ
p1,∞ (Rn)

)
≤ C‖u‖Ḃs0

p0,∞(Rn)‖v‖Ḃs0
p0,∞(Rn).

By the Hölder inequality in the Lorentz space it holds that

‖P (u,∇)v‖Lα,q(0,T ;Ḃs
p,∞(Rn)) ≤ C‖u‖Lα0,2q(0,T ;Ḃ

s0
p0,∞(Rn))‖v‖Lα0,2q(0,T ;Ḃ

s0
p0,∞(Rn))

≤ C‖u‖Lα0,q(0,T ;Ḃ
s0
p0,∞(Rn))‖v‖Lα0,q(0,T ;Ḃ

s0
p0,∞(Rn)), (2.27)

where C = C(n, p, α, p0, α0, q) is independnet of T . Since n/p ≤ n/r < s0 + 1 =

2/α0 + n/p0, it follows from (2.22) and (2.23) that

‖u‖Lα0,q(0,T ;Ḃ
s0
p0,∞(Rn))

≤ C
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖ut‖Lα,q(0,T ;Ḃs
p,∞(Rn)) + ‖Au‖Lα,q(0,T ;Ḃs

p,∞(Rn))

)
,

(2.28)

‖v‖Lα0,q(0,T ;Ḃ
s0
p0,∞(Rn))

≤ C
(
‖e−tAb‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖vt‖Lα,q(0,T ;Ḃs
p,∞(Rn)) + ‖Av‖Lα,q(0,T ;Ḃs

p,∞(Rn))

)
, (2.29)

where C = C(n, p, p0, α, α0, q) is independent of T . The desired estimate (2.24) is

obtained from (2.27), (2.28), and (2.29).

Finally, we construct the solution of (NS3) on (0, T∗) for some 0 < T∗ ≤ T by the

successive approximation. For simplicity we show only the case 1 ≤ q < ∞. Let a ∈
Ḃ−1+n/r
r,q (Rn) and f ∈ Lα,q(0, T ; Ḃs

p,∞(Rn)) for 2/α + n/p− s = 3 with 1 ≤ r ≤ p < ∞,

1 < α < ∞, and −1 < s satisfying (2.17). We define u0 by

u0(t) = e−tAa+

∫ t

0

e−(t−τ)APf(τ)dτ, 0 < t < T.

By setting u = u0 + v, we reduce the solvability of (NS3) to the construction of the

solution v in the following equation:⎧⎨⎩
dv

dt
+ Av = −P ((u0,∇)v + (v,∇)u0 + (v,∇)v + (u0,∇)u0) a.e. t ∈ (0, T∗) in Ḃs

p,∞(Rn),

v(0) = 0,

(NS3’)
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It follows from (2.22) and (2.23) that∥∥∥∥du0

dt

∥∥∥∥
Lα,q(0,∞;Ḃs

p,∞(Rn))

+‖Au0‖Lα,q(0,∞;Ḃs
p,∞(Rn)) ≤ C

(
‖a‖Ḃ−1+n/r

r,q (Rn)
+ ‖f(τ)‖Lα,q(0,T ;Ḃs

p0,∞(Rn))

)
(2.30)

where C = C(n, p, α, s, r, q) is independent of 0 < T ≤ ∞. Now we solve (NS2’) by the

following successive approximation:⎧⎨⎩
dv0
dt

+ Av0 = −P (u0,∇)u0 a.e. t ∈ (0, T ) in Ḃs
p,∞(Rn),

v0(0) = 0,
(NS3′0)

⎧⎨⎩
dvj+1

dt
+ Avj+1 = −P ((u0,∇)vj + (vj,∇)u0 + (vj,∇)vj + (u0,∇)u0) a.e. t ∈ (0, T ) in Ḃs

p,∞(Rn),

vj+1(0) = 0, j = 0, 1, · · · .
(NS3′j)

Set

XT =
{
v : Rn × (0, T ) → R

n; vt, Av ∈ Lα,q(0, T ; Ḃs
p0,∞(Rn)), v(0) = 0, ‖v‖XT

< ∞
}

where

‖v‖XT
= ‖vt‖Lα,q(0,∞;Ḃs

p,∞(Rn)) + ‖Av‖Lα,q(0,∞;Ḃs
p,∞(Rn)) .

XT is a Banach space equipped with the norm ‖ · ‖XT
. We see from Lemma 2.4.5 and

a ∈ Ḃ−1+n/r
r,q (Rn) that

P (u0,∇)u0 ∈ Lα,q(0, T ; Ḃs
p,∞(Rn))

with the estimate

‖P (u0,∇)u0‖Lα,q(0,T ;Ḃs
p,∞(Rn)) ≤ C

(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT

)2
,

where C = C(n, p, p0, α, α0, r, q) is a constant independent of 0 < T ≤ ∞. Therefore, it

follows from Lemma 2.4.4 that there exists a unique solution v0 of (NS3′0) in the class

XT . Assuming that vj ∈ XT , it follows from Lemma 2.4.5 that

P ((u0,∇)vj + (vj,∇)u0 + (vj,∇)vj + (u0,∇)u0) ∈ Lα,q(0, T ; Ḃs
p,∞(Rn))

with the estimate

‖P ((u0,∇)vj + (vj,∇)u0 + (vj,∇)vj + (u0,∇)u0)‖Lα,q(0,T ;Ḃs
p,∞(Rn))

≤C
(
2
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT

)
‖vj‖XT

+ ‖vj‖2XT

+
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT

)2)
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for some α0 > α, p0 > p, and s0 > s such that 2/α0 + n/p0 − s0 = 1, where C =

C(n, p, p0, α, α0, r, q) is a constant independent of 0 < T ≤ ∞. Hence, we see from

Lemma 2.4.4 that there exists a unique solution vj+1 of (NS3′j) in the class XT with

the estimate

‖vj+1‖XT
≤C
(
2
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT

)
‖vj‖XT

+ ‖vj‖2XT
(2.31)

+
(
‖e−tAa‖Lα0,q(0,T ;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT

)2)
,

where C = C(n, p, p0, α, α0, r, q) is a constant independent of 0 < T ≤ ∞. By induction,

we have that vj ∈ XT for all j ∈ N. Therefore, if there is 0 < T∗ < T such that

‖e−tAa‖Lα0,q(0,T∗;Ḃ
s0
p0,1

(Rn)) + ‖u0‖XT∗ <
1

4C
, (2.32)

then we obtain from that

‖vj‖XT∗ ≤ 1

2C

(
1− 2C

(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗

)
(2.33)

−
√
1− 4C

(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗

)
,

≡ K

It should be noted that all constants C in (2.31), (2.32), and (2.33) are the same and

independent of 0 < T ≤ ∞.

Define wj ≡ vj − vj−1(v−1 = 0). Then, we obtain from (NS3′j) that⎧⎪⎪⎨⎪⎪⎩
dwj+1

dt
+ Awj+1 = −P ((u0,∇)wj + (wj,∇)u0 + (vj,∇)wj + (wj,∇)vj−1)

a.e. t ∈ (0, T ) in Ḃs
p,∞(Rn),

wj+1(0) = 0, j = 0, 1, · · · .

Similarly to (2.31), we have by (2.33) that

‖wj+1‖XT∗ ≤C
(
2
(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗

)
‖wj‖XT∗

+ ‖vj‖XT∗‖wj‖XT∗ + ‖vj−1‖XT∗‖wj‖XT∗

)
,

≤ 2C
(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗ +K
)
‖wj‖XT∗ , j = 0, 1, · · · .

This yields that

‖wj‖XT∗ ≤
{
2C
(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗ +K
)}j

‖v0‖XT∗ , j = 1, 2, · · · .
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By (2.33) it holds that

2C
(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗ +K
)

=1−
√
1− 4C

(
‖e−tAa‖Lα0,q(0,T∗;Ḃ

s0
p0,1

(Rn)) + ‖u0‖XT∗

)
< 1,

from which it follows that ∞∑
j=0

‖wj‖xT∗ < ∞.

Thus, there exists a limit function v ∈ XT∗ of {vj}∞j=0 in XT∗ . Letting j → ∞ in both

sides of (NS3′j), we see from Lemma 2.4.5 that v is a solution of (NS3’) on (0, T∗) if the
hypothesis (2.32) is fulfilled. Since 1 ≤ q < ∞, we see from (2.22) and (2.30) that there

exists 0 < T∗ ≤ T such that the condition (2.32) holds. Therefore, we have shown the

existence of a solution u of (NS3) on (0, T∗).
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Removable time-dependent singularities in

the Stokes equations

Theorem 3.1. Let n ≥ 3 and let Ω be a bounded domain in R
n with the smooth

boundary ∂Ω. Suppose that ξ ∈ Cα([0, T ];Rn) for 0 < α ≤ 1
2
with the property that

{ξ(t); 0 ≤ t ≤ T} ⊂ Ω. Assume that u0 ∈ Lp
σ(Ω) for some p satisfying 1 < p < ∞. If u

is a solution of (St) satisfying

|u(x, t)| = o(|x− ξ(t)|2−n+(1/α−2)) as x → ξ(t) locally uniformly in t ∈ (0, T ), (∗)
then the curve {ξ(t); 0 < t < T} is a family of removable singularities of u in Ω×(0, T ).

Remark 3.2. (1) For n = 2, we need to change the condition (∗) of the solution u.

Indeed, if u satisfies for any ε ∈ (0, 1), |u(x, t)| ≤ ε|x − ξ(t)|1/α−2 log 1
|x−ξ(t)| for (x, t)

with 0 < |x − ξ(t)| < ε uniformly in t ∈ (0, T ), then the curve {ξ(t); 0 < t < T} is a

family of removable singularities of u in Ω× (0, T ).

(2) For α > 1
2
, Theorem 3.1.1 also holds if we assume that

|u(x, t)| = o(|x− ξ(t)|2−n) as x → ξ(t) locally uniformly in t ∈ (0, T ).

(3) It should be noticed that the behavior |x − ξ(t)|2−n as x → ξ(t) coincides with

that of the fundamental solution of the Laplace equation. Takahashi and Yanagida [29]

obtained almost optimal condition on removability of moving singularities in the sense

that there exist a curve ξ ∈ C1((0, T ); Ω) and a solution u(x, t) of the heat equation in

QT such that

|u(x, t)| = O(|x− ξ(t)|2−n) as x → ξ(t) locally uniformly in t ∈ (0, T ).

On the other hand, by assuming the stronger condition as (∗) for 0 < α ≤ 1
2
, we

may handle more general moving singularities ξ(t) with ξ ∈ Cα([0, T ]; Ω). Hence, our

result makes it clear the relation on removable time-dependent singularities between

the Hölder exponent α of ξ(t) and the singular order of the solution u around x = ξ(t).

29
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In this section, we give some lemmas for the proof of the main theorem. Our first

aim is to show that the solution u of (St) is in fact a weak solution in the sense of

Definition 2.3.1. To this end, we need to choose an appropriate family {ηr}r>0 of cut-

off functions with the property that ηr(x, t) = 0 near x = ξ(t).

Proof of Theorem 3.1. We first prove that u is a very weak solution of the Stokes

equations in Ω× (0, T ), in the sense of Definition 2.3.1. To show it we use the following

proposition.

Proposition 3.3. Let ϕ ∈ C∞(Ω × [0, T ]) with div ϕ = 0 in Ω × [0, T ], ϕ = 0 on

∂Ω × [0, T ], and ϕ(·, T ) = 0 in Ω, and fr := div (ηrϕ) = ∇ηr · ϕ where ηr is the same

cut-off function as in (2.9). Let Dr,t := {x ∈ R
n; 7r/10 < |x − ξεr(t)| < 4r/5} for

t ∈ [0, T ], where ξεr is the same as in the proof of Proposition 2.2.1. Then there exists

constant r1 = r1(α, n, T ) with the following properties: for every r ∈ (0, r1), there exists

a function vr ∈ C∞(
⋃

0≤t≤T Dr,t × {t}) such that div vr = fr in Ω × [0, T ], vr = 0 in

Ω \Dr,t for t ∈ [0, T ], and such that

|Δvr(x, t)| ≤ Cr−2, |∂tvr(x, t)| ≤ Cr−1/α for (x, t) ∈ R
n × [0, T ], (3.1)

where C is a constant independent of x, t, and r.

Proof. We first show the method of the construction of vr following from Borchers-Sohr

[2, Theorem 2.4]. Let r0 = 10L with the Hölder constant of ξ in [0, T ], εr = (r/r0)
1/α,

and r < r1 := min{r0, d} with d = mint∈[0,T ] d(ξ(t), ∂Ω). Then, fr(·, t) ∈ C∞(Dr,t) with

fr(·, t) = 0 in Ω \Dr,t for t ∈ [0, T ] satisfies∫
Dr,t

fr(·, t) dx =

∫
Dr,t

∇ηr · ϕ dx

=

∫
∂B4r/5(ξ

εr (t))

ηrϕ · ν dS −
∫
∂B7r/10(ξ

εr (t))

ηrϕ · ν dS +

∫
Dr,t

ηrdiv ϕ dx

=

∫
∂B4r/5(ξ

εr (t))

ϕ · ν dS =

∫
∂Ω

ϕ · ν dS −
∫
Ω\B4r/5(ξ

εr (t))

div ϕ dx = 0.

Since Dr,t is an annulus region in R
n, there exist an integer N0 = N0(n) independent

of r ∈ (0, r1) and t ∈ [0, T ], and a family {U i
t}N0

i=1 of N0 domains in R
n such that⋃N0

i=1 U
i
t ⊃ Dr,t and such that Di

r,t ≡ Dr,t∩U i
t is starshaped with respect to some ball Bi

r,t

in R
n for all i = 1, · · · , N0. It should be noticed that N0 may be chosen independently

of r and t since the time variable t plays a roll only for translation along the curve ξεr

and since the radius r has no influence to the number of decomposition so that Di
r,t

may be starshaped. Furthermore, there exists a family {φi
t}N0

i=1 of N0 smooth functions
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compactly supported in U i
t such that 0 ≤ φi

t ≤ 1, and such that
∑N0

i=1 φ
i
t(x) = 1 for

all x ∈ Dr,t. Let J := {(i, j) ∈ {1, · · · , N0} × {1, · · · , N0};Di
r,t ∩ Dj

r,t �= ∅}. Define

ψi,j
r,t ∈ C∞

0 (Di
r,t ∩Dj

r,t) for (i, j) ∈ {1, · · · , N0}2 in such a way that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Dr,t

ψi,j
r,t(x)dx = 1, (i, j) ∈ J,

ψi,j
r,t(x) ≡ 0, (i, j) ∈ {1, · · · , N0}2 \ J,

ψi,j
r,t(x) = ψj,i

r,t(x), i, j = 1, · · · , N0.

