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Chapter 1

Overview

In this paper, we consider the Hénon equation

{
−∆u = |x− x0|l|u|p−1u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N = 1, 2, 3) is a bounded domain. The real parameter l ≥ 0 is

the potential index, and the real parameter 2 ≤ p < p∗ (p∗ = ∞ if N = 1, 2 and

p∗ = 5 if N = 3) is the polytropic index. This Hénon equation, a generalized form of

the Emden equation, admits symmetry-breaking bifurcation for the potential index

l. Therefore, it has asymmetric solutions on a symmetric domain even though the

Emden equation has no asymmetric unidirectional solution on such a domain. In

chapter 2, we discuss a numerical verification method for proving the existence of

solutions of the Hénon equation on a bounded domain. By applying the method to

a line-segment domain and a square domain, we numerically prove the existence of

several solutions of the Hénon equation for l = 0, 2, 4 with fixed p = 3. As a result,

we find a set of undiscovered solutions with three peaks on the square domain.

However, the singularity of the Hénon equation prevents to verify the solution when

the parameter l is not even number using only the chapter 2 method. It also makes

it difficult to verify the bifurcation point and branches. In chapter 3, we focused on

the one-dimensional Hénon equation

{
−u′′ = |x|l|u|p−1u, x ∈ (−1, 1),

u(−1) = u(1) = 0,

and developed a numerical verification method that follows the singularity of the

Hénon equation. By applying the method, the existence of multiple solutions can

be proved efficiently even when l is not even number. As a result, we succeeded

in verifying the branches and bifurcation points of the simple symmetry-breaking

bifurcation of the one-dimensional Hénon equation.
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Chapter 2

Basic numerical verification method
and newly discovered solutions of the
Hénon equation

2.1 Introduction

The Hénon equation was proposed as a model for mass distribution in spherically

symmetric star clusters, which is important in studying the stability of rotating stars

[1]. One important aspect of the model is the Dirichlet boundary value problem

{
−∆u = |x− x0|l|u|p−1u in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ RN (N = 1, 2, 3) is a bounded domain, x is the location of the star, and

u is the positive solution because it stands for the stellar density. Particularly, x0

is often set to the center of the symmetry axis if the domain has some symmetry.

The real parameter 2 ≤ p < p∗ (p∗ = ∞ if N = 1, 2 and p∗ = 5 if N = 3) is the

polytropic index, determined according to the central density of each stellar type.

The real parameter l ≥ 0 is the ratio of the transverse velocity to the radial velocity.

These velocities can be derived by decomposing the space velocity vector into the

radial and transverse components.

When l = 0, the Hénon equation coincides with the Emden equation −∆u =

|u|p−1u in Ω. In this case, the transverse velocity vanishes and the orbit becomes

purely radial. Gidas, Ni, and Nirenberg proved that the Emden equation has no

asymmetric unidirectional solution in a rectangle domain [2]. However, Breuer, Plum,

and McKenna reported some asymmetric solutions obtained with an approximate

computation based on the Galerkin method [3], which were called “spurious approx-

imate solutions” caused by discretization errors. This example shows the need to

verify approximate computations. By contrast, a theoretical analysis [4] for large l

(when the orbit tends to be purely circular) found that the Hénon equation admits

symmetry-breaking bifurcation, thereby having several asymmetric solutions even on

a symmetric domain.

The importance of the Hénon equation has led to active mathematical study on it

over the last decade. For example, Amadori and Gladiali [5] analyzed the bifurcation
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structure of (2.1) with respect to parameter p. They applied an analytical method

to the Hénon equation that had worked for the Emden equation. Additionally, sev-

eral numerical studies have been conducted on the Hénon equation [6, 7, 8, 9]. In

particular, we are motivated by the work of Yang, Li, and Zhu [6], who developed an

effective computational method to find multiple asymmetric solutions of (2.1) on the

unit square Ω = (0, 1)2 using algorithms based on the bifurcation method. They gen-

erated the bifurcation curve of (2.1) with p = 3 and numerically predicted bifurcation

points around l = 0.5886933 and l = 2.3654862 using approximate computations.

The purpose of our study is to prove the existence of solutions of (2.1) using the

Newton–Kantorovich theorem (see Theorem 2). We prove their existence through the

following steps:

1. We construct approximate solutions û using the Galerkin method with polyno-

mial approximations.

2. Using the Newton–Kantorovich theorem (Theorem 3), we prove the existence

of solutions u of (2.1) with nearby approximations û while sharply evaluating

the error bound between u and û in terms of the H1
0 -norm ‖∇ · ‖L2 .

By applying the above steps to the problem (2.1) on the domains Ω = (0, 1)N

(N = 1, 2), we successfully prove the existence of several solutions for l = 0, 2, 4.

In particular, we find a set of solutions with three peaks, which were not revealed in

[6] (see Figure 2.2).

The remainder of this chapter is organized as follows. Some notation is introduced

in Section 2.2. Sections 2.3 and 2.4 describe numerical verification based on the

Newton–Kantorovich theorem together with evaluations of several required constants.

Section 2.5 shows the results numerically proving the existence of several asymmetric

solutions of (2.1). Subsequently, we discuss the solution curves of the problem for

p = 3 based on an approximate computation.

2.2 Preliminaries

We begin by introducing some notation. For two Banach spaces X and Y , the set

of bounded linear operators from X to Y is denoted by L(X,Y ). The norm of

T ∈ L(X,Y ) is defined by

‖T‖L(X,Y ) := sup
0$=u∈X

‖Tu‖Y
‖u‖X

. (2.2)

Let Lp(Ω) (1 ≤ p < ∞) be the function space of p-th power Lebesgue integrable

functions over a domain Ω with the Lp-norm ‖u‖Lp :=
(∫

Ω |u(x)|pdx
)1/p

< ∞. When

p = 2, L2(Ω) is the Hilbert space with the inner product (u, v)L2 :=
∫
Ω u(x)v(x)dx.

Let L∞(Ω) be the function space of Lebesgue measurable functions over Ω, with the

norm ‖u‖L∞ := ess sup{|u(x)| : x ∈ Ω} for u ∈ L∞(Ω). We denote the first-order L2

Sobolev space in Ω as H1(Ω) and define

H1
0 (Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω in the trace sense

}
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as the solution space for the target equation (2.1). We endow H1
0 (Ω) with the inner

product and norm

(u, v)H1
0
: = (∇u,∇v)L2 + τ(u, v)L2 , u, v ∈ H1

0 (Ω), (2.3)

‖u‖H1
0
: =

√
(u, u)H1

0
, u ∈ H1

0 (Ω), (2.4)

where τ is a nonnegative number chosen as

τ > −p|x− x0|l|û(x)|p−1 a.e. x ∈ Ω (2.5)

for a numerically computed approximation û ∈ H1
0 (Ω). The condition (2.5) is required

in Subsection 2.4.2 and û is explicitly constructed in Section 2.5. Because the norm

‖·‖H1
0
monotonically increases with respect to τ , theH1

0 (Ω) norm ‖∇·‖L2 is dominated

by the norm ‖ · ‖H1
0
for all τ ≥ 0. Therefore, the error bound ‖u− û‖H1

0
is always an

upper bound for ‖∇(u − û)‖L2 . The topological dual space of H1
0 (Ω) is denoted by

H−1 with the norm defined by

‖T‖H−1 := sup
0$=u∈H1

0

|Tu|
‖u‖H1

0

.

The bound for the embedding H1
0 (Ω) ↪→ Lp(Ω) is denoted by Cp (p ≥ 2). More

precisely, Cp is a positive number satisfying

‖u‖Lp ≤ Cp‖u‖H1
0

for all u ∈ H1
0 (Ω). (2.6)

Note that ‖u‖H−1 ≤ Cp‖u‖Lp′ , u ∈ Lp′
(Ω) holds for p′ satisfying p−1 + p′−1 = 1

. Explicitly estimating the embedding constant Cp is important for our numerical

verification. When p = 2, we use the following optimal inequality:

‖u‖L2 ≤ 1√
λ1 + τ

‖u‖H1
0
,

where λ1 is the first eigenvalue of the minus Laplacian in the weak sense. Especially

when Ω = (0, 1)N , we have λ1 = Nπ2. When p is not 2, we use the following theorems

depending on the dimension of Ω. We use [10, Lemma 7.12] to obtain an explicit value

of Cp for a one-dimensional bounded domain.