(3.2)

Now, let us define a family {f i
r,t}N0

i=1 by

f i
r,t(y) = φi

t(y)fr(y, t) +
∑

1≤j≤N0
1≤k≤N0

aij,k

(∫
D(r,t)

φj
t(z)fr(z, t)dz

)
ψi,k
r,t (y), (3.3)

Here {aij,k}1≤i,j,k≤n0 may be chosen in such a way that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fr(y, t) =

N0∑
i=1

f i
r,t(y) for all y ∈ Dr,t,∫

Di
r,t

f i
r,t(y) dy = 0, i = 1, · · · , N0.

(3.4)

For the detail, see the Appendix below. Then we define the function vr,t by

vr,t(x) =

N0∑
i=1

∫
Di

r,t

Gi
r,t(x, y)f

i
r,t(y)dy, x ∈ Dr,t (3.5)

Here Gi
r,t has an expression

Gi
r,t(x, y) =

x− y

|x− y|n
∫ ∞

|x−y|
hi
r,t

(
y +

x− y

|x− y|s
)
sn−1ds, (3.6)

where hi
r,t ∈ C∞

0 (Bi
r,t) with

∫
Bi

r,t
hi
r,t(x)dx = 1. Since for every i = 1, ..., N0 hi

r,t(y +
x−y
|x−y|s) = 0 without relation to r and t ∈ [0, T ] if s ∈ [|x − y|,∞), x ∈ Ω \ Dr,t, and

y ∈ Dr,t, G
i
r,t(x, y) also does, which implies that vr,t = 0 in Ω \ Dr,t for all r > 0 and

t ∈ [0, T ]. We next show the divergence condition. Set vir,t(x) =
∫
Di

r,t
Gi

r,t(x, y)f
i
r,t(y)dy

and vir,t,ε(x) =
∫
ε≤|x−y|G

i
r,t(x, y)f

i
r,t(y)dy for ε > 0. Then, we have that limε→+0v

i
r,t,ε =
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vir,t. By the direct culculation we have that

∂(Gi
r,t)k

∂xk

(x, y) =

{
1

|x− y|n − n(xk − yk)
2

|x− y|n+2

}∫ ∞

|x−y|
hi
r,t

(
y +

x− y

|x− y|s
)
sn−1ds

+
xk − yk

|x− y|n+1

∫ ∞

|x−y|

∂hi
r,t

∂xk

(
y +

x− y

|x− y|s
)
snds

−
n∑

l=1

(xl − yl)(xk − yk)
2

|x− y|n+3

∫ ∞

|x−y|

∂hi
r,t

∂xl

(
y +

x− y

|x− y|s
)
snds

−hi
r,t(x)

(xk − yk)
2

|x− y|2

(3.7)

where (Gi
r,t)k is the k-th element of Gi

r,t for k = 1, · · · , n. Changing variables z =

(x− y)/ε and s = ε+ τ , we have that∫
|x−y|=ε

xk − yk
|x− y| (G

i
r,t)k(x, y)f

i
r,t(y)dSy =

∫
|z|=1

z2k

∫ ∞

0

hi
r,t(x+τz)(ε+τ)n−1dτf i

r,t(x−εz)dSz.

(3.8)

From (3.4), (3.7), and (3.8) it follows that

div vir,t,ε(x) =
n∑

k=1

(∫
ε≤|x−y|

∂(Gi
r,t)k

∂xk

(x, y)f i
r,t(y)dy +

∫
|x−y|=ε

xk − yk
|x− y| (G

i
r,t)k(x, y)f

i
r,t(y)dSy

)
=

∫
|z|=1

∫ ∞

0

hi
r,t(x+ τz)(ε+ τ)n−1dτf i

r,t(x− εz)dSz

−−−→
ε→+0

∫
|z|=1

∫ ∞

0

hi
r,t(x+ τz)τn−1dτf i

r,t(x)dSz

=

∫
Rn

hi
r,t(y)dyf

i
r,t(x) = f i

r,t(x)

Therefore, div vr,t =
∑N0

i=1 div vir,t =
∑N0

i=1 f
i
r,t = fr,t.

Finally, we show the estimation (3.1). Define vr(x, t) := vr,t(x), Gi
r(x, y, t) :=

Gi
r,t(x, y), f

i
r(x, t) := f i

r,t(x), φi(x, t) := φi
t(x), h

i
r(x, t) := hi

r,t(x), ψ
i,j
r (x, t) := ψi,j

r,t(x),

and vir(x, t) := vir,t(x). Since
∑N0

i=1 v
i
r = vr and since N0 is independent of t and r, it

suffices to show that the following estimates hold: for every 1 ≤ i ≤ N0,

|Δvir(x, t)| ≤ Cr−2, |∂tvir(x, t)| ≤ Cr−2 for (x, t) ∈ R
n × [0, T ]. (3.9)

where C is a constant independent of x, t, r.

Let Br be the open ball with the radius r centered at the origin 0 for r > 0. Let us

take hi ∈ C∞
0 (B1) and ψi,j ∈ C∞

0 (Di
1,t ∩ Dj

1,t) in such a way that
∫
B1

hi(x)dx = 1 for

i = 1, · · · , N0,
∫
Di

1,t∩Dj
1,t
ψi,j(x)dx = 1 for (i, j) ∈ J . The functions {hi

r}N0
i=1 in (3.6) and
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{ψi,j
r }(i,j)∈J in (3.3) may be chosen as

hi
r(x, t) =

1

rn
hi

(
x− xi

r + ξεr(0)− ξεr(t)

r

)
, i ∈ {1, · · · , N0}, (3.10)

ψi,j
r (x, t) =

1

rn
ψi,j

(
x− ξεr(t)

r

)
, (i, j) ∈ J, (3.11)

for (x, t) ∈ R
n× [0, T ] respectively. Here xi

r is the center of the ball B
i
r,0, i = 1, · · · , N0.

It is noticed that

Di
r,t ⊂ {y ∈ R

n; |x− y| ≤ 2r} for any x ∈ Di
r,t. (3.12)

We have by (3.3), (3.5), and (3.12) that

|Δvir(x, t)| ≤
∣∣∣∣Δx

∫
|x−y|≤2r

Gi
r(x, y, t)f

i
r(y, t)dy

∣∣∣∣
≤
∣∣∣∣Δx

∫
|x′|≤2r

Gi
r(x, x+ x′, t)f i

r(x+ x′, t)dx′
∣∣∣∣

≤
∣∣∣∣Δx

∫
|x′|≤2r

Gi
r(x, x+ x′, t)φi(x+ x′, t)fr(x+ x′, t)dx′

∣∣∣∣
+

∣∣∣∣∣∣∣∣Δx

∫
|x′|≤2r

Gi
r(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
D(r,t)

φj
t(z)fr(z, t)dz

)
ψi,k
r (x+ x′, t)dx′

∣∣∣∣∣∣∣∣
≡ I1(r, t) + I2(r, t),

|∂tvir(x, t)| ≤
∣∣∣∣∂t ∫|x−y|≤2r

Gi
r(x, y, t)f

i
r(y, t)dy

∣∣∣∣
≤
∣∣∣∣∂t ∫|x′|≤2r

Gi
r(x, x+ x′, t)f i

r(x+ x′, t)dx′
∣∣∣∣

≤
∣∣∣∣∂t ∫|x′|≤2r

Gi
r(x, x+ x′, t)φi(x+ x′, t)fr(x+ x′, t)dx′

∣∣∣∣
+

∣∣∣∣∣∣∣∣∂t
∫
|x′|≤2r

Gi
r(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
D(r,t)

φj
t(z)fr(z, t)dz

)
ψi,k
r (x+ x′, t)dx′

∣∣∣∣∣∣∣∣
≡I3(r, t) + I4(r, t).

In the next step, we investigate Ij(r, t) for j = 1, · · · , 4. Since hi ∈ C∞
0 (B1), we have
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by (2.8), (3.6), and (3.10) that

|Gi
r(x, x+ x′, t)| (3.13)

=

∣∣∣∣∣ x′

|x′|n
∫ |x′|+2r

|x′|

1

rn
hi

(
x+ x′ − x′

|x′|s− xi
r + ξεr(0)− ξεr(t)

r

)
sn−1ds

∣∣∣∣∣
≤C|x′|1−nr−n

∫ |x′|+2r

|x′|
sn−1ds,

|∇xG
i
r(x, x+ x′, t)| (3.14)

=

∣∣∣∣∣∇x
x′

|x′|n
∫ |x′|+2r

|x′|

1

rn
hi

(
x+ x′ − x′

|x′|s− xi
r + ξεr(0)− ξεr(t)

r

)
sn−1ds

∣∣∣∣∣
≤C|x′|1−nr−n−1

∫ |x′|+2r

|x′|
sn−1ds,

|ΔxG
i
r(x, x+ x′, t)| (3.15)

=

∣∣∣∣∣Δx
x′

|x′|n
∫ |x′|+2r

|x′|

1

rn
hi

(
x+ x′ − x′

|x′|s− xi
r + ξεr(0)− ξεr(t)

r

)
sn−1ds

∣∣∣∣∣
≤C|x′|1−nr−n−2

∫ |x′|+2r

|x′|
sn−1ds,

|∂tGi
r(x, x+ x′, t)| (3.16)

=

∣∣∣∣∣∂t x′

|x′|n
∫ |x′|+2r

|x′|

1

rn
hi

(
x+ x′ − x′

|x′|s− xi
r + ξεr(0)− ξεr(t)

r

)
sn−1ds

∣∣∣∣∣
≤C|x′|1−nr−n−1

∣∣∣∣dξεrdt
(t)

∣∣∣∣ ∫ |x′|+2r

|x′|
sn−1ds

≤C|x′|1−nr−n−1/α

∫ |x′|+2r

|x′|
sn−1ds.

Hence, it follows from (2.8), (3.11), (3.13) - (3.16), and Lemma 2.1 that

I1(r, t) ≤
∣∣∣∣Δx

∫
|x′|≤2r

Gi
r(x, x+ x′, t)φi(x+ x′, t)∇ηr(x+ x′, t) · ϕ(x+ x′, t)dx′

∣∣∣∣
(3.17)

≤C

∫
|x′|≤2r

|x′|1−n

{
(r−1 + r−2 + r−3)r−n

∫ |x′|+2r

|x′|
sn−1ds
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+(r−1 + r−2)r−n−1

∫ |x′|+2r

|x′|
sn−1ds+ r−1r−n−2

∫ |x′|+2r

|x′|
sn−1ds

}
dx′

≤Cr−2,

I2(r, t) ≤
∣∣∣∣Δx

∫
|x′|≤2r

Gi
r(x, x+ x′, t) (3.18)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dr,t

φj(z, t)∇ηr(z, t) · ϕ(z, t)dz
)

1

rn
ψi,k

(
x+ x′ − ξεr(t)

r

)
dx′

∣∣∣∣∣∣∣∣
≤ Cr−2n−3

∫
Dr,t

dz

∫
|x′|≤2r

|x′|1−n

{∫ |x′|+2r

|x′|
sn−1ds

}
dx′

≤ Cr−2,

I3(r, t) ≤
∣∣∣∣∂t ∫|x′|≤2r

Gi
r(x, x+ x′, t)φi(x+ x′, t)∇ηr(x+ x′, t) · ϕ(x+ x′, t)dx′

∣∣∣∣ (3.19)

≤C

∫
|x′|≤2r

|x′|1−n

{
r−1r−n−1/α

∫ |x′|+2r

|x′|
sn−1ds

+(r−1 + r−1−1/α)r−n

∫ |x′|+2r

|x′|
sn−1ds

}
dx′

≤Cr−1/α,

I4(r, t) ≤
∣∣∣∣∂t ∫|x′|≤2r

Gi
r(x, x+ x′, t) (3.20)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dr,t

φj(z, t)∇ηr(z, t) · ϕ(z, t)dz
)

1

rn
ψi,k

(
x+ x′ − ξεr(t)

r

)
dx′

∣∣∣∣∣∣∣∣
≤ Cr−n

∫
|x′|≤2r

|x′|1−n

{
r−n−1/α

∫ |x′|+2r

|x′|
sn−1ds

∫
Dr,t

r−1dz

+r−n

∫ |x′|+2r

|x′|
sn−1ds

∫
Dr,t

r−1

∣∣∣∣dξεrdt
(t)

∣∣∣∣ dz
}
dx′

≤ Cr−1/α.

Now, the desired estimate (3.1) is a consequence of (3.17) - (3.20). This proves Propo-

sition 3.3.
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Next, we show that u is in fact a weak solution of the Stokes equations in Ω× (0, T ).

Proposition 3.4. Let n ≥ 3 and let Ω be a bounded domain in R
n with the smooth

boundary ∂Ω. Suppose that ξ ∈ Cα([0, T ]; Ω) for 0 < α ≤ 1
2
. If u is a solution of (St)

satisfying the condition (∗), then u is necessarily a very weak solution of the Stokes

equations in Ω× (0, T ) in the sense of Definition 2.3.1.

Proof. Let � ∈ C∞(Ω). Since |u(x, t)| = o(|x−ξ(t)|2−n+(1/α−2)) as x → ξ(t) uniformly in

t ∈ (0, T ), for any ε > 0 there exists δ = δ(ε) such that |u(x, t)| ≤ ε|x− ξ(t)|2−n+(1/α−2)

for all (x, t) ∈ ⋃0<t<T Bδ(ξ(t))×{t} where Bδ(ξ(t)) = {x ∈ R
n ; |x− ξ(t)| < δ}. Then,

we easily see that u ∈ Lq(Ω × (0, T )) for 1 < q < ∞ in the case 0 < α ≤ 1
n
, or for

1 < q < n
n−1/α

in the case 1
n
< α ≤ 1

2
. By the boundedness of Ω, u0 ∈ Lp1(Ω) and

u ∈ Lp1(Ω× (0, T )) hold for some 1 < p1 ≤ p < ∞.

Take r1 > 0 and the function vr given by Proposition 3.3 and let r < r1. Since

ηrϕ−vr is identically zero near some neighborhood of ξ(t) fot t ∈ [0, T ] with div (ηrϕ−
vr) = 0 in Ω× [0, T ], by multiplying (St) by ηrϕ− vr and then by integrating by parts,

we have that∫
Ω

u0·(ηr(·, 0)ϕ(·, 0)−vr(·, 0))dx+
∫ T

0

∫
Ω

u·(∂t(ηrϕ−vr)+Δ(ηrϕ−vr))dxdt = 0. (3.21)

Taking r < min{r1, ε, δ}, we have by (2.4), (2.5) and (3.1) that∣∣∣∣∫
Ω

u0 · ((ηr(·, 0)ϕ(·, 0)− vr(·, 0))dx
∣∣∣∣ ≤ C‖u0‖Lp(Ω)

(∫
Br(ξ(0))

dx

)1− 1
p

≤ Crn(1−
1
p
)

≤ Cεn(1−
1
p
),

∣∣∣∣∫ T

0

∫
Ω

u · {∂t(ηrϕ− vr)− ∂tϕ}dxdt
∣∣∣∣ ≤ Cε(1 + r−1/α)

∫ T

0

∫
Br(ξ(t))

|x− ξ(t)|2−n+(1/α−2)dxdt

≤ Cε,

∣∣∣∣∫ T

0

∫
Ω

u · {Δ(ηrϕ− vr)−Δϕ}dxdt
∣∣∣∣ ≤ Cε(1 + r−1 + r−2)

∫ T

0

∫
Br(ξ(t))

|x− ξ(t)|2−n+(1/α−2)dxdt

≤ Cεr1/α−2.

Since ε is arbitrary and since 0 < α ≤ 1/2, from the above estimate, we obtain the

identity (2.12).
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From (St) we have that∫
Ω

u(t) · ∇� dx =

∫
Ω\Br(ξ(t))

div u(t) � dx+

∫
Br(ξ(t))

u(t) · ∇� dx (3.22)

=

∫
Br(ξ(t))

u(t) · ∇� dx.

For r < δ, we have by (3.22) that∣∣∣∣∫
Br(ξ(t))

u(t) · ∇� dx

∣∣∣∣ ≤ C

∫
Br(ξ(t))

ε|x− ξ(t)|2−n+(1/α−2)dx ≤ Cεr1/α.

Since ε is arbitrary and since 0 < α ≤ 1/2, this shows (2.13). Consequently, we see that

u is a very weak solution of the Stokes equations in Ω× (0, T ) in the sense of Definition

2.3.1.

Finally, for the proof of Theorem 3.1 we may show the following proposition.

Proposition 3.5. Let u and v be very weak solutions of the Stokes equations in Ω ×
(0, T ) in the sense of Definition 2.3.1. Then, it holds that u ≡ v in Ω× (0, T ).

Proof. Let u and v be two very weak solutions of the Stokes equations in Ω× (0, T ) in

the sense of Definition 2.3.1. It suffices to show that∫ T

0

∫
Ω

(u− v) · F dxdt = 0

for all F ∈ C∞
0 (Ω× (0, T )). By Lemma 2.2.1, for every F ∈ C∞

0 (Ω× (0, T )), there exists

a unique solution {ϕ, p} ∈ C∞(Ω× [0, T ])× C∞(Ω× (0, T )) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tϕ+Δϕ+∇p = F in Ω× (0, T ),

div ϕ = 0 in Ω× (0, T ),

ϕ = 0 on ∂Ω,

ϕ|t=T = 0 in Ω,

(St”)

By (2.13), it holds that ∫ T

0

∫
Ω

(u− v) · ∇p dxdt = 0, (3.23)

Applying (2.12) with w replaced by u−v, together with the fact that w0 = u(0)−v(0) =

0, we obtain from (3.23) that∫ T

0

∫
Ω

(u− v) · F dxdt =

∫ T

0

∫
Ω

(u− v) · (∂tϕ+Δϕ)dxdt

= 0

This proves Proposition 3.5.
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Completion of the proof of Theorem

Since u0 ∈ Lp
σ(Ω) for some p satisfying 1 < p < ∞, by Lemma 2.2.1 there exists

a unique solution v of the Stokes equations with v(0) = u0 having the property that

v ∈ C∞(Ω × (0, T )). Hence, it follows from Proposition 3.5 that u(t) = v(t) for all

t ∈ (0, T ), which shows that u ∈ C∞(Ω× (0, T )). This completes the proof of Theorem.



Chapter 4

Removable time-dependent singularities in

the Navier-Stokes equations

Theorem 4.1. Let n ≥ 3 and let Ω be a bounded domain in R
n with smooth boundary

∂Ω. Suppose that ξ ∈ Cα([0, T ]; Ω) for 1/n < α ≤ 1 and that

u0 ∈
{

Ln,∞
σ (Ω) for n = 3,

B2(1− 1
s
)

q,s (Ω) = (Lq
σ(Ω), D(Aq))1− 1

s
,s for n ≥ 4,

(4.1)

where 2
s
+ n

q
= 3 with max{n

3
, 2} < q < n. If u is a smooth solution of (NS) in QT

satisfying

|u(x, t)| = o(|x− ξ(t)|−n+β) locally uniformly in t ∈ (0, T ) as x → ξ(t) (4.2)

for β = max{1/α, n − 1}, then the curve {ξ(t); 0 < t < T} is a family of removable

singularities of u in Ω× (0, T ).

Remark 4.2. (1) In the Stokes equations, we see in the previous chapter that the

exponent α of Hölder continuity of singularities for ξ(t) may be handled for all 0 <

α ≤ 1. On the other hand, in the case of the Navier-Stokes equations, it seems to be

difficult to deal with the exponent for 0 < α ≤ 1/n. Indeed, our method is related to the

cut-off procedure, and it is necessary to take some δ-neighborhood around singularities

{ξ(t)}0<t<T on which the Ln,∞-norm of the solution u is sufficiently small. In such a

procedure, we need to handle remainder term with its singular order δn−
1
α arising from

the time-derivative of the cut-off function. It should be noticed that such a harmful

term dose not appear in the case of the Stokes equations since we do not need any

smallness of the solution in the whole region Ω × (0, T ). This is the reason why we

impose the Hölder continuity α on the restriction that α > 1
n
.

(2) Even if the Hölder exponent α of moving singularity ξ(t) satisfies α > 1
n−1

, it

is required that |u(x, t)| = o(|x − ξ(t)|−1) as x → ξ(t) locally uniformly in t ∈ (0, T ),

39
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that is, β = n − 1. This seems to be natural since there exists a singular solution

with the homogeneous degree −1, so-called the Landau solution to the 3-D stationary

Navier-Stokes equations.

(3) Takahashi-Yanagida [29] introduced a family {ηr}r>0 of cut-off functions near

singularities {ξ(t)}0<t<T , and showed that the singular behavior near r = 0 of ∂tηr is in

proportion to −1/α. To cancel such a behavior as ∂tηr = O(r−
1
α ) as r → +0, we need

to impose β ≥ 1/α on u as in (4.2). Therefore, α = 1/(n− 1) is an expected borderline

of the Hölder exponent of ξ(t).

We first introduce some lemmta and propositions to show Theorem 5.1. The follow-

ing lemma is essentially due to Bogovskii [1].

Proposition 4.3. Let n ≥ 3 and 1 ≤ p < n. Let Ω be a bounded domain in R
n with

the smooth boundary ∂Ω and let r < d with d = mint∈[0,T ] d(ξ(t), ∂Ω). Assume that

ηδ be the same cut-off function as in Lemma 2.1 with r replaced by δ. Suppose that

ξ ∈ Cα([0, T ]; Ω) for 0 < α ≤ 1 and that ϕ̃ ∈ H1,2(0, T ;Lp
σ(Br)) ∩ L2(0, T ;H2,p(Br) ∩

H1,2
0 (Br))∩L2(0, T ;L∞(Br)) with ϕ̃(·, T ) = 0 in Br. Then there exists r1 = r1(α, r, n, T )

with the following properties: for every δ ∈ (0, r1), there exists a function vδ such that

supp vδ(·, t) ⊂ Dδ,t := {x ∈ R
n; 7δ/10 < |x− ξεδ(t)| < 4δ/5} for t ∈ [0, T ]; (i)

div vδ = ϕ · ∇ηδ in
⋃

0≤t≤T

Dδ,t × {t} with ϕ = Ψ−1
∗ ϕ̃; (ii)

‖vδ(t)‖Lp(Dδ,t) ≤ Cδ
n
p ‖ϕ(t)‖L∞(Br(ξεr (t))), (iii)

‖∇vδ(t)‖Lp(Dδ,t) ≤ Cδ
n
p
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ1,p(B3δ(ξ

εδ (t))),

‖Δvδ(t)‖Lp(Dδ,t) ≤ Cδ
n
p
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ2,p(B3δ(ξ

εδ (t))),

‖∂tvδ(t)‖Lp(Dδ,t) ≤ Cδ
n
p
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖∂tϕ(t)‖Lp(B3δ(ξ
εδ (t)))

for all t ∈ (0, T ), where C = C(α, n, T ) is independent of t and δ, εr = (r/10L)1/α, and

εδ = (δ/10L)1/α with the Hölder constant L of ξ in [0, T ].

Proof. Similar construction of vδ for the given ϕ̃ ∈ C∞(Ω× [0, T ]) with the properties

(i) and (ii) is carried out by Proposition 3.3. However, we need more precise estimates

in Lp such as (iii). Let r0 = 10L and δ < r0. Define fδ = ϕ · ∇ηδ. Then, from the proof

of Proposition 3.3 vδ is expressed by

vδ(x, t) =

N0∑
i=1

∫
Di

δ,t

Gi
δ(x, y, t)f

i
δ(y, t)dy, (x, t) ∈

⋃
0≤t≤T

Dδ,t × {t} (4.3)

where Gi
δ and f i

δ are similarly defined by (3.2), (3.3), (3.4), and (3.6) with r repleced

by δ.
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Define viδ(x, t) :=
∫
Di

δ,t
Gi

δ(x, y, t)f
i
δ(y, t)dy. Since

∑N0

i=1 v
i
δ = vδ and since N0 is

independent of t and δ, it suffices to show that there exists a constant r1 > 0 such that

the following estimates hold: for every 1 ≤ i ≤ N0 and every δ ∈ (0, r1),

‖viδ(t)‖Lp(Di
δ,t)

≤ Cδ
n
p ‖ϕ(t)‖L∞(Br(ξεr (t))), (4.4)

‖∇viδ(t)‖Lp(Di
δ,t)

≤ Cδ
n
p
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ1,p(B3δ(ξ

εδ (t))), (4.5)

‖Δviδ(t)‖Lp(Di
δ,t)

≤ Cδ
n
p
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ2,p(B3δ(ξ

εδ (t))), (4.6)

‖∂tviδ(t)‖Lp(Di
δ,t)

≤ Cδ
n
p
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖∂tϕ(t)‖Lp(B3δ(ξ
εδ (t))) (4.7)

for 1 ≤ p < n and for all t ∈ (0, T ), where C is a constant independent of t and δ. We

may show only (4.6) and (4.7) since (4.4) and (4.5) can be handled in the same way.

We take ψi,j ∈ C∞
0 (Di

1,0 ∩ Dj
1,0) in such a way that

∫
Di

1,0∩Dj
1,0

ψi,j(x)dx = 1 for

(i, j) ∈ J . Let us recall the function {ψi,j
δ }(i,j)∈J in (3.3) may be chosen as

ψi,j
δ (x, t) =

1

δn
ψi,j

(
x+ ξεδ(0)− ξεδ(t)

δ

)
, (i, j) ∈ J (4.8)

for (x, t) ∈ R
n× [0, T ], respectively. Here xi

δ is the center of the ball B
i
δ,0, i = 1, · · · , N0.

It is noticed that for each t ∈ [0, T ]

Di
δ,t ⊂ {y ∈ R

n; |x− y| ≤ 2δ} for all x ∈ Di
δ,t. (4.9)

We have by (3.3), (3.5), and (4.9) that

‖viδ(t)‖Lp(Di
δ,t)

≤
∥∥∥∥∫|x−y|≤2δ

Gi
δ(x, y, t)f

i
δ(y, t)dy

∥∥∥∥
Lp(Di

δ,t)

=

∥∥∥∥∫|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)fδ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

≤
∥∥∥∥∫|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)fδ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

+

∥∥∥∥∥∥∥∥
∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj
t(z)fδ(z, t)dz

)
ψi,k
δ (x+ x′, t)dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≡ I1(δ, t) + I2(δ, t),
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‖∇xv
i
δ(t)‖Lp(Di

δ,t)
≤
∥∥∥∥∇x

∫
|x−y|≤2δ

Gi
δ(x, y, t)f

i
δ(y, t)dy

∥∥∥∥
Lp(Di

δ,t)

=

∥∥∥∥∇x

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)f i

δ(x+ x′, t)dx′
∥∥∥∥
Lp(Di

δ,t)

≤
∥∥∥∥∇x

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)fδ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

+

∥∥∥∥∥∥∥∥∇x

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj
t(z)fδ(z, t)dz

)
ψi,k
δ (x+ x′, t)dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≡ I3(δ, t) + I4(δ, t),

‖Δxv
i
δ(t)‖Lp(Di

δ,t)
≤
∥∥∥∥Δx

∫
|x−y|≤2δ

Gi
δ(x, y, t)f

i
δ(y, t)dy

∥∥∥∥
Lp(Di

δ,t)

=

∥∥∥∥Δx

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)f i

δ(x+ x′, t)dx′
∥∥∥∥
Lp(Di

δ,t)

≤
∥∥∥∥Δx

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)fδ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

+

∥∥∥∥∥∥∥∥Δx

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj
t(z)fδ(z, t)dz

)
ψi,k
δ (x+ x′, t)dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≡ I5(δ, t) + I6(δ, t),

‖∂tviδ(t)‖Lp(Di
δ,t)

≤
∥∥∥∥∂t ∫|x−y|≤2δ

Gi
δ(x, y, t)f

i
δ(y, t)dy

∥∥∥∥
Lp(Di

δ,t)

=

∥∥∥∥∂t ∫|x′|≤2δ

Gi
δ(x, x+ x′, t)f i

δ(x+ x′, t)dx′
∥∥∥∥
Lp(Di

δ,t)

≤
∥∥∥∥∂t ∫|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)fδ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

+

∥∥∥∥∥∥∥∥∂t
∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj
t(z)fδ(z, t)dz

)
ψi,k
δ (x+ x′, t)dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≡I7(δ, t) + I8(δ, t).
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In the next step, we investigate Ij(δ, t) for j = 1, · · · , 8. Now we take δ < r1 :=

min{r0, 9r/31} so that B3δ(ξ
εδ(t)) ⊂ Br(ξ

εr(t)). Then, it follows from (2.8), (3.13) –

(3.16), (4.8), Lemma 2.2.1, and the Hölder, the Minkowski, and the Sobolev inequalities

that

I1(δ, t) =

∥∥∥∥∫|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)∇ηδ(x+ x′, t) · ϕ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