Theorem 1 ( [10, Lemma 7.12] ) Let Ω = (a, b) ⊂ R, with a ∈ R ∪ {−∞}, b ∈
R∪ {+∞}, a < b. Moreover, let ρ∗ denote the minimal point of the spectrum of −u′′

on H1
0 (Ω), i.e. ρ∗ = π2/(b− a)2 if (a, b) is bounded. Then, for all u ∈ H1

0 (Ω),

‖u‖Lp ≤ Cp‖u‖H1
0

(p ∈ (2,∞)),

where, abbreviating ε := 2
p ∈ (0, 1),

Cp :=

{
1√
2
(1− ε)

1
4 (1−ε)(1 + ε)

1
4 (1+ε)τ−

1
4 (1+ε) if ρ∗ ≤ τ 1−ε

1+ε ,
1√

ρ∗+τ
(ρ∗)

1
4 (1−ε) otherwise ,

for p ∈ (2,∞).
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When N ≥ 2, we use [11, Corollary A.2] or [10, Lemma 7.10] to obtain Cp for

bounded domains Ω ⊂ RN . In our numerical experiments in Section 2.5, Cp evaluated

by [11, Corollary A.2] is smaller than that evaluated by [10, Lemma 7.10]. In [11,

Corollary A.2], Cp is evaluated for ‖u‖Lp ≤ Cp‖∇u‖L2 , but since ‖∇u‖L2 ≤ ‖u‖H1
0

for all τ , the same Cp can be used for ‖u‖Lp ≤ Cp‖u‖H1
0
.

Theorem 2 ( [11, Corollary A.2] ) Let Ω ⊂ RN (N ≥ 2) be a bounded domain,

the measure of which is denoted by |Ω|. Let p ∈ (N/(N − 1), 2N/(N − 2)] if N ≥ 3,

p ∈ (2,∞) if N = 2. We set q = Np/(N + p). Then, (2.6) holds for

Cp(Ω) = |Ω|
2−q
2q Tp.

Here, Tp is defined by

Tp = π− 1
2N− 1

q

(
q − 1

N − q

)1− 1
q





Γ
(
1 + N

2

)
Γ(N)

Γ
(

N
q

)
Γ
(
1 +N − N

q

)






1
N

,

where Γ is the gamma function.

2.3 Numerical verification method

This section discusses the numerical verification method used in this chapter. We

first define the operator f as

f :

{
u(·) ,→ | ·−x0|l|u(·)|p−1u(·),
H1

0 (Ω) → H−1,

where 2 ≤ p < p∗ (p∗ = ∞ if N = 1, 2 and p∗ = 5 if N = 3). Furthermore, we define

the nonlinear operator F : H1
0 (Ω) → H−1 by F (u) := −∆u− f(u), which is given by

〈F (u), v〉 = (∇u,∇v)L2 − 〈f(u), v〉 for all v ∈ H1
0 (Ω),

where 〈f(u), v〉 =
∫
Ω(|x − x0|l|u(x)|p−1u(x))v(x)dx. The Fréchet derivatives of f

and F at ϕ ∈ H1
0 (Ω) are denoted by f ′

ϕ and F ′
ϕ, respectively, and given by

〈
f ′
ϕu, v

〉
=

∫

Ω
(p|x− x0|l|ϕ(x)|p−1)u(x)v(x)dx for all u, v ∈ H1

0 (Ω), (2.7)

〈
F ′
ϕu, v

〉
= (∇u,∇v)L2 −

〈
f ′
ϕu, v

〉
for all u, v ∈ H1

0 (Ω). (2.8)

Then, we consider the following problem:

Find u ∈ H1
0 (Ω) s.t. F (u) = 0, (2.9)

which is the weak form of the problem (2.1). To conduct the numerical verification for

this problem, we apply the Newton–Kantorovich theorem, which enables us to prove

the existence of a true solution u near a numerically computed “good” approximate

solution û (see, for example, [12]). Hereafter, B(û, r) and B̄(û, r) respectively denote

the open and closed balls with center approximate solution û and radius r in terms

of norm ‖ · ‖H1
0
.
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Theorem 3 (Newton–Kantorovich’s theorem) Let û ∈ H1
0 (Ω) be some approx-

imate solution of F (u) = 0. Suppose that there exists some α > 0 satisfying

‖F ′−1
û F (û)‖H1

0
≤ α. (2.10)

Moreover, suppose that there exists some β > 0 satisfying

‖F ′−1
û (F ′

v − F ′
w)‖L(H1

0 ,H
1
0 )

≤ β‖v − w‖H1
0
, for all v, w ∈ D, (2.11)

where D = B(û, 2α+ δ) is an open ball depending on the above value α > 0 for small

δ > 0. If

αβ ≤ 1

2
,

then there exists a solution u ∈ H1
0 (Ω) of F (u) = 0 in B̄(û, ρ) with

ρ =
1−

√
1− 2αβ

β
.

Furthermore, the solution u is unique in B̄(û, 2α).

2.4 Evaluation for α and β

To apply Theorem 3 to the numerical verification for problem (2.1), we need to ex-

plicitly evaluate α and β. The left side of (2.10) is evaluated as

∥∥F ′−1
û F (û)

∥∥
H1

0
≤

∥∥F ′−1
û

∥∥
L(H−1,H1

0)
‖F (û)‖H−1 .

Therefore, we set

α =
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖F (û)‖H−1 .

Moreover, the left side of (2.11) is estimated as

∥∥F ′−1
û (F ′

v − F ′
w)

∥∥
L(H1

0 ,H
1
0 )

≤
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖F ′

v − F ′
w‖L(H1

0 ,H
−1)

=
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖f ′

v − f ′
w‖L(H1

0 ,H
−1) .

Hence, the desired value of β is obtained via

β ≤ ‖F ′−1
û ‖L(H−1,H1

0 )
L,

where L is the Lipschitz constant satisfying

‖f ′
v − f ′

w‖L(H1
0 ,H

−1) ≤ L‖v − w‖H1
0

for all v, w ∈ D. (2.12)

We are left to evaluate the inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )
, the residual norm

‖F (û)‖H−1 , and the Lipschitz constant L for problem (2.9).
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2.4.1 Residual norm ‖F (û)‖H−1

If the approximation û is sufficiently smooth so that ∆û ∈ L2(Ω), we can evaluate

the residual norm ‖F (û)‖H−1 as follows:

‖F (û)‖H−1 ≤ C2‖∆û+ f(û)‖L2 , (2.13)

where C2 is the embedding constant satisfying (2.6) for p = p′ = 2. Our numerical

experiments discussed in Section 2.5 use this evaluation, calculating the L2-norm via

stable numerical integration with all rounding errors strictly estimated.

However, the condition ∆û ∈ L2(Ω) is not satisfied such as when we construct

û with a piecewise linear finite element basis. We use the method of [10, Subsec-

tion 7.2] to evaluate the residual norm applicable to such a case. The following

is a brief description of the evaluation method. First, we find an approximation

ρ ∈ H(div,Ω) =
{
τ ∈ L2(Ω)N : div τ ∈ L2(Ω)

}
to ∇û. Then, the residual norm is

evaluated as

‖F (û)‖H−1 = ‖ −∆û− f(û)‖H−1 ,

= ‖ −∆û+ div ρ− div ρ− f(û)‖H−1 ,

≤ ‖ div(−∇û+ ρ)‖H−1 + ‖ div ρ+ f(û)‖H−1 ,

≤ ‖ −∇û+ ρ‖L2 + C2‖ div ρ+ f(û)‖L2 ,

where we used ‖divω‖H−1 ≤ ‖ω‖L2 for ω ∈ H(div,Ω). As mentioned in [10, Sub-

section 7.2], ρ can be computed without additional computational resources when we

use the mixed finite element method to construct û.

2.4.2 Inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )

In this subsection, we evaluate the inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )
. To this

end, we use the following theorem.

Theorem 4 ([13]) Let Φ : H1
0 (Ω) → H−1 be the canonical isometric isomorphism;

that is, Φ is given by

〈Φu, v〉 := (u, v)H1
0

for u, v ∈ H1
0 (Ω).

If

µ0 := min
{
|µ| : µ ∈ σp

(
Φ−1F ′

û

)
∪ {1}

}
(2.14)

is positive, then the inverse of F ′
û exists, and we have

∥∥F ′−1
û

∥∥
L(H−1,H1

0 )
≤ µ−1

0 , (2.15)

where σp

(
Φ−1F ′

û

)
denotes the point spectrum of Φ−1F ′

û.

The eigenvalue problem Φ−1F ′
ûu = µu in H1

0 (Ω) is equivalent to

(∇u,∇v)L2 − 〈f ′
ûu, v〉 = µ (u, v)H1

0
for all v ∈ H1

0 (Ω), (2.16)
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where (u, v)H1
0
denotes the inner product defined in (2.3) that depends on τ and

〈f ′
ûu, v〉 is given by (2.7).

We consider the operator N := Φ − F ′
û from H1

0 (Ω) to H−1, which satisfies

〈Nu, v〉 =
∫
Ω(p|x− x0|l|û(x)|p−1)u(x)v(x)dx for all u, v ∈ H1

0 (Ω). Because N maps

H1
0 (Ω) into L2(Ω) and the embedding L2(Ω) ↪→ H−1 is compact, N : H1

0 (Ω) → H−1

is a compact operator. Therefore, F ′
û is a Fredholm operator, and the spectrum

σ
(
Φ−1F ′

û

)
of Φ−1F ′

û is given by

σ
(
Φ−1F ′

û

)
= 1− σ

(
Φ−1N

)
= 1−

{
σp

(
Φ−1N

)
∪ {0}

}
= σp

(
Φ−1F ′

û

)
∪ {1}.

Accordingly, it suffices to look for eigenvalues µ /= 1. By setting λ = (1 − µ)−1, we

further transform this eigenvalue problem into

Find u ∈ H1
0 (Ω) and λ ∈ R s.t. (u, v)H1

0
= λ〈(τ + f ′

û)u, v〉 for all v ∈ H1
0 (Ω),

(2.17)

where 〈(τ + f ′
û)u, v〉 =

∫
Ω(τ + p|x − x0|l|û(x)|p−1)u(x)v(x)dx for u, v ∈ H1

0 (Ω).

Because τ is chosen so that τ + f ′
û becomes positive (see (2.5)), (2.17) is a regular

eigenvalue problem, the spectrum of which consists of a sequence {λk}∞k=1 of eigenval-

ues converging to +∞. To compute ‖F ′−1
û ‖L(H−1,H1

0 )
on the basis of Theorem 4, we

need to enclose the eigenvalue λ of (2.17) that minimizes the corresponding absolute

value of |µ|
(
= |1− λ−1|

)
. We consider the approximate eigenvalue problem

Find uM ∈ VM and λM ∈ R s.t. (uM , vM )H1
0
= λM 〈(τ + f ′

û)uM , vM 〉 for all vM ∈ VM ,

(2.18)

where VM is a finite-dimensional subspace of H1
0 (Ω) such as the space spanned by the

finite element basis and Fourier basis. For our problem, VM will be explicitly chosen

in Section 2.5. Note that (2.18) is a matrix problem with eigenvalues that can be

enclosed with rigorous computation techniques (see, for example, [14, 15, 16]).

We then estimate the error between the k-th eigenvalue λk of (2.17) and the k-th

eigenvalue λM
k of (2.18). We consider the weak formulation of the Poisson equation,

(ug, v)H1
0
= (g, v)L2 for all v ∈ H1

0 (Ω) (2.19)

given g ∈ L2 (Ω). This equation has a unique solution ug ∈ H1
0 (Ω) for each g ∈ L2 (Ω)

[17]. Let P τ
M : H1

0 (Ω) → VM be the orthogonal projection defined by

(P τ
Mu− u, vM )H1

0
= 0 for all u ∈ H1

0 (Ω) and vM ∈ VM .

The following theorem enables us to estimate the error between λk and λM
k .

Theorem 5 ([18, 19]) Let û ∈ H1
0 (Ω) ∩ L∞(Ω). Suppose that there exists Cτ

M > 0

such that

‖ug − P τ
Mug‖H1

0
≤ Cτ

M ‖g‖L2 (2.20)

for any g ∈ L2 (Ω) and the corresponding solution ug ∈ H1
0 (Ω) of (2.19). Then,

λM
k

λM
k (Cτ

M )2‖τ + f ′
û‖L∞ + 1

≤ λk ≤ λM
k ,
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where the L∞-norm is defined by ‖τ + f ′
û‖L∞ := esssup {|τ + p|x − x0|l|û(x)|p−1| :

x ∈ Ω}.

The right inequality is known as the Rayleigh–Ritz bound, which is derived from the

min-max principle:

λk = min
Hk⊂H1

0 (Ω)

(
max

v∈Hk\{0}

‖v‖2H1
0

‖av‖2L2

)
≤ λM

k ,

where a(x) =
√
τ + p|x− x0|l|û(x)|p−1, and the minimum is taken over all k-

dimensional subspaces Hk of H1
0 (Ω). The left inequality was proved in [18, 19].

Assuming the H2-regularity of solutions to (2.19) (which follows, for example, when

Ω is a convex polygonal domain [17, Section 3.3]), [18, Theorem 4] ensures the left

inequality. A more general statement that does not require the H2-regularity is

proved in [19, Theorem 2.1].

When the solution of (2.19) has H2-regularity, (2.20) can be replaced with

‖u− P τ
Mu‖H1

0
≤ Cτ

M ‖−∆u+ τu‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω). (2.21)

The constant Cτ
M satisfying (2.21) is obtained as Cτ

M = CM

√
1 + τ (CM )2 (see

[20, Remark A.4]), where we denote CM = C0
M with τ = 0. For example, when

Ω = (0, 1)N , an explicit value of CM is obtained for VM spanned by the Legendre

polynomial basis using [21, Theorem 2.3]. This will be used for our computation in

Section 2.5.

Theorem 6 ([21]) When Ω = (0, 1)N , the inequality

‖∇ (u− PMu)‖L2 ≤ CM‖∆u‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω)

holds for

CM = max

{
1

2(2M + 1)(2M + 5)
+

1

4(2M + 5)
√
2M + 3

√
2M + 7

,

1

4(2M + 5)
√
2M + 3

√
2M + 7

+
1

2(2M + 5)(2M + 9)
+

1

4(2M + 9)
√
2M + 7

√
2M + 11

} 1
2

.

2.4.3 Lipschitz constant L

Hereafter, we denote d (= d(Ω, l)) := max{|x−x0|l : x ∈ Ω}. The Lipschitz constant

L satisfying (2.12), which is required for obtaining β, is estimated as follows:

‖f ′
v − f ′

w‖L(H1
0 ,H

−1) ≤ p sup
0 $=φ∈H1

0

sup
0$=ψ∈H1

0

|
∫
Ω |x− x0|l(|v(x)|p−1φ(x)− |w(x)|p−1φ(x))ψ(x)dx|

‖φ‖H1
0
‖ψ‖H1

0

≤ pd sup
0$=φ∈H1

0

sup
0$=ψ∈H1

0

|
∫
Ω(|v(x)|

p−1 − |w(x)|p−1)φ(x)ψ(x)dx|
‖φ‖H1

0
‖ψ‖H1

0

.

(2.22)
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Using the mean value theorem, the numerator of (2.22) is evaluated as

∣∣∣∣
∫

Ω
(|v(x)|p−1 − |w(x)|p−1)φ(x)ψ(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

∫ 1

0
(p− 1)sign(w(x) + t(v(x)− w(x)))|w(x) + t(v(x)− w(x))|p−2dt

(v(x)− w(x))φ(x)ψ(x)dx

∣∣∣∣

= (p− 1)

∣∣∣∣
∫ 1

0

∫

Ω
sign(w(x) + t(v(x)− w(x)))|w(x) + t(v(x)− w(x))|p−2

(v(x)− w(x))φ(x)ψ(x)dxdt

∣∣∣∣

≤ (p− 1)

∫ 1

0
‖tv + (1− t)w‖p−2

Lp+1‖v − w‖Lp+1‖φ‖Lp+1‖ψ‖Lp+1dt

≤ (p− 1)C3
p+1

∫ 1

0
‖tv + (1− t)w‖p−2

Lp+1dt‖v − w‖H1
0
‖φ‖H1

0
‖ψ‖H1

0

≤ (p− 1)C3
p+1 max {‖v‖Lp+1 , ‖w‖Lp+1}p−2 ‖v − w‖H1

0
‖φ‖H1

0
‖ψ‖H1

0
,

for all 0 /= φ,ψ ∈ H1
0 (Ω). Therefore, we have

L ≤ p(p− 1)dC3
p+1 max {‖v‖Lp+1 , ‖w‖Lp+1}p−2 .

Choosing v, w from D = B(û, r), r = 2α+ δ for small δ > 0, we can express them as

{
v = û+ rη, ‖η‖H1

0
≤ 1,

w = û+ rξ, ‖ξ‖H1
0
≤ 1.