(4.10)

≤C

∫
|x′|≤2δ

‖Gi
δ(·, ·+ x′, t)∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖ϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

≤C

∫
|x′|≤2δ

|x′|1−nδ−n−1‖ϕ(t)‖Lp(B3δ(ξ
εδ (t)))

∫ |x′|+2δ

|x′|
sn−1dsdx′

≤Cδ
n
p ‖ϕ(t)‖L∞(Br(ξεr (t))),

I2(δ, t) =

∥∥∥∥∫|x′|≤2δ

Gi
δ(x, x+ x′, t) (4.11)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj(z, t)∇ηδ(z, t) · ϕ(z, t)dz
)

1

δn
ψi,k

(
x+ x′ + ξεδ(0)− ξεδ(t)

δ

)
dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≤Cδ−
n
p
−1

∑
1≤k≤N0

∫
|x′|≤2δ

‖ϕ(t)‖Lp(Dδ,t)

∥∥∥∥Gi
δ(·, ·+ x′, t)ψi,k

( ·+ x′ + ξεδ(0)− ξεδ(t)

δ

)∥∥∥∥
Lp(Di

δ,t)

dx′

≤Cδ−n(1− 1
p
)−1‖ϕ(t)‖L∞(Br(ξεr (t)))

∫
|x′|≤2δ

|x′|1−n

{∫ |x′|+2δ

|x′|
sn−1ds

}
dx′

≤Cδ
N
p ‖ϕ(t)‖L∞(Br(ξεr (t))),

I3(δ, t) =

∥∥∥∥∇x

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)∇ηδ(x+ x′, t) · ϕ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

(4.12)

≤C

∫
|x′|≤2δ

∑
|α1|+|α2|=1

‖∂α1G
i
δ(·, ·+ x′, t)∂α2∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖ϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

+ C

∫
|x′|≤2δ

‖Gi
δ(·, ·+ x′, t)∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖∇ϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

≤C

∫
|x′|≤2δ

|x′|1−n

⎛⎝ ∑
|α1|+|α2|=1

δ−n−(|α1|+|α2|)−1‖ϕ(t)‖Lp(B3δ(ξ
εδ (t)))
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+ δ−n−1‖∇ϕ(t)‖Lp(B3δ(ξ
εδ (t)))

) ∫ |x′|+2δ

|x′|
sn−1dsdx′

≤Cδ
n
p
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ1,p(B3δ(ξ

εδ (t))),

I4(δ, t) =

∥∥∥∥∇x

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t) (4.13)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj(z, t)∇ηδ(z, t) · ϕ(z, t)dz
)

1

δn
ψi,k

(
x+ x′ + ξεδ(0)− ξεδ(t)

δ

)
dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≤Cδ−
n
p
−1

∑
1≤k≤N0

∫
|x′|≤2δ

‖ϕ(t)‖Lp(Dδ,t)

∑
|α1|+|α2|=1

∥∥∥∥∂α1G
i
δ(·, ·+ x′, t)∂α2ψi,k

( ·+ x′ + ξεδ(0)− ξεδ(t)

δ

)∥∥∥∥
Lp(Di

δ,t)

dx′

≤Cδ−1‖ϕ(t)‖L∞(Br(ξεr (t)))

∑
|α1|+|α2|=1

δ−n+n
p
−(|α1|+|α2|)

∫
|x′|≤2δ

|x′|1−n

{∫ |x′|+2δ

|x′|
sn−1ds

}
dx′

≤Cδ
n
p
−1‖ϕ(t)‖L∞(Br(ξεr (t))),

I5(δ, t) =

∥∥∥∥Δx

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)∇ηδ(x+ x′, t) · ϕ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

(4.14)

≤C

∫
|x′|≤2δ

∑
|α1|+|α2|=2

‖∂α1G
i
δ(·, ·+ x′, t)∂α2∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖ϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

+ C

∫
|x′|≤2δ

∑
|α′

1|+|α′
2|=1

‖∂α′
1
Gi

δ(·, ·+ x′, t)∂α′
2
∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖∇ϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

+ C

∫
|x′|≤2δ

‖Gi
δ(·, ·+ x′, t)∇ηδ(·+ x′, t)‖L∞(Di

δ,t)
‖Δϕ(·+ x′, t)‖Lp(Di

δ,t)
dx′

≤C

∫
|x′|≤2δ

|x′|1−n

⎛⎝ ∑
|α1|+|α2|=2

δ−n−(|α1|+|α2|)−1‖ϕ(t)‖Lp(B3δ(ξ
εδ (t)))

+
∑

|α′
1|+|α′

2|=1

δ−n−(|α′
1|+|α′

2|)−1‖∇ϕ(t)‖Lp(B3δ(ξ
εδ (t))) + δ−n−1‖Δϕ(t)‖Lp(B3δ(ξ

εδ (t)))

⎞⎠∫ |x′|+2δ

|x′|
sn−1dsdx′

≤Cδ
n
p
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + Cδ−1‖1‖Ln(B3δ(ξ

εδ (t)))‖∇ϕ(t)‖
L

pn
n−p (B3δ(ξ

εδ (t)))
+ C‖Δϕ(t)‖Lp(B3δ(ξ

εδ (t)))

≤Cδ
n
p
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ2,p(B3δ(ξ

εδ (t))),
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I6(δ, t) =

∥∥∥∥Δx

∫
|x′|≤2δ

Gi
δ(x, x+ x′, t) (4.15)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj(z, t)∇ηδ(z, t) · ϕ(z, t)dz
)

1

δn
ψi,k

(
x+ x′ + ξεδ(0)− ξεδ(t)

δ

)
dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≤Cδ−
n
p
−1

∑
1≤k≤N0

∫
|x′|≤2δ

‖ϕ(t)‖Lp(Dδ,t)

∑
|α1|+|α2|=2

∥∥∥∥∂α1G
i
δ(·, ·+ x′, t)∂α2ψi,k

( ·+ x′ + ξεδ(0)− ξεδ(t)

δ

)∥∥∥∥
Lp(Di

δ,t)

dx′

≤Cδ−1‖ϕ(t)‖L∞(Br(ξεr (t)))

∑
|α1|+|α2|=2

δ−n+n
p
−(|α1|+|α2|)

∫
|x′|≤2δ

|x′|1−n

{∫ |x′|+2δ

|x′|
sn−1ds

}
dx′

≤Cδ
n
p
−2‖ϕ(t)‖L∞(Br(ξεr (t))),

I7(δ, t) =

∥∥∥∥∂t ∫|x′|≤2δ

Gi
δ(x, x+ x′, t)φi(x+ x′, t)∇ηδ(x+ x′, t) · ϕ(x+ x′, t)dx′

∥∥∥∥
Lp(Di

δ,t)

(4.16)

≤C

∫
|x′|≤2δ

|x′|1−n
(
δ−n− 1

α
−1‖ϕ(·+ x′, t)‖Lp(Di

δ,t)

+δ−n−1‖∂tϕ(·+ x′, t)‖Lp(Di
δ,t)

)∫ |x′|+2δ

|x′|
sn−1dsdx′

≤Cδ
n
p
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖∂tϕ(t)‖Lp(B3δ(ξ
εδ (t))),

I8(δ, t) =

∥∥∥∥∂t ∫|x′|≤2δ

Gi
δ(x, x+ x′, t) (4.17)

∑
1≤j≤N0
1≤k≤N0

aij,k

(∫
Dδ,t

φj(z, t)∇ηδ(z, t) · ϕ(z, t)dz
)

1

δn
ψi,k

(
x+ x′ + ξεδ(0)− ξεδ(t)

δ

)
dx′

∥∥∥∥∥∥∥∥
Lp(Di

δ,t)

≤C

∫
|x′|≤2δ

|x′|1−n
(
δ−n− 1

α
−1‖ϕ(t)‖Lp(Dδ,t) + δ−n−1‖∂tϕ(t)‖Lp(Dδ,t)

)∫ |x′|+2δ

|x′|
sn−1ds

≤Cδ
n
p
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖∂tϕ(t)‖Lp(Dδ,t).

Now, the desired estimates (4.4)–(4.7) are consequences of (4.10)–(4.17). This proves

Proposition 4.3.
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Lemmata 2.2.1 and 4.3 play an important role in showing that the solution of (NS)

in QT is also the very weak solution of (PS) in Q(r, T ).We next investigate the following

Stokes equations with the convection term.⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂twr −Δwr + (h1,∇)wr + (h2,∇)wr +∇π = f in Q̃(r, T ),

div wr = 0 in Q̃(r, T ),

wr = 0 on ∂Br,

wr(0) = a in Br,

(E)

where Q̃(r, T ) ≡ Br × (0, T ) with Br = {x ∈ R
n ; |x| < r}.

Lemma 4.4. For 1 < s < ∞, 1 < q < n satisfying 2/s + n/q > 2, and r > 0, there

is a constant ε0 = ε0(s, q, n, r) with the following property. For every a ∈ B2(1− 1
s
)

q,s (Br),

h1 ∈ L∞(0, T ), h2 ∈ L∞(0, T ;Ln,∞(Br)) with

sup
0<t<T

‖h2(t)‖Ln,∞(Br) ≤ ε0, (4.18)

and every f ∈ Ls(0, T ;Lq(Br)) there exists a solution {wr,∇π} to (E) in the class

wr ∈ Ls(0, T ;H2,q
σ (Br)), ∂twr ∈ Ls(0, T ;Lq

σ(Br)), (4.19)

wr ∈ Ls0(0, T ;Lq0
σ (Br)) (4.20)

for 2
s0
+ n

q0
= 2

s
+ n

q
− 2 with s < s0 < ∞, q < q0 < ∞,

∇π ∈ Ls(0, T ;Lq(Br)). (4.21)

In addition, if q ≥ 2, it holds that

wr ∈ C([0, T ];L2
σ(Br)) ∩ L2(0, T ;H1,2

0,σ(Br)). (4.22)

Proof. We define a Banach space Xs
q,T (Br) by

Xs
q,T (Br) ≡ {w ∈ Ls(0, T ;H2,q(Br)); ∂tw ∈ Ls(0, T ;Lq

σ(Br))} (4.23)

with the norm ‖w‖Xs
q,T (Br) ≡ ‖∂tw‖Ls(0,T ;Lq

σ(Br)) + ‖D2w‖Ls(0,T ;Lq(Br)). To find the solu-

tion {wr,∇π} to (E), we use the successive approximation {wr,j,∇πj}∞j=0 as

wr,0(t) = e−tΔa (4.24)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂twr,j+1 +Δwr,j+1 +∇πj+1 = − (h1,∇)wr,j − (h2,∇)wr,j + f in Q̃(r, T ),

div wr,j+1 = 0 in Q̃(r, T ),

wr,j+1 = 0 on ∂Br,

wr,j+1(0) = a in Br.

(4.25)

By using the maximal regularity in the usual space Ls(0, T ;Lq
σ(Br)), we can find unique

solutions {wr,j+1,∇πj+1} to (4.25) in Xs
q,T (Br)×Ls(0, T ;Lq(Br)) if the right hand side

belongs to Ls(0, T ;Lq(Br)). In fact, the following estimates hold.
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Lemma 4.5. Let 1 < s < ∞, 1 < q < n, and
2

s0
+

n

p0
= 1 with s < s0 < ∞, q < p0 < ∞.

Then, it holds that

‖(h1,∇)w‖Ls(0,T ;Lq
σ(Br)) (4.26)

≤ C‖h1‖Ls0 (0,T ;Lp0 (Br))

(
‖w‖Xs

q,T (Br) + ‖w(0)‖
B2(1− 1

s )
q,s (Br)

)
‖(h2,∇)w‖Ls(0,T ;Lq

σ(Br)) (4.27)

≤ C sup
0<t<T

‖h2(t)‖Ln,∞(Br)

(
‖w‖Xs

q,T (Br) + ‖w(0)‖
B2(1− 1

s )
q,s (Br)

)
for h1 ∈ Ls0(0, T ;Lp0(Br)), h2 ∈ L∞(0, T ;Ln,∞(Br)), and w ∈ Xs

q,T (Br) where C =

C(s, q, s0, p0, n, r) is independent of h1, h2, and w.

Proof of Lemma 4.5. We first show the estimate (4.26). Now we consider the case

where w(0) = 0. By Hölder inequality, we have that

‖(h1,∇)w‖Ls(0,T ;Lq
σ(Br)) ≤ C‖h1‖Ls0 (0,T ;Lp0 (Br))‖∇w‖Ls1 (0,T ;Lp1 (Br)) (4.28)

for
1

s0
+

1

s1
=

1

s
and

1

p0
+

1

p1
=

1

q
. Set f(t) = ∂tw(t) + Ãw(t). Then we have that

‖∇w(t)‖Lp1 (Br) ≤
∫ t

0

‖∇e−(t−τ)Ãf(τ)‖Lp1 (Br) dτ (4.29)

≤
∫ t

0

(t− τ)
−n

2
( 1
q
− 1

p1
)+ 1

2
−1‖f‖Lq(Br) dτ.

From Hardy-Littlewood-Sobolev inequality, we have by (4.29) that

‖∇w‖Ls1 (0,T ;L
p1
σ (Br))

≤ C‖f‖Ls(0,T ;Lq(Br)) ≤ C‖w‖Xs
q (T ) (4.30)

for
1

s1
=

1

s
+

n

2

(
1

q
− 1

p1

)
− 1

2
, i.e.,

2

s0
+

n

p0
= 1.

Next we prove the general case. We consider the following function.

W (t) =

⎧⎨⎩ θ(t)etÃw(0) for t ≤ 0

e−tÃw(0)−
∫ t

0

e−(t−s)Ãf(s)ds for 0 ≤ t

where θ is a C∞(R) function satisfying that θ(t) = 0 for t ≤ −1, θ(t) = 1 for 0 ≤ t, and

0 ≤ θ ≤ 1. From (4.30), we have that

‖∇w‖Ls1 (0,T ;L
p1
σ (Br))

≤ ‖∇W‖Ls1 (−1,T ;L
p1
σ (Br))

(4.31)

≤ C
(
‖∂tW‖Ls(−1,T ;Lq(Br)) + ‖ÃW‖Ls(−1,T ;Lq(Br))

)
.
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We also have that

‖ÃW‖sLs(−1,0;Lq(Br)) ≤
∫ 0

−1

‖ÃetÃw(0)‖sLq(Br)dt ≤
∫ ∞

0

‖Ãe−tÃw(0)‖sLq(Br)dt, (4.32)

‖∂tW‖Ls(−1,0;Lq(Br)) ≤
(∫ 0

−1

‖θ′(t)etÃw(0)‖sLq(Br)dt

) 1
s

+ ‖ÃW‖Ls(−1,0;Lq(Br)) (4.33)

≤ C

{
‖w(0)‖Lq(Br) +

(∫ ∞

0

‖Ãe−tÃw(0)‖sLq(Br)dt

) 1
s

}
≤ C‖w(0)‖

D
1− 1

s ,s

Aq

From (4.31), (4.32), and (4.33), (4.26) holds.