Hence, it follows that

L ≤ p(p− 1)dC3
p+1 max {‖û+ rη‖Lp+1 , ‖û+ rξ‖Lp+1}p−2

≤ p(p− 1)dC3
p+1(‖û‖Lp+1 + Cp+1r)

p−2. (2.23)

2.5 Numerical results

In this section, we present numerical results where the existence of solutions of (2.1)

was proved for p = 3 on the domains Ω = (0, 1)N (N = 1, 2) via the method presented

in Sections 2.3 and 2.4. All computations were implemented on a computer with 2.20

GHz Intel Xeon E7-4830 CPUs × 4, 2 TB RAM, and CentOS 7 using MATLAB

2019b with GCC Version 6.3.0. All rounding errors were strictly estimated using the

toolboxes kv Library [22] Version 0.4.49 and Intlab Version 11 [15]. Therefore, the

accuracy of all results was guaranteed mathematically. We constructed approximate

solutions of (2.1) from a Legendre polynomial basis discussed in [21]. Specifically,

we constructed approximate solutions û using the basis functions φn (n = 1, 2, 3, · · · )
defined by

φn(x) =
1

n(n+ 1)
x(1− x)

dQn

dx
(x)

with Qn(x) =
(−1)n

n!

(
d

dx

)n

xn(1− x)n, n = 1, 2, 3, · · · . (2.24)
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2.5.1 Numerical results on the unit line-segment

To apply our method to Ω = (0, 1), we define the finite-dimensional subspace VM of

H1
0 (Ω) as

VM :=

{
M∑

i=1

uiφi(x) : ui ∈ R
}
,

where 2 ≤ M < ∞. We computed approximate solutions û ∈ VM by solving the

problem of the matrix equation

Find û ∈ VM s.t. (∇û,∇vM )L2 = (f(û), vM )L2 for all vM ∈ VM (2.25)

using the usual Newton method. When we look for a symmetric solution, we restrict

the solution space and its finite-dimensional subspace. The following subspace V 1 of

H1
0 (Ω) is endowed with the same topology

V 1 :=

{
u ∈ H1

0 (Ω) : u is symmetric with respect to x =
1

2

}
. (2.26)

Then, we define the finite-dimensional subspace V 1
M (M ≥ 2) of V 1 as

V 1
M :=






M∑

i=1
i is odd

uiφi(x) : ui ∈ R




 .

The method presented in Sections 2.3 and 2.4 can be directly applied when the func-

tion spaces H1
0 (Ω) and VM are replaced with V 1 and V 1

M , respectively. This restric-

tion reduces the amount of calculation because the matrices in (2.25) become smaller.

Moreover, because eigenfunctions of (2.18) are also restricted to be symmetric, eigen-

values associated with anti-symmetric eigenfunctions drop out of the minimization in

(2.14). Therefore, the constant K can be reduced. The other constants required in the

verification process (that is, Cp and ‖F (û)‖H−1) are not affected by the restriction.

Using the evaluation (2.23) when p = 3 and Ω = (0, 1) with the center x0 = (1/2),

we evaluated the Lipschitz constant L as

L ≤ 6

(
1

2

)l

C3
4 (‖û‖L4 + C4r).

Table 2.1 shows the approximate solutions together with their verification results

on Ω = (0, 1). The red dashed lines indicate the symmetry of each solution. To

satisfy inequality (2.5), our program set τ to the next floating-point number after a

computed upper bound of the right side of (2.5). Therefore, when û vanishes at some

point on Ω, τ is set to the floating-point number after zero, which is approximately

4.9407× 10−324. In Table 2.1, ‖F (û)‖H−1 , ‖F ′−1
û ‖L(H−1,H1

0 )
, L, α, and β denote the

constants required by Theorem 3. Moreover, rA and rR denote an upper bound for

absolute error ‖u− û‖H1
0
and relative error ‖u− û‖H1

0
/‖û‖H1

0
, respectively. The values

in row “Peak” represent upper bounds for the maximum values of the corresponding

approximate solutions in decimal form.
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The values in rows µ1–µ5 represent approximations of the five smallest eigenvalues

of (2.16) discretized in V40 ⊂ H1
0 (Ω), which is spanned by the basis functions φn

(n = 1, 2, · · · , 40) without the restriction of symmetry. When l = 2, 4, symmetric

solutions have two negative eigenvalues and asymmetric solutions have one negative

eigenvalue.

Our approximate computation obtained Figure 2.1, the solution curve of (2.1) for

0 ≤ l ≤ 8 (l is always a multiple of 0.05). The verified points where l = 0, 2, 4 lie on

the solution curves. According to Figure 2.1, a bifurcation point is expected to exist

around [1.20, 1.25].

Table 2.1 Verification results for l = 0, 2, 4 on Ω = (0, 1).

l 0 2 4

û

0 0.5 1
0

1

2

3

4

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

20

40

60

80

0 0.5 1
0

1

2

3

4

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

20

40

60

80

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

1

2

3

4

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

20

40

60

80

0 0.5 1
0

20

40

60

80

0 0.5 1
0

20

40

60

80

Solution space V 1 V 1 V V 1 V

Mu 40 40 40 40 40

M 40 40 40 40 40

‖F (û)‖H−1 2.95468e-12 8.35842e-8 4.03869e-6 9.25374e-6 3.36995e-4

‖F ′−1
û ‖L(H−1,H1

0 )
2.02207 4.19470 3.25043 1.82276 2.16009

L 1.28660 2.04106 1.89034 1.78289 1.47489

α 5.97456e-12 3.50610e-7 1.31275e-5 1.68674e-5 7.27937e-4

β 2.60158 8.56162 6.14441 3.24977 3.18587

rA 6.04051e-12 4.15274e-7 1.51947e-5 2.06429e-5 9.27220e-4

rR 7.60887e-13 7.72615e-9 2.89288e-7 1.00215e-7 4.97806e-6

Peak 3.70815 21.0522 22.0954 70.3607 71.2910

µ1 -1.99999 -2.00000 -1.99999 -1.99999 -1.99999

µ2 0.500000 -0.238397 0.356085 -0.657337 0.588997

µ3 0.800001 0.703809 0.679874 0.671403 0.755696

µ4 0.892858 0.783274 0.865471 0.733254 0.859840

µ5 0.933334 0.894429 0.910538 0.880449 0.924964

Solution space: V := H1
0 (Ω) and the subspace V 1 is defined by (2.26)

Mu: number of basis functions for constructing approximate solution û ∈ VMu or û ∈ V 1
Mu

M : number of basis functions for calculating λM

‖F (û)‖H−1 : upper bound for the residual norm estimated via (2.13)

‖F ′−1
û ‖L(H−1,H1

0 )
: upper bound for the inverse operator norm estimated via Theorem 4

L: upper bound for Lipschitz constant satisfying (2.12)

α: upper bound for α required in Theorem 3

β: upper bound for β required in Theorem 3

rA: upper bound for absolute error ‖u− û‖H1
0

rR: upper bound for relative error ‖u− û‖H1
0
/‖û‖H1

0
Peak: upper bound for the maximum values of the corresponding approximation

µ1–µ5: approximations of the five smallest eigenvalues of (2.16)
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Figure 2.1 Solution curves for (2.1) on the unit line segment (0, 1).

2.5.2 Numerical results on the unit square

We apply our method to Ω = (0, 1)2 in this subsection. As in Subsection 2.5.1,

we again restrict solution spaces and their finite-dimensional subspaces to look for

symmetric solutions. The following sub-solution spaces of H1
0 (Ω) are endowed with

the same topology:

V 1 :=

{
u ∈ H1

0 (Ω) : u is symmetric with respect to x =
1

2

}
,

V 2 :=
{
u ∈ H1

0 (Ω) : u is symmetric with respect to y = x
}
,

V 3 :=
{
u ∈ H1

0 (Ω) : u is symmetric with respect to y = x and y = −x+ 1
}
,

V 4 :=

{
u ∈ H1

0 (Ω) : u is symmetric with respect to x =
1

2
, y =

1

2
, y = x, and y = −x+ 1

}
.
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Then, using φi defined in (2.24), we construct finite-dimensional subspaces V i
M (M ≥

2) for each V i (i = 1, 2, 3, 4) as

V 1
M :=






M∑

i=1
i is odd

M∑

j=1

ui,jφi(x)φj(y) : ui,j ∈ R




 ,

V 2
M :=






M∑

i=1

M∑

j=i

ui,jψi,j(x, y) : ui,j ∈ R




 ,

V 3
M :=






M∑

i=1
i is odd

M∑

j=i
j is odd

ui,jψi,j(x, y) +
M∑

i=2
i is even

M∑

j=i
j is even

ui,jψi,j(x, y) : ui,j ∈ R





,

V 4
M :=






M∑

i=1
i is odd

M∑

j=i
j is odd

ui,jψi,j(x, y) : ui,j ∈ R





,

where ψi,j is defined as

ψi,j(x, y) := φi(x)φj(y) + φj(x)φi(y), (x, y) ∈ Ω,

which is symmetric with respect to the line y = x. Note that we use the same notation

V 1 and V 1
M with different meanings than in Subsection 2.5.1. The method presented

in Sections 2.3 and 2.4 can be directly applied when the function spaces H1
0 (Ω) and

VM are replaced with V i and V i
M , respectively. In the solution space V i

M , approximate

solutions û were obtained by solving the matrix equation

Find û ∈ V i
M s.t. (∇û,∇vM )L2 = (f(û), vM )L2 for all vM ∈ V i

M (2.27)

via the usual Newton method. Restricting solution spaces reduces the amount of

calculation for the same reasons as described in Subsection 2.5.1. Using the evaluation

(2.23) when Ω = (0, 1)2 with the center x0 = (1/2, 1/2), we evaluated the Lipschitz

constant L as

L ≤ 6

(
1√
2

)l

C3
4 (‖û‖L4 + C4r).