Finally we show the estimate (4.27). We take r0 and r1 satisfying that 1 < r0 < q <

r1 < n. From the Hölder inequality, it follows that

‖(h2,∇)w‖Lrj ,∞(Br) ≤ ‖h2‖Ln,∞(Br)‖∇w‖Lqj ,∞(Br) ≤ ‖h2‖Ln,∞(Br)‖∇w‖Lqj (Br)

where 1
qj

= 1
rj
− 1

n
(j = 1, 2). By the Sobolev inequality, it holds that

‖(h2,∇)w‖Lrj ,∞(Br) ≤ C‖h2‖Ln,∞(Br)‖w‖H2,rj (Br)

for all w ∈ H2,rj(Br) with C = C(n, r0, r1), which implies that the map Sh2 : w 
→
(h2,∇)w is a bounded operator from H2,rj(Br) to Lrj ,∞(Br) for j = 1, 2. From the

Marcinkiewicz interpolation theorem we see that the map Sh2 is also a bounded operator

from H2,q(Br) to Lq(Br). This proves (4.27).

Hence, it follows from (4.26), (4.27), and Lemma 2.4.2 that there exists a pair

of unique solutions {wr,j+1,∇πj+1} to (4.25) in Xs
q,T (Br) × Ls(0, T ;Lq(Br)) with the

estimate

‖wr,j+1‖Xs
q,T (Br) + ‖∇πj+1‖Ls(0,T ;Lq(Br)) (4.34)

≤ C̃

{(
‖h1‖Ls0 (0,T ;Lp0 (Br))

+ sup
0<t<T

‖h2(t)‖Ln,∞(Br)

)
‖wr,j‖Xs

q,T (Br)

+‖f‖Ls(0,T ;Lq(Br)) + ‖a‖
B2(1− 1

s )
q,s (Br)

}
,

where C̃ = C̃(s, q, n, r) is independent of j and T . Now we take ε0 in (4.18) and T ∗ so

that

0 < ε0 ≤ 1

4C̃
, T ∗ ≡

(
4 sup
0<t<T

|h1(t)| vol(Br)
1
p0 C̃

)−s0

. (4.35)
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Defining Wr,j by Wr,j ≡ wr,j − wr,j−1 (wr,−1 = 0), we have by (4.18) and (4.35) that

‖Wr,j+1‖Xs
q,T∗ (Br) ≤ C̃

(
‖h1‖Ls0 (0,T ;Lp0 (Br))

+ sup
0<t<T

‖h2(t)‖LN,∞(Br)

)
‖Wr,j‖Xs

q,T∗ (Br)

≤ 1

2
‖Wr,j‖Xs

q,T∗ (Br) ≤ · · · ≤
(
1

2

)j

‖D2e−tΔa‖Ls(0,T ;Lq(Br))

≤ C

(
1

2

)j

‖a‖
B2(1− 1

s )
q,s (Br)

for j = 0, 1, . . . . Since wr,j =
∑j

k=0 Wr,k, there exists a limiting function wr of wr,j

in Xs
q,T ∗(Br) as j → ∞. Similarly, we obtain a limiting function ∇π of ∇πj in

Ls(0, T ;Lq(Br)). Taking a limit j → ∞ in (4.25), we see that {wr,∇π} is solutions to

(E) for 0 < t < T ∗. Since T ∗ is chosen by (4.35), we see that T ∗ is taken independently

of the initial data a. Hence, starting from T ∗ with the initial data wr(T
∗) we may solve

(E) on [T ∗, 2T ∗]. Repeating this argument beyond 2T ∗, after finitely many steps, we

have a pair of solutions {wr,∇π} of (E) on [0, T ] in the class (4.19). Further, (4.20)

is a consequence of Lemma 2.4.2. From (4.19) we obtain that wr ∈ C([0, T ];L2
σ(Br)).

Therefore, we have (4.22) by the interpolation ‖∇wr‖L2(Br) ≤ ‖wr‖
1
2

L2(Br)
‖D2wr‖

1
2

L2(Br)
.

This proves Lemma 4.4.

Remark 4.6. Similarly to (4.34), it follows from the maximal regularity that

‖w∗
r‖Xs

q,T (B1) + ‖∇πr‖Ls(0,T ;Lq(B1))

≤ C

{(∥∥h1
r

∥∥
Ls0 (0,T ;Lp0 (B1))

+ sup
0<t<T

‖h2
r(t)‖Ln,∞(B1)

)
‖w∗

r‖Xs
q,T (B1)

+‖fr‖Ls(0,T ;Lq(B1)) + ‖ar‖B2(1− 1
s )

q,s (B1)

}
,

where w∗
r(x, t) = wr(rx, r

2t), πr(x, t) = rπ(rx, r2t), h1
r(x, t) = rh1(rx, r

2t), h2
r(x, t) =

rh2(rx, r
2t), fr(x, t) = f(rx, r2t), ar(x) = a(rx), and where C = C(s, q, s0, p0, n) is

independent of r. From such change of scaling parameter r of dilation, for the solution

{wr,∇π} of (E), we obtain the following estimate

‖wr‖Xs
q,r2T

(Br) + ‖∇π‖Ls(0,r2T ;Lq(Br))

≤ C

{(
‖h1‖Ls0 (0,r2T ;Lp0 (Br))

+ sup
0<t<r2T

‖h2(t)‖Ln,∞(Br)

)
‖wr‖Xs

q,r2T
(Br)

+‖f‖Ls(0,r2T ;Lq(Br)) + ‖a‖
B2(1− 1

s )
q,s (Br)

}
with the same constant C as above independent of r. Notice also that

‖D2e−tΔar‖Ls(0,T ;Lq(B1)) ≤ C‖ar‖B2(1− 1
s )

q,s (B1)
,
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where C = C(s, q, n) is independent of r and T . From such change of scaling parameter

r of dilation, we obtain that

‖D2e−tΔa‖Ls(0,r2T ;Lq(Br)) ≤ C‖a‖
B2(1− 1

s )
q,s (Br)

with the same constant C independent of r. Since we may choose T arbitrarily, the

constant C̃ in (4.35) may be chosen independently of r. As a result, the consatnt ε0 in

(4.35) is also taken independently of r.

The following lemma gives us the regularity of very weak solutions of (PS).

Proposition 4.7. (Serrin [23]-Takahashi [29]) Let a ∈ L2
σ(Ω). Suppose that w be a weak

solution of (NS) on Ω× (0, T ) in the Leray-Hopf class, which means that w belongs to

L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1,2

0,σ(Ω)) and that it w satisfies∫
Ω

a(x) · ϕ(x, 0) dx+

∫ T

0

∫
Ω

(w · ϕt +∇w · ∇ϕ+ (w,∇)w · ϕ) dxdt = 0 (4.36)

for all ϕ ∈ C1([0, T );H1,2
0,σ(Ω)∩Ln(Ω)) with ϕ(·, T ) = 0. Assume that w ∈ Ls(t0, t1;L

q(D))

for 2
s
+ n

q
= 1 with n < q ≤ ∞ and that ∂tw ∈ Lα(t0, t1;L

2(D)) for α ≥ 1, where

D × (t0, t1) ⊂ Ω× (0, T ). Then, it holds that

∂tw,
∂α1+···+α3w

∂xα1
1 · · · ∂xαn

n

∈ C(K) (4.37)

for all multi-indices (α1, · · · , αn) and all compact subsets K in D × (t0, t1).

Serrin [23] first proved this type interior regularity for 2
s
+ n

q
< 1. Later, Takahashi

[29] extended the range to 2
s
+ n

q
= 1 with q > n.

Proof of Theorem 4.1. Step 1. We first show that the solution u of (NS) in QT is a

very weak solution of (PS) in Q(r, T ) under the hypothesis (4.2).

Proposition 4.8. Suppose that ξ ∈ Cα([0, T ]; Ω) for 1/n < α ≤ 1. Let u be a solution

of (NS) in QT satisfying (4.2). Then, u is a very weak solution of (PS) in Q(r, T ) for

all r > 0 in the sense of Definition 2.3.2.

Proof of Proposition 4.8. It is easy to show that u ∈ L2
loc(Q(r, T )). Let ϕ̃ ∈

H1,2(0, T ;L2
σ(Br))∩L2(0, T ;H2,2(Br))∩L2(0, T ;L∞(Br)) with ϕ̃|∂Br = 0 and ϕ̃(·, T ) = 0

in Br, and define ϕ := Ψ−1
∗ ϕ̃. By Lemma 2.2.1, there exists some constant r0 =

r0(α, n, T ) such that under the assumption δ < r0 we obtain ηδ ∈ C∞(Rn ×R) satisfy-

ing that 0 ≤ ηδ ≤ 1,

ηδ(x, t) =

{
1 if |x− ξ(t)| > δ

0 if |x− ξ(t)| < δ/2,
(4.38)
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and that

|∇ηδ| ≤ Cδ−1, |Δηδ| ≤ Cδ−2, |∂tηδ| ≤ Cδ−1/α (4.39)

on R
n × [0, T ] where C = C(α, n, T ). By Proposition 4.3 with p = 2, there is some

constant r1 = r1(α, r, n, T ) such that if δ < r1, then there exists a function vδ with its

support in
⋃

0≤t≤T Dδ,t × {t} satisfying that

div vδ = ϕ · ∇ηδ in
⋃

0≤t≤T

Dδ,t × {t}

and that

‖vδ(t)‖L2(Dδ,t) ≤ Cδ
n
2 ‖ϕ(t)‖L∞(Br(ξεr (t))), (4.40)

‖∇vδ(t)‖L2(Dδ,t) ≤ Cδ
n
2
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ1,2(B3δ(ξ

εδ (t))), (4.41)

‖Δvδ(t)‖L2(Dδ,t) ≤ Cδ
n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖ϕ(t)‖Ḣ2,2(B3δ(ξ

εδ (t))), (4.42)

‖∂tvδ(t)‖L2(Dδ,t) ≤ Cδ
n
2
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + C‖∂tϕ(t)‖L2(B3δ(ξ
εδ (t))) (4.43)

for all t ∈ (0, T ), where C is independent of t and δ.

From (4.2) we see that u ∈ L∞(0, T ;L
4n
n+2 (Br(ξ

εr(t)))) ⊂ L∞(0, T ;L2(Br(ξ
εr(t)))).

Since εδ = (δ/10L)1/α with L = L(T ) = inf{L; |ξ(T ) − ξ(0)| ≤ LTα}, by (2.7) it

should be noted that Bδ(ξ
εδ(t)) ⊂ B 11δ

10
(ξ(t)) and Dδ,t ⊂ Bδ(ξ(t)) for all 0 ≤ t ≤ T and

δ > 0. Define w∗ := Ψ−1
∗ w̃∗, W = u−w∗ and take δ0 =

10
11
min{r0, r1}. Applying Ψ∗ to

both sides of (PS”) and then multiplying the result equation by vδ − ϕηδ, we have by

integration by parts on Q(r, T ) that∫
Br(ξεr (0))

W (x, 0) · (ϕ(x, 0)ηδ(x, 0)− vδ(x, 0))dx (4.44)

+

∫ T

0

∫
Br(ξεr (t))

W · {∂t(ϕηδ − vδ) + Δ(ϕηδ − vδ) + (u,∇)(ϕηδ − vδ)}dxdt

+

∫ T

0

∫
Br(ξεr (t))

F · (ϕηδ − vδ)dxdt = 0,

where F = −∂tw
∗ + Δw∗ − (u,∇)w∗. Thus, if we take δ < δ0, then we have by

(4.38)–(4.43), and the Hölder and the Sobolev inequalities that∣∣∣∣∫
Br(ξεr (0))

W (x, 0) · (ϕ(x, 0)ηδ(x, 0)− ϕ(x, 0)− vδ(x, 0))dx

∣∣∣∣ (4.45)

≤C(‖u0‖L2(Bδ(ξ
εδ (0))) + ‖w∗(0)‖L2(Bδ(ξ

εδ (0))))(‖ϕ(0)‖L2(Bδ(ξ
εδ (0))) + ‖vδ(0)‖L2(Dδ,0))

≤C(‖u0‖Ln,∞(Bδ(ξ
εδ (0)))‖1‖

L
2n
n−2 ,1

(Bδ(ξ
εδ (0)))

+ ‖w∗(0)‖L∞(Bδ(ξ
εδ (0)))δ

n
2 )‖ϕ(0)‖L2(Br(ξεr (0)))

≤C(δ
n−2
2 + δ

n
2 ),
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∣∣∣∣∫ T

0

∫
Br(ξεr (t))

W · {∂t(ϕηδ)− ∂tϕ}dxdt
∣∣∣∣ (4.46)

≤
∫ T

0

‖u(t)− w∗(t)‖L2(B 11δ
10

(ξ(t)))‖∂t(ϕηδ)(t)− ∂tϕ(t)‖L2(B 11δ
10

(ξ(t)))dt

≤C

∫ T

0

⎧⎪⎨⎪⎩ε

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)|−2n+2βdx

⎫⎬⎭
1
2

+ ‖w∗(t)‖L2(B 11δ
10

(ξ(t)))

⎫⎪⎬⎪⎭
×
(
δ−

1
α‖ϕ(t)‖L2(B 11δ

10
(ξ(t))) + ‖∂tϕ(t)‖L2(B 11δ

10
(ξ(t)))

)
dt

≤C(εδ−
n
2
+β + δ

n
2 )

∫ T

0

(
δ

n
2
− 1

α‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖∂tϕ(t)‖L2(Br(ξεr (t)))

)
dt

≤C(εδβ−
1
α + δn−

1
α + εδ−

n
2
+β + δ

n
2 ),

∣∣∣∣∫ T

0

∫
Br(ξεr (t))

W · {Δ(ϕηδ)−Δϕ}dxdt
∣∣∣∣ (4.47)

≤C

∫ T

0

‖u(t)− w∗(t)‖L2(B 11δ
10

(ξ(t)))

(
δ−2‖ϕ(t)‖L2(B 11δ

10
(ξ(t)))

+δ−1‖∇ϕ(t)‖L2(B 11δ
10

(ξ(t))) + ‖Δϕ(t)‖L2(B 11δ
10

(ξ(t)))

)
dt

≤C

∫ T

0

⎧⎪⎨⎪⎩ε

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)|−2n+2βdx

⎫⎬⎭
1
2

+ ‖w∗(t)‖L2(B 11δ
10

(ξ(t)))

⎫⎪⎬⎪⎭
×
(
δ

n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + δ−1‖1‖Ln(B 11δ

10
(ξ(t)))‖∇ϕ(t)‖

L
2n
n−2 (B 11δ

10
(ξ(t)))

+‖Δϕ(t)‖L2(B 11δ
10

(ξ(t)))

)
dt

≤C(εδ−
n
2
+β + δ

n
2 )

∫ T

0

(
δ

n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ2,2(Br(ξεr (t)))

)
dt

≤C(εδβ−2 + δn−2 + εδ−
n
2
+β + δ

n
2 ),

∣∣∣∣∫ T

0

∫
Br(ξεr (t))

W · {(u,∇)ϕηδ − (u,∇)ϕ}dxdt
∣∣∣∣ (4.48)

≤
∫ T

0

{
‖u(t)‖2

L
4n
n+2 (B 11δ

10
(ξ(t)))

(
δ−1‖ϕ(t)‖

L
2n
n−2 (B 11δ

10
(ξ(t)))

+ ‖∇ϕ(t)‖
L

2n
n−2 (B 11δ

10
(ξ(t)))

)
+ ‖w∗(t)u(t)‖L2(B 11δ

10
(ξ(t)))

(
δ−1‖ϕ(t)‖L2(B 11δ

10
(ξ(t))) + ‖∇ϕ(t)‖L2(B 11δ

10
(ξ(t)))

)}
dt
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≤C

∫ T

0

⎧⎪⎨⎪⎩ε2

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)| 4n(−n+β)
n+2 dx

⎫⎬⎭
n+2
2n(

δ
n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ2,2(B 11δ

10
(ξ(t)))

)

+ ε

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)|2(−n+β)dx

⎫⎬⎭
1
2 (

δ
n
2
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖∇ϕ(t)‖L2(B 11δ

10
(ξ(t)))

)⎫⎪⎬⎪⎭ dt

≤Cε2δ−
3n
2
+2β+1

∫ T

0

(
δ

n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ2,2((Br(ξεr (t)))

)
dt

+ Cεδ−
n
2
+β

∫ T

0

(
δ

n
2
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖∇ϕ(t)‖L2(Br(ξεr (t)))

)
dt

≤C
{
ε2
(
δ−n+2β−1 + δ−

3n
2
+2β+1

)
+ ε
(
δβ−1 + δ−

n
2
+β
)}

,

∣∣∣∣∫ T

0

∫
Br(ξεr (t))

W · (∂tvδ +Δvδ + (u,∇)vδ)dxdt

∣∣∣∣ (4.49)

≤C

∫ T

0

‖u(t)− w∗(t)‖L2(Dδ,t)

{
(δ−2 + δ−

1
α )δ

n
2 ‖ϕ(t)‖L∞(Br(ξεr (t)))

+‖ϕ(t)‖Ḣ2,2(B3δ(ξ
εδ (t))) + ‖∂tϕ(t)‖L2(B3δ(ξ

εδ (t)))

}
dt

+

∫ T

0

(
‖u(t)‖2

L
4n
n+2 (D(δ,t))

‖∇vδ(t)‖
L

2n
n−2 (D(δ,t))

+ ‖w∗(t)u(t)‖L2(Dδ,t)‖∇vδ(t)‖L2(Dδ,t)

)
dt

≤C

∫ T

0

⎧⎪⎨⎪⎩ε

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)|−2n+2βdx

⎫⎬⎭
1
2

+ ‖w∗(t)‖L2(B 11δ
10

(ξ(t)))

⎫⎪⎬⎪⎭
×
{
(δ−2 + δ−

1
α )δ

n
2 ‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ2,2(Br(ξεr (t)))

+ ‖∂tϕ(t)‖L2(Br(ξεr (t)))

}
dt

+ C

∫ T

0

ε2

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)| 4n(−n+β)
n+2 dx

⎫⎬⎭
n+2
2n

‖vδ(t)‖Ḣ2,2(Dδ,t)
dt

+ C

∫ T

0

ε

⎧⎨⎩
∫
B 11δ

10
(ξ(t))

|x− ξ(t)|−2n+2βdx

⎫⎬⎭
1
2 {

δ
n
2
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ1,2(B3δ(ξ

εδ (t)))

}
dt

≤C
{
ε(δβ−2 + δβ−

1
α + δ−

n
2
+β) + δn−

1
α + δn−2 + δ

n
2

}
+ Cε2δ−

3n
2
+2β+1

∫ T

0

(
δ

n
2
−2‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖ϕ(t)‖Ḣ2,2(B 11δ

10
(ξ(t)))

)
dt

+ Cεδ−
n
2
+β

∫ T

0

(
δ

n
2
−1‖ϕ(t)‖L∞(Br(ξεr (t))) + ‖∇ϕ(t)‖L2(Br(ξεr (t)))

)
dt



Chapter 4. Removable time-dependent singularities in the Navier-Stokes equations

≤C
{
ε2(δ−n+2β−1 + δ−

3n
2
+2β+1) + ε(δβ−2 + δβ−

1
α + δ−

n
2
+β + δβ−1) + δn−

1
α + δn−2 + δ

n
2

}
,

∣∣∣∣∫ T

0

∫
Br(ξεr (t))

F · (ϕηδ − ϕ− vδ)dxdt

∣∣∣∣ (4.50)

≤C

∫ T

0

(
‖ − ∂tw

∗(t) + Δw∗(t)‖L2(B 11δ
10

(ξ(t))) + ‖(u(t),∇)w∗(t)‖L2(B 11δ
10

(ξ(t)))

)
×
(
‖ϕ(t)‖L2(B 11δ

10
(ξ(t))) + ‖vδ(t)‖L2(Dδ,t)

)
dt

≤C

∫ T

0

{
δ

n
2 + ε

{∫
Bδ(ξ(t))

|x− ξ(t)|2(−n+β)dx

} 1
2

}
δ

n
2 ‖ϕ(t)‖L∞(Br(ξεr (t)))dt

≤C(δn + εδβ)

Since 0 < δ < δ0 is arbitrarily taken and since β = max{1/α, n− 1}, by letting δ → +0

in (4.44), we obtain from (4.45)–(4.50) that∫
Br(ξεr (0))

W (x, 0) · ϕ(x, 0)dx+

∫ T

0

∫
Br(ξεr (t))

W · {ϕt +Δϕ+ (u,∇)ϕ}dxdt

+

∫ T

0

∫
Br(ξεr (t))

F · ϕdxdt = 0.

Since W̃ = Ψ∗W , by changing variable y = Ψx in the above, we obtain the first desired

identity (2.15) in Definition 2.3.2.

We shall next show the second identity (2.16). For � ∈ H1,2(Br(ξ
εr(t))), we have

that∣∣∣∣∫
Br(ξεr (t))

W (t) · ∇� dx

∣∣∣∣ (4.51)

=

∣∣∣∣∫
Br(ξεr (t))\Bδ(ξ(t))

div u(t) � dx+

∫
Bδ(ξ(t))

u(t) · ∇� dx−
∫
Br(ξεr (t))

div w∗(t) � dx

∣∣∣∣
=

∣∣∣∣∫
Bδ(ξ(t))

u(t) · ∇� dx

∣∣∣∣
≤Cε

{∫
Bδ(ξ(t))

|x− ξ(t)|2(−n+β)dx

} 1
2

‖ρ‖H1,2(Br(ξεr (t)))

≤Cδ−
n
2
+β.

Since 0 < δ < δ0 is arbitrary and since −n
2
+ β > 0, implied by β = max{1/α, n − 1},

by letting δ → +0 in (4.51) we have that∫
Br(ξεr (t))

W (t) · ∇� dx = 0, 0 < t < T.
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Since W̃ = Ψ∗W , again by changing variable x → y = Ψ−1(x) in the above identity, we

obtain (2.16). As a result, we see that u is a very weak solution of (PS) in Q(r, T ) in

the sense of Definition 2.3.2. This proves Proposition 4.8.

Step 2. We next show the uniqueness of very weak solutions of (PS). Indeed, we

have the following proposition.

Proposition 4.9. Let u be a solution of (NS) in QT satisfying the hypothesis (4.2).

Suppose that v is a very weak solution of (PS) in Q(r, T ) with the initial data v0 satis-

fying v0 = u0|Br(ξεr (0)). There exists r2 > 0 such that if r < r2, then it holds that u ≡ v

in Q(r, T ).

Proof. Let u be a solution of (NS) in QT satisfying (4.2) and let v be a very weak

solution of (PS) in Q(r, T ). It suffices to show that∫ T

0

∫
Br(ξεr (t))

(u− v) ·Hdxdt =

∫ T

0

∫
Br

(ũ− ṽ) · H̃dyds = 0

for all H ∈ C∞
0 (Q(r, T )), where ũ = Ψ∗u, ṽ = Ψ∗v, and H̃ = Ψ∗H. To show this

integral identity, we make use of the duality argument due to Lions-Masmoudi [21].

For every given H̃ ∈ C∞
0 (Q̃(r, T )) we consider existence of the solution to the following

perturbed Stokes equations;⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sΦ̃r +ΔyΦ̃r + (dξ

εr

ds
,∇y)Φ̃r + (ũ,∇y)Φ̃r −∇π̃ = −H̃ in Q̃(r, T ),

div Φ̃r = 0 in Q̃(r, T ),

Φ̃r = 0 on ∂Br × [0, T ],

Φ̃r|s=T = 0 in Br.

Set Φr(y, τ ) = Φ̃r(y, T − τ), u, π, and H similarly, and ξ
εr
(τ) = ξεr(T − τ). Changing

variables s = T − τ , we obtain that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂τΦr −ΔyΦr + (dξ

εr

dτ
,∇y)Φr − (u,∇y)Φr +∇π = H in Q̃(r, T ),

div Φr = 0 in Q̃(r, T ),

Φr = 0 on ∂Br × [0, T ],

Φr|τ=0 = 0 in Br.

(E’)

Since u satisfies the hypothesis (4.2), there exists some constant r2 > 0 such that

if |x − ξ(t)| < 11r2
10

(t ∈ [0, T ]), it holds that |u(x, t)| ≤ ε|x − ξ(t)|−1 for all small

ε > 0. From this inequality, we have that |u(y, T − τ)| ≤ ε|y − (ξ(τ) − ξεr(τ))|−1 for

y ∈ B 11r2
10

(ξ(τ) − ξεr(τ)) and τ ∈ [0, T ]. Note that Br ⊂ B 11r2
10

(ξ(τ) − ξεr(τ)) for all
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τ ∈ [0, T ] provided r < r2. Hence, taking r < r2, we have that

sup
0<τ<T

‖u(τ)‖Ln,∞(Br) = sup
0<τ<T

‖u(T − τ)‖Ln,∞(Br) (4.52)

≤ sup
0<τ<T

‖u(T − τ)‖Ln,∞(B 11r2
10

(ξ(τ)−ξεr (τ)))

≤ Cε

Hence, if we take ε ≤ ε0/C, wee see by (4.52) that u satisfies (4.18). Then it follows

from Lemma 4.4 that for every r < r2 there exists a pair of solutions {Φr, π} to (E’)

in the class (4.19). Since H ∈ L2(0, T ;L2(Br) ∩ L
2n
3 (Br)), from (4.19) we see that

Φ ∈ H1,2(0, T ;L2
σ(Br)) ∩ L2(0, T ;H2,2(Br)) ∩ L2(0, T ;L∞(Br)), and so does Φ̃. From

Proposition 4.8 it follows that u is also a very weak solution of (PS) in Q(r, T ). Since

u and v are very weak solutions of (PS) in Q(r, T ), we have by (2.15) and (2.16) that∫ T

0

∫
Br(ξεr (t))

(u− v) ·Hdxdt =

∫ T

0

∫
Br

(ũ− ṽ) · H̃dyds (4.53)

=

∫ T

0

∫
Br

(−ũ+ ṽ) ·
{
∂sΦ̃r +ΔyΦ̃r +

(
dξεr

ds
,∇y

)
Φ̃r + (ũ,∇y)Φ̃r −∇π̃

}
dyds = 0.

This proves Proposition 4.9.

Step 3. We next show that the very weak solution in Proposition 4.9 may be chosen

as the Leray-Hopf weak solution in the Serrin class given by Lemma 4.7. Let us consider

the problem (PS”) again. We first deal with the case where n = 3. It is easy to show

that F̃ ∈ L2(Br × (0, T )). Since W̃ (0) ∈ Ln,∞
σ (Br) ⊂ L2

σ(Br) and F̃ ∈ L2(Br × (0, T )),

by the standard procedure such as the Galerkin method, we can construct a weak

solution W̃ of (PS”) in the Leray-Hopf class L∞(0, T ;L2
σ(Br)) ∩ L2(0, T ;H1,2

0,σ(Br)).