Tables 2.2 and 2.3 show the approximate solutions together with their verification

results. The red dashed lines indicate the symmetry of each solution. We again set

τ ≈ 4.9407 × 10−324, the minimal positive floating-point number after zero. In the

tables, ‖F (û)‖H−1 , ‖F ′−1
û ‖L(H−1,H1

0 )
, L, α, and β denote the constants required by

Theorem 3. Moreover, rA and rR denote an upper bound for absolute error ‖u− û‖H1
0

and relative error ‖u− û‖H1
0
/‖û‖H1

0
, respectively. The values in row “Peak” represent

upper bounds for the maximum values of the corresponding approximate solutions.

We see that error bounds are affected by the number of peaks — fewer peaks lead

to larger error bounds. As l increases, the peaks approach the corners of the domain

and become higher. Therefore, a larger l makes verification based on Theorem 3

more difficult. We succeeded in proving the existence of solutions in all cases in

which l = 0, 2, 4, including three-peak solutions not found in [6].
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The values in rows µ1–µ5 represent approximations of the five smallest eigenvalues

of (2.16) discretized in V30 ⊂ H1
0 (Ω), which is spanned by the basis functions φn

(n = 1, 2, · · · , 30) without the restriction of symmetry. When l = 4, the number of

negative eigenvalues µ coincides with the number of peaks.

Our approximate computation obtained Figure 2.2, the solution curves of (2.1) for

0 ≤ l ≤ 8 (l is always a multiple of 0.05). If the vertical axis scaling is changed,

the curves coincide with those in [6, Figure 2] except for that corresponding to the

three-peak solutions after the point around [2.35, 2.40]. The verified points where

l = 0, 2, 4 lie on the solution curves. According to Figure 2.2, two bifurcation points

are expected to exist around [0.55, 0.60] and [2.35, 2.40]. We expect the single-solution

curve bifurcates to three at the first bifurcation point around [0.55, 0.60], and then

one of them further bifurcates to three at the second point around [2.35, 2.40].

Table 2.2 Verification results for l = 0, 2 on the unit square (0, 1)2.

l 0 2

3D û

2D û

Solution space V 4 V 4 V 1 V 2

Mu 40 40 60 60

M 40 40 40 40

‖F (û)‖H−1 1.17370e-7 3.96407e-7 1.19312e-8 4.22257e-7

‖F ′−1
û ‖L(H−1,H1

0 )
1.70326 2.26200 15.19763 36.47472

L 6.78398e-1 1.64252 1.43209 1.21150

α 1.99910e-7 8.96672e-7 1.81325e-7 1.54017e-5

β 1.15549 3.71537 21.76424 44.18887

rA 4.63296e-8 2.55597e-7 1.44557e-7 2.48634e-5

rR 3.76958e-9 3.98528e-9 2.45351e-9 4.63166e-7

Peak 6.62326 24.36528 29.03437 29.20268

µ1 -1.99999 -1.99999 -1.99999 -1.99999

µ2 0.220034 -0.410090 -0.273589 0.196622

µ3 0.220034 -0.410090 0.233061 0.208937

µ4 0.604521 0.114826 0.457439 0.585268

µ5 0.658421 0.298974 0.517021 0.639470

Solution space: restricted solution space V i ⊂ H1
0 (Ω)

Mu: number of basis functions with respect to x and y for constructing approximate solution û ∈ V i
Mu

M : number of basis functions with respect to x and y for calculating λM

‖F (û)‖H−1 : upper bound for the residual norm estimated via (2.13)

‖F ′−1
û ‖L(H−1,H1

0 )
: upper bound for the inverse operator norm estimated via Theorem 4

L: upper bound for Lipschitz constant satisfying (2.12)

α: upper bound for α required in Theorem 3

β: upper bound for β required in Theorem 3
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rA: upper bound for absolute error ‖u− û‖H1
0

rR: upper bound for relative error ‖u− û‖H1
0
/‖û‖H1

0
Peak: upper bound for the maximum values of the corresponding approximation

µ1–µ5: approximations of the five smallest eigenvalues of (2.16)

Table 2.3 Verification results for l = 4 on the unit square (0, 1)2.

l 4

3D û

2D û ! = odd list, and , = odd list
-.,/ = -/,.

0 ! = odd list ⇒ , = odd list
! = even list ⇒ , = even list
-.,/ = -/,.

! = odd list, and , = odd list
-.,/ = -/,.

0 ! = odd list ⇒ , = odd list
! = even list ⇒ , = even list
-.,/ = -/,.

-.,/ = -/,.

! = odd list, and , = full list -.,/ = -/,.

! = odd list, and , = full list

-.,/ = -/,.

! = odd list, and , = full list

Solution space V 4 V 3 V 1 V 2 V 2

Mu 70 70 70 70 70

M 80 80 80 80 80

‖F (û)‖H−1 1.88534e-11 7.91070e-6 4.76970e-7 8.47044e-6 3.47384e-8

‖F ′−1
û ‖L(H−1,H1

0 )
6.82420 24.18779 78.96665 21.26750 47.44875

L 2.31308 1.46531 1.55126 1.18832 1.97091

α 1.28659e-10 1.91343e-4 3.76648e-5 1.80145e-4 1.64830e-6

β 15.78486 35.44250 1.22498e+2 25.27251 93.51720

rA 4.95952e-11 1.73351e-4 8.76586e-5 1.53306e-4 2.32064e-6

rR 2.35369e-13 9.86681e-7 5.12219e-7 1.20925e-6 1.16657e-8

Peak 62.30489 68.15045 66.28947 69.69524 64.16408

µ1 -1.99999 -1.99996 -1.99999 -1.99999 -1.99999

µ2 -0.995156 -1.86714 -1.64594 0.177691 -1.46267

µ3 -0.995156 0.166245 0.130875 0.251043 -1.14006

µ4 -0.689431 0.205039 0.253364 0.591950 0.131828

µ5 0.210478 0.258004 0.272595 0.658008 0.175494

Solution space: restricted solution space V i ⊂ H1
0 (Ω)

Mu: number of basis functions with respect to x and y for constructing approximate solution û ∈ V i
Mu

M : number of basis functions with respect to x and y for calculating λM

‖F (û)‖H−1 : upper bound for the residual norm estimated via (2.13)

‖F ′−1
û ‖L(H−1,H1

0 )
: upper bound for the inverse operator norm estimated via Theorem 4

L: upper bound for Lipschitz constant satisfying (2.12)

α: upper bound for α required in Theorem 3

β: upper bound for β required in Theorem 3

rA: upper bound for absolute error ‖u− û‖H1
0

rR: upper bound for relative error ‖u− û‖H1
0
/‖û‖H1

0
Peak: upper bound for the maximum values of the corresponding approximation

µ1–µ5: approximations of the five smallest eigenvalues of (2.16)
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Figure 2.2 Solution curves for (2.1) on the unit square (0, 1)2.

2.6 Short summary of chapter 2

We designed a numerical verification method for proving the existence of solutions of

the Hénon equation (2.1) on a bounded domain based on the Newton-Kantorovich

theorem. We applied our method to the domains Ω = (0, 1)N (N = 1, 2), proving

the existence of several solutions of (2.1) nearby a numerically computed approxima-

tion û. In particular, we found a set of undiscovered solutions with three peaks on

the square domain Ω = (0, 1)2. Approximate computations generated the solution

curves of (2.1) for 0 ≤ l ≤ 8 in Figures 2.1 and 2.2. Our next goal should verify

the existence of solutions for arbitrary l ∈ [0, a], given a large a > 0, and prove

the bifurcation structure for (2.1) in a strict mathematical sense. Next chapter, we

introduce the method and results verifying the branches and bifurcation points of

symmetry-breaking bifurcation for the one-dimensional Hénon equation (2.1).
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Chapter 3

Advanced numerical verification
method and analysis of bifurcation
phenomena of the Hénon equation

3.1 Introduction

The Hénon equation was proposed as a differential equation describing the density

distribution of celestial bodies [1]. And some papers [4, 5, 6, 7, 8, 9] have discussed

the Dirichlet boundary value problem
{
−∆u = |x− x0|l|u|p−1u in Ω,

u = 0 on ∂Ω,
(3.1)

where Ω ⊂ RN (N = 1, 2, 3) is a bounded domain. Particularly, x0 is set at the center

of the domain. The real parameter l ≥ 0 is the potential index, and the real parameter

2 ≤ p < p∗ (p∗ = ∞ if N = 1, 2 and p∗ = 5 if N = 3) is the polytropic index. In

this chapter, we consider the one-dimensional Hénon equation which is the two-point

boundary value problem
{
−u′′ = |x|l|u|p−1u, x ∈ (−1, 1),

u(−1) = u(1) = 0,
(3.2)

where l ≥ 0, 2 ≤ p < ∞. It is known that if l = 0, then there is no asymmetric positive

solution [23, 24, 25], and if l > 0 is sufficiently large, then there are some asymmetric

solutions [26, 27, 28, 29]. Recent interest in the symmetry-breaking phenomena has

spurred a great deal of mathematical research into the Hénon equation over the last

decade. S. Tanaka [30, 31] proved that if l(p− 1) ≥ 4, the Morse index of the positive

least energy solution equals 1 and the Morse index of the positive symmetric solution

equals 2, and hence the positive least energy solution is asymmetric and symmetry-

breaking phenomena occur. It is also shown that if l and p are sufficiently small,

then there is no positive asymmetric solution and the Morse index of the symmetric

positive solution equals 1. However, still only sufficient conditions for symmetry–

breaking bifurcation have been clarified, and the existence of multiple solutions near

the bifurcation point and the structure of the bifurcation are not known completely.

The purpose of our study was to verify the existence of multiple solutions of (3.2)

near the bifurcation point, and tracking the bifurcation diagrams by computer assis-
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tance. Due to the variable coefficient |x|l in the problem (3.2), the solution u has a

singularity at x = 0. We design a numerical verification method that follows such

a internal singularity. By applying the method, the existence of multiple solutions

can be proved efficiently. As a result, we succeeded in verifying the branches and

bifurcation points of the simple symmetry-breaking bifurcation (see Figure 3.1).

The remainder of this chapter is organized as follows. Some notation is introduced

in Section 3.2. Sections 3.3 and 3.4 describe numerical verification based on the

Newton–Kantorovich theorem together with evaluations of several required constants.

Section 3.5 shows the consideration of singularity. Subsequently, Section 3.6 shows

the results numerically proving the existence of several solutions of (3.2) using the

method that follows a internal singularity. Sections 3.7 and 3.8 show the numerical

verification method and results for the branches of (3.2). Sections 3.9 and 3.10 show

the numerical verification method and results for the bifurcation point of (3.2).

3.2 Preliminaries

We begin by introducing some notation. For two Banach spaces X and Y , the set

of bounded linear operators from X to Y is denoted by L(X,Y ). The norm of

T ∈ L(X,Y ) is defined by

‖T‖L(X,Y ) := sup
0$=u∈X

‖Tu‖Y
‖u‖X

. (3.3)

Let Lp(Ω) (1 ≤ p < ∞) be the function space of p-th power Lebesgue integrable

functions over a domain Ω with the Lp-norm ‖u‖Lp :=
(∫

Ω |u(x)|pdx
)1/p

< ∞. When

p = 2, L2(Ω) is the Hilbert space with the inner product (u, v)L2 :=
∫
Ω u(x)v(x)dx.

Let L∞(Ω) be the function space of Lebesgue measurable functions over Ω, with the

norm ‖u‖L∞ := ess sup{|u(x)| : x ∈ Ω} for u ∈ L∞(Ω). We denote the first-order L2

Sobolev space in Ω as H1(Ω) and define

H1
0 (Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω in the trace sense

}

as the solution space for the target equation (3.1). We endow H1
0 (Ω) with the inner

product and norm

(u, v)H1
0
: = (u′, v′)L2 + τ(u, v)L2 , u, v ∈ H1

0 (Ω), (3.4)

‖u‖H1
0
: =

√
(u, u)H1

0
, u ∈ H1

0 (Ω), (3.5)

where τ is a nonnegative number chosen as

τ > −p|x|l|û(x)|p−1 a.e. x ∈ Ω (3.6)

for a numerically computed approximation û ∈ H1
0 (Ω). The condition (3.6) is required

in Subsection 3.4.2 and û is explicitly constructed in Section 3.6. Because the norm

‖·‖H1
0
monotonically increases with respect to τ , the H1

0 (Ω) norm ‖·′‖L2 is dominated

by the norm ‖ · ‖H1
0
for all τ ≥ 0. Therefore, the error bound ‖u − û‖H1

0
is always

an upper bound for ‖(u− û)′‖L2 . The topological dual space of H1
0 (Ω) is denoted by

H−1 with the usual supremum norm defined in (3.3).
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The bound for the embedding H1
0 (Ω) ↪→ Lp(Ω) is denoted by Cp (p ≥ 2). More

precisely, Cp is a positive number satisfying

‖u‖Lp ≤ Cp‖u‖H1
0

for all u ∈ H1
0 (Ω). (3.7)

Note that ‖u‖H−1 ≤ Cp‖u‖Lq , u ∈ Lq(Ω) holds for q satisfying p−1 + q−1 = 1

. Explicitly estimating the embedding constant Cp is important for our numerical

verification. When p = 2, we use the following optimal inequality:

‖u‖L2 ≤ 1√
λ1 + τ

‖u‖H1
0
,

where λ1 is the first eigenvalue of the minus Laplacian in the weak sense. Especially

when Ω = (−1, 1), we have λ1 = π2/4. When p is not 2, we use the following theorems

depending on the dimension of Ω. We use [10, Lemma 7.12] to obtain an explicit value

of Cp for a one-dimensional bounded domain.

Theorem 7 ( [10, Lemma 7.12] ) Let Ω = (a, b) ⊂ R, with a ∈ R ∪ {−∞}, b ∈
R∪ {+∞}, a < b. Moreover, let ρ∗ denote the minimal point of the spectrum of −u′′

on H1
0 (Ω), i.e. ρ∗ = π2/(b− a)2 if (a, b) is bounded. Then, for all u ∈ H1

0 (Ω),

‖u‖Lp ≤ Cp‖u‖H1
0

(p ∈ (2,∞)),

where, abbreviating ε := 2
p ∈ (0, 1),

Cp :=

{
1√
2
(1− ε)

1
4 (1−ε)(1 + ε)

1
4 (1+ε)τ−

1
4 (1+ε) if ρ∗ ≤ τ 1−ε

1+ε ,
1√

ρ∗+τ
(ρ∗)

1
4 (1−ε) otherwise ,

for p ∈ (2,∞).

3.3 Numerical verification method

This section discusses the numerical verification method used in this chapter. We

first define the operator f as

f :

{
u(·) ,→ | · |l|u(·)|p−1u(·),
H1

0 (Ω) → H−1,

where 2 ≤ p < p∗ (p∗ = ∞ if N = 1, 2 and p∗ = 5 if N = 3). Furthermore, we define

the nonlinear operator F : H1
0 (Ω) → H−1 by F (u) := −u′′ − f(u), which is given by

〈F (u), v〉 = (u′, v′)L2 − 〈f(u), v〉 for all v ∈ H1
0 (Ω),

where 〈f(u), v〉 =
∫
Ω(|x|

l|u(x)|p−1u(x))v(x)dx. The Fréchet derivatives of f and F

at ϕ ∈ H1
0 (Ω) are denoted by f ′

ϕ and F ′
ϕ, respectively, and given by

〈
f ′
ϕu, v

〉
=

∫

Ω
(p|x|l|ϕ(x)|p−1)u(x)v(x)dx for all u, v ∈ H1

0 (Ω), (3.8)

〈
F ′
ϕu, v

〉
= (u′, v′)L2 −

〈
f ′
ϕu, v

〉
for all u, v ∈ H1

0 (Ω). (3.9)
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Then, we consider the following problem:

Find u ∈ H1
0 (Ω) s.t. F (u) = 0, (3.10)

which is the weak form of the problem (3.2). To conduct the numerical verification for

this problem, we apply the Newton–Kantorovich theorem, which enables us to prove

the existence of a true solution u near a numerically computed “good” approximate

solution û (see, for example, [12]). Hereafter, B(û, r) and B̄(û, r) respectively denote

the open and closed balls with center approximate solution û and radius r in terms

of norm ‖ · ‖H1
0
.