Therefore, we may assume that W̃ (ε) ∈ H1,2
0,σ(Br) for any ε > 0. It is noticed that

H1,2
0,σ(Br) ⊂ B

1
2

2, 4
3

(Br). In fact, we see that

∫ ∞

0

‖t1− 1
4ΔetΔf‖

4
3

L2(Br)

dt

t
=

∫ 1

0

‖div etΔ∇f‖
4
3

L2(Br)
dt+

∫ ∞

1

‖ΔetΔf‖
4
3

L2(Br)
dt

≤
∫ 1

0

(
t−

1
2‖∇f‖L2(Br)

) 4
3
dt+

∫ ∞

1

(
t−1e−t‖f‖L2(Br)

) 4
3 dt

≤ ‖∇f‖
4
3

L2(Br)

∫ 1

0

t−
2
3dt+ ‖f‖

4
3

L2(Br)

∫ ∞

1

t−
4
3dt

≤ C‖f‖
4
3

H1,2(Br)

for all f ∈ B
1
2

2, 4
3

(Br). Let r < r2, where r2 is the same constant as in the proof

of Proposition 4.9. Then, similarly to (4.52), it follows from the assumption (4.2)
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that sup0<τ<T ‖ũ(τ)‖Ln,∞(Br) ≤ ε0. Now we consider (PS”) in Br × (ε, T ) for r < r2
with the initial data W̃ (ε). Since w̃∗ ∈ C2,1(Br × [0, T ]), we can easily show that

F̃ ∈ L
4
3 (ε, T ;L2(Br)). Applying Lemma 4.4 to (PS”) in Br × (ε, T ) for s = 4

3
, q = 2,

s0 = 4, and q0 = 6, we obtain a strong solution W̃ ∗ of (PS”) in the class

W̃ ∗ ∈ L4(ε, T ;L6(Br)). (4.54)

Therefore, if r < r2, we may choose a very weak solution v of (PS) in Q(r, T ) in

Proposition 4.9 as

v =

⎧⎪⎪⎨⎪⎪⎩
Ψ−1

∗ W̃ +Ψ−1
∗ w̃∗ in Q(r, ε),

Ψ−1
∗ W̃ ∗ +Ψ−1

∗ w̃∗ in
⋃

ε≤t<T

Br(ξ
εr(t))× {t}

(4.55)

with the initial data v|t=0 = u0|Br(ξεr (0)).

Since u is a smooth solution of (NS) in QT satisfying (4.2), it follows from (4.54),

(4.55) and Proposition 4.9 that u is a weak solution of (NS) in Ω × (ε, T ) and that

u ∈ L4(ε, T ;L6(Ω)), ∂tu ∈ L
4
3 (ε, T ;L2(Ω)). (4.56)

Hence it follows from Lemma 4.7 that

∂tu,
∂α1+···+αnu

∂xα1
1 · · · ∂xαn

n

∈ C(K)

for all multi-indices (α1, · · · , αn) and all compact subsets K of Ω×(ε, T ), which implies

that the curve {ξ(t); 0 < t < T} is a family of removable singularities of u in the sense

of Definition 1.1.

In the case when n ≥ 4, since we assume that the initial data u0 belongs to

B2(1− 1
s
)

q,s (Ω) for 2
s
+ n

q
= 3 with max{n

3
, 2} < q < n, it holds that Ψ∗u0|Br(ξεr (0)) ∈

B2(1− 1
s
)

q,s (Br). From Lemma 4.4 for a = Ψ∗u0|Br(ξεr (0)) we obtain a strong solution W̃ ∗ of
(PS”) in Br × (0, T ) in the class

W̃ ∗ ∈ Ls0(0, T ;Lq0(Br)) (4.57)

for 2
s0

+ n
q0

= 1 with s < s0 < ∞ and q < q0 < ∞. Choosing a very weak solution v

of (PS) in Q(r, T ) as v = Ψ−1
∗ W̃ + Ψ−1

∗ w̃∗, we see from Proposition 4.9 that u ≡ v in

Q(r, T ), which implies that u is a weak solution of (NS) in Ω×(0, T ) with the properties

that

u ∈ L4(0, T ;L2n(Ω)), ∂tu ∈ L
4
3 (0, T ;L2(Ω)).

Hence, the desired result is also a consequence of Lemma 4.7. This completes the proof

of Theorem 4.1.



Chapter 5

Solutions with time-dependent singularities

We first define the time-dependent Dirac measure and single layer potential on R
n.

Let γ : Rn → R and R : R → R be continuous functions such that ρ(t) > 0 for all

t ∈ R. Let SR(γ(t)) = {x ∈ R
n; |x − γ(t)| = R} and Sρ(t) = {x ∈ R

n; |x| = ρ(t)} for

each t ∈ R. Then we define the time-dependent Dirac measure δγ(t) and single layer

potentials δSR(γ(t)) and δSρ(t)
as distributions such as

(δγ(t),Φ) = Φ(γ(t)), (5.1)

(δSR(γ(t)),Φ) =

∫
SR(γ(t))

Φ(x)dσ(x), (5.2)

(δSρ(t)
,Φ) =

∫
Sρ(t)

Φ(x)dσ(x) (5.3)

for Φ ∈ C∞
0 (Rn). Now our theorems read as follows.

Theorem 5.1. Let n = 2, 1 < p < 2, 1 ≤ r ≤ p, and γ : R2 → R be a continuous

function. Suppose that a and f are expressed by

a(x) = −ε(−Δ)−1rot δγ(0)(x), (5.4)

f(x, t) = εt−
1
p δγ(t)(x), (5.5)

with a small parameter ε > 0. Then there exists a solution on (0,∞) of⎧⎨⎩
du

dt
+ Au+ P (u,∇)u = Pf a.e. t ∈ R

+ in Ḃ−2+ 2
p

p,∞ (R2) ,

u(0) = a in Ḃ−1+ 2
r

r,∞ (R2),
(NS4)

in the class

ut, Au ∈ L2,∞(0,∞; Ḃ−2+ 2
p

p,∞ (R2)) (5.6)

Moreover, u satisfies that

u ∈ Lα0,∞(0,∞; Ḃs0
p0,1

(R2)) for 2/α0 + 2/p0 − s0 = 1 (5.7)

with p ≤ p0, 2 < α0, and −1 + 2
r
< s0.

59
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Theorem 5.2. Let n = 3, 2 ≤ p < 5
2
, R > 0, γ : R3 → R be a continuous function, and

ρ : R → R be a continuous function satisfying that ρ0 ≤ ρ(t) ≤ ρ1 for some ρ0, ρ1 > 0.

Suppose that a and f are expressed by

a(x) = ε(−Δ)−1rot P (δSρ(0)
(x)ei) or ε(−Δ)−1rot P (δSR(γ(0))(x)ei), (5.8)

f(x, t) = εt−
1
p δSρ(t)

(x) or εt−
1
p δSR(γ(t))(x), (5.9)

with a small parameter ε > 0, where ei(i = 1, 2, 3) is the canonical basis. Then there

exists a solution on (0,∞) of⎧⎨⎩
du

dt
+ Au+ P (u,∇)u = Pf a.e. t ∈ R

+ in Ḃ−3+ 5
p

p,∞ (R3) ,

u(0) = a in Ḃ−1+3/2
2,∞ (R3),

(NS5)

in the class

ut, Au ∈ Lp,∞(0,∞; Ḃ−3+ 5
p

p,∞ (R3)) (5.10)

Moreover, u satisfies that

u ∈ Lα0,∞(0,∞; Ḃs0
p0,1

(R3)) for 2/α0 + 3/p0 − s0 = 1 (5.11)

with p ≤ p0, p < α0, and
1
2
< s0.

Remark 5.3. (1)We construct a solution with time-dependent singular point or sets

to the Navier-Stokes equations easier than [13]. Moreover, in our main theorem it is

enough for us to suppose that γ is continuous. However, we don’t know how the solution

behaves near the singularities.

(2)We cannot replace n = 3 in Theorem 5.1 in our method since we cannot find 1 <

α < ∞ satisfying the condition 2/α + 3/p− s = 3 in Proposition 2.4.3.

Proof of Theorem 5.1. Let {φj}j∈Z be the Littlewood-Paley decomposition. Since

δγ(t) is the translation operator by γ(t) of convolution for each t ∈ R
+, we have

ϕj ∗ δγ(t)(x) = ϕj(x− γ(t)) = F−1[φ(2−j·)](x− γ(t)) = 2nj[F−1φ](2j(x− γ(t))).

Hence, it holds that

‖ϕj ∗ δγ(t)‖Lp(Rn) = 2nj‖[F−1φ](nj(· − γ(t)))‖Lp(Rn) = 2nj(1−
1
p
)‖[F−1φ]‖Lp(Rn) (5.12)

From (5.12) we obtain that

δγ(t)(x) ∈ Ḃ
−n+n

p
p,∞ (Rn), 1 ≤ p ≤ ∞, n ∈ N (5.13)
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for all t ∈ R
+. If we take ε > 0 so small, it holds by (5.4), (5.5), and (5.13) that

a(x) = −ε(−Δ)−1rot δγ(0)(x) ∈ Ḃ−1+ 2
r

r,∞ (R2), 1 ≤ r ≤ p,

f(x, t) = εt−
1
p δγ(t)(x) ∈ L2,∞(0,∞; Ḃ

−2+ 2
p

p,∞ (R2))

for 1 < p < ∞ with

‖a‖
Ḃ

−1+ 2
p

p,∞ (R2)
+ ‖f‖

Lp,∞(0,∞;Ḃ
−2+ 2

p
p,∞ (R2))

≤ η.

Therefore, from Proposition 2.4.3 with s = −2 + 2
p
, α = 2, and q = ∞ we obtain the

global solution

u ∈ Lα0,∞(0,∞; Ḃs0
p0,1

(R2)) for 2/α0 + 2/p0 − s0 = 1

of (NS4) with p ≤ p0, 2 < α0, and −1 + 2
p
< s0.

Proof of Theorem 5.2. Let δSR(γ(t)) and δSρ(t)
be the time-dependent single layer po-

tentials defined by (5.2) and (5.3). By the Minkovski inequality we have that

‖ϕj ∗ δSR(γ(t))‖Lp(R3) =

{∫
R3

∣∣∣∣∫
SR(γ(t))

ϕj(x− y)dσ(y)

∣∣∣∣p dx} 1
p

(5.14)

≤
∫
SR(γ(t))

{∫
R3

|ϕj(x− y)|pdx
} 1

p

dσ(y)

= |SR|‖ϕj‖Lp(R3)

and

‖ϕj ∗ δSρ(t)
‖Lp(R3) =

{∫
R3

∣∣∣∣∣
∫
Sρ(t)

ϕj(x− y)dσ(y)

∣∣∣∣∣
p

dx

} 1
p

(5.15)

≤
∫
Sρ(t)

{∫
R3

|ϕj(x− y)|pdx
} 1

p

dσ(y)

= |Sρ(t)|‖ϕj‖Lp(R3)

≤ |Sρ1 |‖ϕj‖Lp(R3)

for all t ∈ R
+ and 1 ≤ p ≤ ∞ where |SR| =

∫
SR

dσ. Taking p = ∞, it holds that

‖ϕj ∗ δSR(γ(t))‖L∞(R3) ≤ |SR|‖ϕj‖L∞(R3) = |SR|‖F−1[φ(2−j·)]‖L∞(R3) = 23jCφ|SR|,
‖ϕj ∗ δSρ(t)

‖L∞(R3) ≤ |Sρ1 |‖ϕj‖L∞(R3) = |Sρ1 |‖F−1[φ(2−j·)]‖L∞(R3) = 23jCφ|Sρ1 |,
where Cφ = ‖[F−1φ](2j·)‖L∞(R3). Therefore, we obtain that

sup
j∈Z

2−3j‖ϕj ∗ δSR(γ(t))‖L∞(R3), sup
j∈Z

2−3j‖ϕj ∗ δSρ(t)
‖Lp(R3) < ∞
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for all t ∈ R
+, that is,

δSR(γ(t)), δSρ(t)
∈ Ḃ−3

∞,∞(R3) (5.16)

In order to obtain more precise estimates, we use the Fourier transform. We first deal

with the case of δSR(γ(t)). By the symmetry of the sphere we may set SR(γ(t)) = {x =

Rω+γ(t)}, ω = (sinθcosϕ, sinθcosϕ, cosθ), and ξ = ξ′+γ(t) with the angles 0 ≤ θ ≤ π

and 0 ≤ ϕ < 2π and ξ′ = (0, 0,−|ξ′|). Hence, we have

F [δSR(γ(t))](ξ − γ(t)) =

∫
SR(γ(t))

e−ix·(ξ−γ(t))dx

=

∫ π

0

dθ

∫ 2π

0

ei(R|ξ′|cos θ−γ3(t)|ξ′|)R2sin θ dθdϕ

= 4πRe−γ3(t)|ξ′| sin R|ξ′|
|ξ′| ,

which yields

F [δSR(γ(t))](ξ) = 4πRe−γ3(t)|ξ| sin R|ξ|
|ξ| .

By the Plancherel theorem we have

‖ϕj ∗ δSR(γ(t))‖2L2(R3) = ‖F [ϕj]F [δSR(γ(t))]‖2L2(R3) ≤ CR2

∫
2j−1≤|ξ|≤2j+1

|φ(2−jξ)|2
|ξ|2 dξ

(5.17)

= CR22j
∫

1
2
≤|ξ|≤2

|φ(ξ)|2
|ξ|2 dξ ≤ C2j

It follows from (5.17) that

2−
j
2‖ϕj ∗ δSR(γ(t))‖L2(R3) ≤ C

for all t ∈ R
+ and j ∈ Z, which shows that

δSR(γ(t)) ∈ Ḃ
− 1

2
2,∞(R3). (5.18)

From the interpolation of (5.16) and (5.18) we obtain that

δSR(γ(t)) ∈ Ḃ
−3+ 5

p
p,∞ (R3), 2 ≤ p ≤ ∞. (5.19)

Next we deal with the case of δSρ(t)
. Similarly, we may set Sρ((t) = {x = ρ(t)ω},

ω = (sin θ cos ϕ, sin θ cos ϕ, cos θ), and ξ = (0, 0,−|ξ|). Hence, we have

F [δSρ(t)
](ξ) =

∫
Sρ(t)

e−ix·ξdx

=

∫ π

0

∫ 2π

0

eiρ(t)|ξ|cos θρ(t)2sin θ dθdϕ

= 4πρ(t)
sin ρ(t)|ξ|

|ξ|
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By the Plancherel theorem we have

‖ϕj ∗ δSρ(t)
‖2L2(R3) = ‖F [ϕj]F [δSρ(t)

]‖2L2(R3) ≤ Cρ(t)2
∫
2j−1≤|ξ|≤2j+1

|φ(2−jξ)|2
|ξ|2 dξ (5.20)

≤ Cρ212
j

∫
1
2
≤|ξ|≤2

|φ(ξ)|2
|ξ|2 dξ ≤ C2j

It follows from (5.20) that

2−
j
2‖ϕj ∗ δSρ(t)

‖L2(R3) ≤ C

for all t ∈ R
+ and j ∈ Z, which shows that

δSρ(t)
∈ Ḃ

− 1
2

2,∞(R3). (5.21)

From the interpolation of (5.16) and (5.21) we obtain that

δSρ(t)
∈ Ḃ

−3+ 5
p

p,∞ (R3), 2 ≤ p ≤ ∞. (5.22)

If we take ε > 0 so small, it holds by (5.8), (5.9), and (5.22) that

a(x) = ε(−Δ)−1rot P (δSρ(0)
(x)ei) or ε(−Δ)−1rot P (δSR(γ(0))(x)ei) ∈ Ḃ−1+ 3

2
2,∞ (R3),

f(x, t) = εt−
1
p δSρ(t)

(x) or εt−
1
p δSR(γ(t))(x) ∈ Lp,∞(0,∞; Ḃ

−3+ 5
p

p,∞ (R3))

for 2 ≤ p ≤ ∞ with

‖a‖
Ḃ

−1+3/2
2,∞ (R3)

+ ‖f‖
Lp,∞(0,∞;Ḃ

−3+ 5
p

p,∞ (R3))
≤ η.