Theorem 8 (Newton–Kantorovich’s theorem) Let û ∈ H1
0 (Ω) be some approx-

imate solution of F (u) = 0. Suppose that there exists some α > 0 satisfying

‖F ′−1
û F (û)‖H1

0
≤ α. (3.11)

Moreover, suppose that there exists some β > 0 satisfying

‖F ′−1
û (F ′

v − F ′
w)‖L(H1

0 ,H
1
0 )

≤ β‖v − w‖H1
0
, for all v, w ∈ D, (3.12)

where D = B(û, 2α+ δ) is an open ball depending on the above value α > 0 for small

δ > 0. If

αβ ≤ 1

2
, (3.13)

then there exists a solution u ∈ H1
0 (Ω) of F (u) = 0 in B̄(û, ρ) with

ρ =
1−

√
1− 2αβ

β
.

Furthermore, the solution u is unique in B̄(û, 2α).

3.4 Evaluation for α and β

To apply Theorem 8 to the numerical verification for problem (3.2), we need to ex-

plicitly evaluate α and β. The left side of (3.11) is evaluated as

∥∥F ′−1
û F (û)

∥∥
H1

0
≤

∥∥F ′−1
û

∥∥
L(H−1,H1

0)
‖F (û)‖H−1 .

Therefore, we set

α =
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖F (û)‖H−1 .

Moreover, the left side of (3.12) is estimated as

∥∥F ′−1
û (F ′

v − F ′
w)

∥∥
L(H1

0 ,H
1
0 )

≤
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖F ′

v − F ′
w‖L(H1

0 ,H
−1)

=
∥∥F ′−1

û

∥∥
L(H−1,H1

0)
‖f ′

v − f ′
w‖L(H1

0 ,H
−1) .

Hence, the desired value of β is obtained via

β ≤ ‖F ′−1
û ‖L(H−1,H1

0 )
L,
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where L is the Lipschitz constant satisfying

‖f ′
v − f ′

w‖L(H1
0 ,H

−1) ≤ L‖v − w‖H1
0

for all v, w ∈ D. (3.14)

We are left to evaluate the inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )
, the residual norm

‖F (û)‖H−1 , and the Lipschitz constant L for problem (3.10).

3.4.1 Residual norm ‖F (û)‖H−1

If the approximation û is sufficiently smooth so that û′′ ∈ L2(Ω), we can evaluate the

residual norm ‖F (û)‖H−1 as follows:

‖F (û)‖H−1 ≤ C2‖û′′ + f(û)‖L2 , (3.15)

where C2 is the embedding constant satisfying (3.7) for p = p′ = 2. Our numerical

experiments discussed in Section 3.6 use this evaluation, calculating the L2-norm via

stable numerical integration with all rounding errors strictly estimated.

However, the condition û′′ ∈ L2(Ω) is not satisfied such as when we construct

û with a piecewise linear finite element basis. We use the method of [10, Subsec-

tion 7.2] to evaluate the residual norm applicable to such a case. The following

is a brief description of the evaluation method. First, we find an approximation

ρ ∈ H(div,Ω) =
{
τ ∈ L2(Ω)N : div τ ∈ L2(Ω)

}
to û′. Then, the residual norm is

evaluated as

‖F (û)‖H−1 = ‖ − û′′ − f(û)‖H−1 ,

= ‖ − û′′ + div ρ− div ρ− f(û)‖H−1 ,

≤ ‖ div(−û′ + ρ)‖H−1 + ‖ div ρ+ f(û)‖H−1 ,

≤ ‖ − û′ + ρ‖L2 + C2‖ div ρ+ f(û)‖L2 ,

where we used ‖divω‖H−1 ≤ ‖ω‖L2 for ω ∈ H(div,Ω). As mentioned in [10, Sub-

section 7.2], ρ can be computed without additional computational resources when we

use the mixed finite element method to construct û.

3.4.2 Inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )

In this subsection, we evaluate the inverse operator norm ‖F ′−1
û ‖L(H−1,H1

0 )
. To this

end, we use the following theorem.

Theorem 9 ([13]) Let Φ : H1
0 (Ω) → H−1 be the canonical isometric isomorphism;

that is, Φ is given by

〈Φu, v〉 := (u, v)H1
0

for u, v ∈ H1
0 (Ω).

If

µ0 := min
{
|µ| : µ ∈ σp

(
Φ−1F ′

û

)
∪ {1}

}
(3.16)

is positive, then the inverse of F ′
û exists, and we have

∥∥F ′−1
û

∥∥
L(H−1,H1

0 )
≤ µ−1

0 , (3.17)

where σp

(
Φ−1F ′

û

)
denotes the point spectrum of Φ−1F ′

û.
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The eigenvalue problem Φ−1F ′
ûu = µu in H1

0 (Ω) is equivalent to

(u′, v′)L2 − 〈f ′
ûu, v〉 = µ (u, v)H1

0
for all v ∈ H1

0 (Ω), (3.18)

where (u, v)H1
0
denotes the inner product defined in (3.4) that depends on τ and

〈f ′
ûu, v〉 is given by (3.8).

We consider the operator N := Φ − F ′
û from H1

0 (Ω) to H−1, which satisfies

〈Nu, v〉 =
∫
Ω(p|x|

l|û(x)|p−1)u(x)v(x)dx for all u, v ∈ H1
0 (Ω). Because N maps H1

0 (Ω)

into L2(Ω) and the embedding L2(Ω) ↪→ H−1 is compact, N : H1
0 (Ω) → H−1 is a

compact operator. Therefore, F ′
û is a Fredholm operator, and the spectrum σ

(
Φ−1F ′

û

)

of Φ−1F ′
û is given by

σ
(
Φ−1F ′

û

)
= 1− σ

(
Φ−1N

)
= 1−

{
σp

(
Φ−1N

)
∪ {0}

}
= σp

(
Φ−1F ′

û

)
∪ {1}.

Accordingly, it suffices to look for eigenvalues µ /= 1. By setting λ = (1 − µ)−1, we

further transform this eigenvalue problem into

Find u ∈ H1
0 (Ω) and λ ∈ R s.t. (u, v)H1

0
= λ〈(τ + f ′

û)u, v〉 for all v ∈ H1
0 (Ω),

(3.19)

where 〈(τ + f ′
û)u, v〉 =

∫
Ω(τ + p|x|l|û(x)|p−1)u(x)v(x)dx for u, v ∈ H1

0 (Ω). Because

τ is chosen so that τ + f ′
û becomes positive (see (3.6)), (3.19) is a regular eigenvalue

problem, the spectrum of which consists of a sequence {λk}∞k=1 of eigenvalues con-

verging to +∞. To compute ‖F ′−1
û ‖L(H−1,H1

0 )
on the basis of Theorem 9, we need to

enclose the eigenvalue λ of (3.19) that minimizes the corresponding absolute value of

|µ|
(
= |1− λ−1|

)
. We consider the approximate eigenvalue problem

Find uM ∈ VM and λM ∈ R s.t. (uM , vM )H1
0
= λM 〈(τ + f ′

û)uM , vM 〉 for all vM ∈ VM ,

(3.20)

where VM is a finite-dimensional subspace of H1
0 (Ω) such as the space spanned by the

finite element basis and Fourier basis. For our problem, VM will be explicitly chosen

in Section 3.6. Note that (3.20) is a matrix problem with eigenvalues that can be

enclosed with rigorous computation techniques (see, for example, [14, 15, 16]).

We then estimate the error between the k-th eigenvalue λk of (3.19) and the k-th

eigenvalue λM
k of (3.20). We consider the weak formulation of the Poisson equation,

(ug, v)H1
0
= (g, v)L2 for all v ∈ H1

0 (Ω) (3.21)

given g ∈ L2 (Ω). This equation has a unique solution ug ∈ H1
0 (Ω) for each g ∈ L2 (Ω)

[17]. Let P τ
M : H1

0 (Ω) → VM be the orthogonal projection defined by

(P τ
Mu− u, vM )H1

0
= 0 for all u ∈ H1

0 (Ω) and vM ∈ VM .

The following theorem enables us to estimate the error between λk and λM
k .

Theorem 10 ([18, 19]) Let û ∈ H1
0 (Ω)∩L∞(Ω). Suppose that there exists Cτ

M > 0

such that

‖ug − P τ
Mug‖H1

0
≤ Cτ

M ‖g‖L2 (3.22)
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for any g ∈ L2 (Ω) and the corresponding solution ug ∈ H1
0 (Ω) of (3.21). Then,

λM
k

λM
k (Cτ

M )2‖τ + f ′
û‖L∞ + 1

≤ λk ≤ λM
k ,

where the L∞-norm is defined by ‖τ +f ′
û‖L∞ := esssup {|τ +p|x|l|û(x)|p−1| : x ∈ Ω}.