Therefore, from Proposition 2.4.3 with s = −3+ 5
p
, α = p, q = ∞, and r = 2 we obtain

the global solution

u ∈ Lα0,∞(0,∞; Ḃs0
p0,1

(R3)) for 2/α0 + 3/p0 − s0 = 1

of (NS5) with p ≤ p0, p < α0, and 1/2 < s0. This proves Theorem 5.2.
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Appendix

In this Appendix, we prove the existence of functions f i
r,t, i = 1, · · · , N0 satisfying

in the proof of Proposition 3.3. More precisely, we have the following proposition.

Proposition. Let ψi,j
r,t, (i, j) ∈ {1, · · · , N0}2 be as in (3.2). There exist {aij,k}1≤i,j,k≤N0

such that the family {f i
r,t}N0

i=1 defined by (3.3) satisfies the property (3.4).

Proof. Since Dr,t is the annulus region with the radius between 7r/10 and 4r/5 for all

t ∈ [0, T ], it suffices to prove (3.4) for t = 0. Let Li
r :=

∫
Dr,0

φi(x, 0)fr(x, 0)dx. Since

{f i
r,0}N0

i=1 satisfies

∫
Dr,0

f i
r,0 dx = 0, i = 1, · · · , N0, {aij,k}1≤i,j,k≤N0 needs to fulfill that

Li
r +

∑
1≤j≤N0
1≤k≤N0

aij,kL
j
r〈i, k〉 = 0, (6.1)

where

〈i, j〉 =
{

0 i = j or Di
r,0 ∩Dj

r,0 = ∅,
1 otherwise.

Moreover, since fr(x, 0) =

N0∑
i=1

f i
r,0(x), we see that {aij,k}1≤i,j,k≤N0 needs to fulfill that

∑
1≤j≤N0

a1j,1L
j
rψ

1,1
r,0 (x) + · · ·+

∑
1≤j≤N0

a1j,N0
Lj
rψ

1,N0

r,0 (x) + · · ·

· · ·+
∑

1≤j≤N0

aN0
j,1L

j
rψ

N0,1
r,0 (x) + · · ·+

∑
1≤j≤N0

aN0
j,N0

Lj
rψ

N0,N0

r,0 (x)

= 0.

(6.2)
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Since ψi,j
r,0(x) = ψj,i

r,0(x) for 1 ≤ i, j ≤ N0, it follows from (6.2) that⎧⎪⎪⎨⎪⎪⎩
∑

1≤j≤N0

aij,iL
j
r = 0 for 1 ≤ i ≤ N0,∑

1≤j≤N0

(aij,k + akj,i)L
j
r = 0 for 1 ≤ i, k ≤ N0, i �= k.

(6.3)

Hence, for the validity of (3.4), it suffices to show that there exist {aij,k}1≤i,j,k≤N0 such

that (6.1) and (6.3) fulfilled for any r > 0. By using
∑N0

i=1 L
i
r =

∫
Dr,0

fr(x, 0) dx = 0,

we obtain the following equations from (6.1) and (6.3):⎧⎪⎪⎨⎪⎪⎩
−
∑

1≤k≤n0

aii,k〈i, k〉+
∑

1≤k≤N0

aij,k〈i, k〉 = 1 for 1 ≤ i, j ≤ N0, i �= j,

ak1,k = · · · = akN0,k
for 1 ≤ k ≤ N0,

ai1,j + aj1,i = · · · = aiN0,j
+ ajN0,i

for 1 ≤ i, j ≤ N0, i �= j,

(6.4)

It is easy to see that (6.4) is equivalent to the following linear system:

Ax = b (6.5)

with

A =

[
F1 · · · FN2

0

G1 · · · GN2
0

]
, b = t [0 · · · · · · , · · · , 0︸ ︷︷ ︸

1
2
N0(N0 − 1)(N0 + 1)

1 · · · 1]︸ ︷︷ ︸
N0(N0 − 1)

,

x = t
[
a11,1 · · · a1N0,1

a11,2 · · · a1N0,N0
a21,1 · · · aN0

N0,N0

]︸ ︷︷ ︸
N3

0

.

Here, by a direct calculation, we see that the 1
2
N0(N0 − 1)(N0 + 1) × N0 matrix Fi

(1 ≤ i ≤ N2
0 ) and the N0(N0 − 1)×N0 matrix Gi (1 ≤ i ≤ N2

0 ) are expressed by

F(k−1)N0+k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O
1 −1 O
...

. . .
...

. . .

1 O −1

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}
(k − 1)(N0 − 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
N0 − 1

}
1
2(N0 − 1)(N2

0 +N0 − 2k)
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for 1 ≤ k ≤ N0,

F(k−1)N0+l = F(l−1)N0+k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

O
1 −1 O
...

. . .
...

. . .

1 O −1

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}∑k
i=1(N0 − i+ 1)(N0 − 1)}

(l − k − 1)(N0 − 1)⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
N0 − 1

}
1
2(N0 − 1){N2

0 + (1− 2k)N0 + k2 + k − 2l}

for 1 ≤ k < l ≤ N0, and

G(k−1)N0+l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

O

〈k, l〉 O −〈k, l〉
. . .

... O
O 〈k, l〉 ...

... 〈k, l〉 O
O ...

. . .

−〈k, l〉 O 〈k, l〉

O︸ ︷︷ ︸
k − 1

︸ ︷︷ ︸
N0 − k

⎫⎬⎭(k − 1)(N0 − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
N0 − 1

⎫⎬⎭(N0 − k)(N0 − 1)

for 1 ≤ k, l ≤ N0. To solve the linear system (6.5), we need to investigate the rank of

the matrix A. For this purpose, we find an elementary matrix A′ equivalent to A by

elementary row and column operations.

1. Add the (k − 1)N0 + 1-st column of A to the (k − 1)N0 + 2-nd column and then

subtract the (k − 1)N0 + 2-nd column from (k − 1)N0 + 1-st column 1 ≤ k ≤ N2
0 . By

adding the (k − 1)N0 + l-th column of A to the (k − 1)N0 + l + 1-th column and then

subtract the (k − 1)N0 + l + 1-th column from (k − 1)N0 + l-th column in order from
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l = 2 to l = N0 − 1, we have that

F(k−1)N0+k −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

EN0−1 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}
(k − 1)(N0 − 1)

}
N0 − 1

}
1
2(N0 − 1)(N2

0 +N0 − 2k)

for 1 ≤ k ≤ N0 with the identity matrix EN0−1 of size N0 − 1,

F(k−1)N0+l = F(l−1)N0+k −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

O

EN0−1 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}∑k
i=1(N0 − i+ 1)(N0 − 1)

}
(l − 1)(N0 − 1)

}
N0 − 1

}
1
2(N0 − 1)(N2

0 +N0 − 2k)

for 1 ≤ k < l ≤ N0,

Gk −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−〈1, k〉 O 0
. . .

...
. . .

...

O −〈1, k〉 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

⎫⎪⎪⎪⎬⎪⎪⎪⎭N0 − 1

⎫⎬⎭(N0 − 1)2
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for 1 ≤ k ≤ N0, and

G(k−1)N0+l −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

O

0 · · · 0 〈k, l〉
−〈k, l〉 O

...

. . .
... O

O −〈k, l〉 ...
... −〈k, l〉 O 0

O ...
. . .

...

〈k, l〉 O −〈k, l〉 0

O︸ ︷︷ ︸
k − 2

︸ ︷︷ ︸
N0 − k + 1

⎫⎬⎭(k − 1)(N0 − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
N0 − 1

⎫⎬⎭(N0 − k)(N0 − 1)

for 2 ≤ k ≤ N0 and 1 ≤ l ≤ N0.

2. We can transform

F(k−1)N0+1 −→ F(k−1)N0+1 − Fk = O,

G(k−1)N0+1 −→ G(k−1)N0+1 −Gk ≡
[
G+

(k−1)N0+1

G−
(k−1)N0+1

]

with

G+
(k−1)N0+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1, k〉 O 0
. . .

...
. . .

...

O 〈1, k〉 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

⎫⎪⎪⎪⎬⎪⎪⎪⎭N0 − 1

⎫⎬⎭(k − 2)(N0 − 1)
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and

G−
(k−1)N0+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 · · · 0 〈k, 1〉
−〈k, 1〉 O

...

. . .
...

O
O −〈k, 1〉 ...

... −〈k, 1〉 O 0

O ...
. . .

...

〈k, 1〉 O −〈k, 1〉 0

O︸ ︷︷ ︸
k − 2

︸ ︷︷ ︸
N0 − k + 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N0 − 1

⎫⎬⎭(N0 − k)(N0 − 1)

for 2 ≤ k ≤ N0. Organizing Gk by using Fk 1 ≤ k ≤ N0, we have that for 1 ≤ k ≤ N0

Gk −→ O.

3. As in the operation 2, we can transform

F(l−1)N0+k −→ F(l−1)N0+k − F(k−1)N0+l = O,

G(l−1)N0+k −→ G(l−1)N0+k −G(k−1)N0+l ≡
[
G+

(l−1)N0+k

G−
(l−1)N0+k

]
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with

G+
(l−1)N0+k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

O

0 · · · 0 −〈k, l〉
〈k, l〉 O

...

. . .
... O

O 〈k, l〉 ...
... 〈k, l〉 O 0

O ...
. . .

...

−〈k, l〉 O 〈k, l〉 0

O︸ ︷︷ ︸
k − 2

︸ ︷︷ ︸
N0 − k + 1

⎫⎬⎭(k − 1)(N0 − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
N0 − 1

⎫⎬⎭(l − k − 1)(N0 − 1)

and

G−
(l−1)N0+k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 · · · 0 〈l, k〉
−〈l, k〉 O

...

. . .
...

O
O −〈l, k〉 ...

... −〈l, k〉 O 0

O ...
. . .

...

〈l, k〉 O −〈l, k〉 0

O︸ ︷︷ ︸
l − 2

︸ ︷︷ ︸
N0 − l + 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N0 − 1

⎫⎬⎭(N0 − l)(N0 − 1)

for 2 ≤ k < l ≤ N0. Organizing G(k−1)N0+l by using F(k−1)N0+l, we have that for

2 ≤ k < l ≤ N0

G(k−1)N0+l −→ O.
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From the operations 1, 2, and 3 we see that by excluding 0 vectors and then by

organizing A we can transform

A −→ A′ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1
2N0(N0−1)(N0+1) O

O B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with the identity matrix E 1
2
N0(N0−1)(N0+1) of size

1
2
N0(N0−1)(N0+1) where the N0(N0−

1)× 1
2
N0(N0 − 1)2 matrix B is the arrangement of G(k−1)N0+l for 1 ≤ l < k ≤ N0, i.e.,

B is expressed by

B =
[
GN0+1 G2N0+1 G2N0+2 · · · GN2

0−1

]
.

Finally, to show the existence of {aij,k}1≤i,j,k≤N0 satisfying (6.4) we show that A′ has the
same rank as the augmented matrix [A′|b], that is, rank A′ = rank [A′|b]. It is noted

that b is unchanged by the operation 1-3 and that N0(N0 − 1) < 1
2
N0(N0 − 1)2 since in

general it holds that N0 > 3.

If necessary by changing the annulusD2
r,0 to another, we may suppose that 〈1, 2〉 = 1.

By elementary row and column operations we can transform

G(k−1)n0+1 −→ G(k−1)N0+1 − 〈1, k〉GN0+1

for 3 ≤ k ≤ N0. Since the 1st, · · · , (N0 − 1)-th row of G(k−1)N0+l is 0 vector for

1 ≤ l < k ≤ N0 with k ≥ 3, organizing GN0+1 we have that

GN0+1 −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EN0−1 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}
N0 − 1

}
(N0 − 1)2

Now we define Hl by Hl := 〈1, l〉 + · · · 〈l − 1, l〉 and let k ≥ 3. Generally, since⋃l−1
i=1D

i
r,0 and

⋃N0

i=l D
i
r,0 have an intersection, if necessary we can rearrange Dl

r,0 so that
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⋃l−1
i=1D

i
r,0 and Dl

r,0 have an intersection. Then, it holds that Hl ≥ 1 for 2 ≤ l ≤ N0. By

elementary row and column operations we have that

G(k−1)N0+1 −→
k−1∑
i=1

G(k−1)N0+i (6.6)

and then we obtain that

G(k−1)N0+m −→ G(k−1)N0+m − 〈k,m〉
Hk

G(k−1)N0+1 = O (6.7)

for 2 ≤ m ≤ k − 1 and

G(l−1)N0+m −→ G(l−1)N0+m − 〈l,m〉
Hk

G(k−1)N0+1 (6.8)

for 1 ≤ m ≤ k − 1 and k + 1 ≤ l ≤ N0. Since the 1st, · · · , (k − 1)(N0 − 1)-th row of

G(l−1)N0+m is 0 vector for 1 ≤ m < l ≤ N0 with l ≥ k + 1, multiplying G(k−1)N0+1 by

1/Hk and then organizing G(k−1)N0+1, we have that

G(k−1)N0+1 −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

EN0−1 0

O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N0

}
(k − 2)(N0 − 1)

}
N0 − 1

}
(N0 − k + 1)(N0 − 1)

We see from repeating elementary row and colume operations (6.6)−(6.9) from k = 3

to k = N0 that rank B = rank
[
GN0+1 G2N0+1 G2N0+2 · · · GN2

0−1

]
= (N0− 1)2.

Since by these operations b is transformed into

b −→ t [0 · · · · · · , · · · , 0︸ ︷︷ ︸
1
2
N0(N0 − 1)(N0 + 1)

0 1 · · · 1︸ ︷︷ ︸
N0 − 2

0 0 1 · · · 1︸ ︷︷ ︸
N0 − 3

· · · 0 · · · 0]︸ ︷︷ ︸
N0 − 1

,

rank A′ = rank [A′|b] = 1
2
(N0− 1)(N2

0 +3N0− 2) holds. This shows the conclusion.
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