The right inequality is known as the Rayleigh–Ritz bound, which is derived from the

min-max principle:

λk = min
Hk⊂H1

0 (Ω)

(
max

v∈Hk\{0}

‖v‖2H1
0

‖av‖2L2

)
≤ λM

k ,

where a(x) =
√

τ + p|x|l|û(x)|p−1, and the minimum is taken over all k-dimensional

subspaces Hk of H1
0 (Ω). The left inequality was proved in [18, 19]. Assuming the

H2-regularity of solutions to (3.21) (which follows, for example, when Ω is a convex

polygonal domain [17, Section 3.3]), [18, Theorem 4] ensures the left inequality. A

more general statement that does not require the H2-regularity is proved in [19,

Theorem 2.1].

When the solution of (3.21) has H2-regularity, (3.22) can be replaced with

‖u− P τ
Mu‖H1

0
≤ Cτ

M ‖−u′′ + τu‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω). (3.23)

The constant Cτ
M satisfying (3.23) is obtained as Cτ

M = C0
M

√
1 + τ (C0

M )
2
(see [20,

Remark A.4]). For example, when Ω = (−1, 1), an explicit value of C0
M is obtained

for VM spanned by the Legendre polynomial basis using [21, Theorem 2.3]. This will

be used for our computation in Section 3.6.

Theorem 11 ([21]) When Ω = (−1, 1), the inequality

∥∥∥
(
u− P 0

Mu
)′∥∥∥

L2
≤ C0

M‖u′′‖L2 for all u ∈ H2(Ω) ∩H1
0 (Ω) (3.24)

holds for

C0
M = 2max

{
1

2(2M + 1)(2M + 5)
+

1

4(2M + 5)
√
2M + 3

√
2M + 7

,

1

4(2M + 5)
√
2M + 3

√
2M + 7

+
1

2(2M + 5)(2M + 9)
+

1

4(2M + 9)
√
2M + 7

√
2M + 11

} 1
2

.

3.4.3 Lipschitz constant L

Hereafter, we denote d (= d(Ω, l)) := max{|x|l : x ∈ Ω}. The Lipschitz constant L

satisfying (3.14), which is required for obtaining β, is estimated as follows:

‖f ′
v − f ′

w‖L(H1
0 ,H

−1) ≤ p sup
0$=φ∈H1

0

sup
0 $=ψ∈H1

0

|
∫
Ω |x|l(|v(x)|p−1φ(x)− |w(x)|p−1φ(x))ψ(x)dx|

‖φ‖H1
0
‖ψ‖H1

0

≤ pd sup
0$=φ∈H1

0

sup
0$=ψ∈H1

0

|
∫
Ω(|v(x)|

p−1 − |w(x)|p−1)φ(x)ψ(x)dx|
‖φ‖H1

0
‖ψ‖H1

0

.

(3.25)
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Using the mean value theorem, the numerator of (3.25) is evaluated as
∣∣∣∣
∫

Ω
(|v(x)|p−1 − |w(x)|p−1)φ(x)ψ(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

∫ 1

0
(p− 1)sign(w(x) + t(v(x)− w(x)))|w(x) + t(v(x)− w(x))|p−2dt

(v(x)− w(x))φ(x)ψ(x)dx

∣∣∣∣

= (p− 1)

∣∣∣∣
∫ 1

0

∫

Ω
sign(w(x) + t(v(x)− w(x)))|w(x) + t(v(x)− w(x))|p−2

(v(x)− w(x))φ(x)ψ(x)dxdt

∣∣∣∣

≤ (p− 1)

∫ 1

0
‖tv + (1− t)w‖p−2

Lp+1‖v − w‖Lp+1‖φ‖Lp+1‖ψ‖Lp+1dt

≤ (p− 1)C3
p+1

∫ 1

0
‖tv + (1− t)w‖p−2

Lp+1dt‖v − w‖H1
0
‖φ‖H1

0
‖ψ‖H1

0

≤ (p− 1)C3
p+1 max {‖v‖Lp+1 , ‖w‖Lp+1}p−2 ‖v − w‖H1

0
‖φ‖H1

0
‖ψ‖H1

0
,

for all 0 /= φ,ψ ∈ H1
0 (Ω). Therefore, we have

L ≤ p(p− 1)dC3
p+1 max {‖v‖Lp+1 , ‖w‖Lp+1}p−2 .

Choosing v, w from D = B(û, r), r = 2α+ δ for small δ > 0, we can express them as
{
v = û+ rη, ‖η‖H1

0
≤ 1,

w = û+ rξ, ‖ξ‖H1
0
≤ 1.

Hence, it follows that

L ≤ p(p− 1)dC3
p+1 max {‖û+ rη‖Lp+1 , ‖û+ rξ‖Lp+1}p−2

≤ p(p− 1)dC3
p+1(‖û‖Lp+1 + Cp+1r)

p−2. (3.26)

When Ω = (−1, 1), (3.26) is reduced to

L ≤ p(p− 1)C3
p+1(‖û‖Lp+1 + Cp+1r)

p−2.

3.5 Consideration of singularity

Due to the variable coefficient |x|l in the problem (3.2), the solution u has a singu-

larity at x = 0. Then, we present a numerical verification method that follows such a

internal singularity in this section. In general, if the solution u contains singularity,

constructing the approximate solution û with only smooth basis functions results in

a large residual. Its large residuals make it difficult to satisfy the condition (3.13)

of Newton–Kantorovich’s theorem. An example of dealing with a problem involving

singularity is Kobayashi’s research for finite element discretizations in a non-convex

domain using singular functions [32]. We apply the technique of using singular func-

tions to our problem with internal singularity. The idea is to construct approximate

solutions as

û(x) = u0φ0(x) +
Mu∑

i=1

uiφi(x), ui ∈ R.
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by using a singular function φ0(x) and smooth functions sequence φn(x) (n =

1, 2, 3, · · · ).
Specifically, we define the finite-dimensional subspace VM (2 ≤ M < ∞) of H1

0 (Ω)

as

VM :=

{
u0φ0(x) +

M∑

i=1

uiφi(x) : ui ∈ R
}
,

where, smooth functions φn(x) (n = 1, 2, 3, · · · )[21] defined by

φn(x) =
1

n(n+ 1)
(x+ 1)(1− x)

dQn

dx
(x)

with Qn(x) =
(−1)n

n!2n

(
d

dx

)n

(x+ 1)n(1− x)n, n = 1, 2, 3, · · · ,

(3.27)

and the singular function is defined as φ0(x) = |x|2+lφ1(x). We computed approxi-

mate solutions û ∈ VM by solving the matrix equation

Find û ∈ VM s.t. (û′, v′M )L2 = (f(û), vM )L2 for all vM ∈ VM (3.28)

using the usual Newton’s method.

Remark 1 Let V 0
M be a finite dimensional subspace of H1

0 (Ω) such as the space

spanned by the Legendre polynomial basis, and let VM (:= V 0
M ⊕ {φ0}) be a finite

dimensional subspace of H1
0 (Ω) containing singularities, and PM : H1

0 (Ω) → VM be

the projection. Since V 0
M ⊂ VM and

∥∥(u− PMu)′
∥∥
L2 ≤

∥∥∥
(
u− P 0

Mu
)′∥∥∥

L2
,

the constant C0
M in (3.24) can be also used for CM to evaluate that

∥∥(u− PMu)′
∥∥
L2 ≤ CM‖u′′‖L2 for all u ∈ H2(Ω) ∩H1

0 (Ω).

3.5.1 Techniques for computing singular functions

Since we need to calculate for the singular function such as φ0(x) = |x|2+lφ1(x), we

defined a“class” that can holds the exponential part a and the polynomial part P(x)

of
|x|aP(x)

at the same time. We named the “class” as fpsa. The operations are defined as

follows.

fpsa :

• Addition : |x|aP1(x) + |x|aP2(x) = |x|a(P1(x) + P2(x))

• Subtraction : |x|aP1(x)− |x|aP2(x) = |x|a(P1(x)− P2(x))

• Mmultiplication : |x|a1P1(x)× |x|a2P2(x) = |x|a1+a2(P1(x)× P2(x))

• pow : pow(|x|aP(x), b)=|x|abPb(x)
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• First-order derivative : |x|a−2(axP(x)) + |x|aP ′(x)

• Second-order derivative : |x|a−2(a(a− 1)P(x)) + |x|a−2(2axP ′(x)) + |x|aP ′′(x)

• Integration

In order to deal with the “algebraic type singularity”, the integration is performed as

follows.

∫ 1

−1
|x|aP(x)dx =

∫ 1

−1
|x|a(t0 + t1x+ · · · tnxn)dx

=

∫ 1

0
xa(t0 + t1x+ · · · tnxn)dx+

∫ 0

−1
(−x)a(t0 + t1x+ · · · tnxn)dx

=

∫ 1

0
(t0x

a + t1x
1+a + · · ·+ tnx

n+a)dx+

∫ 1

0
(t0y

a − t1y
1+a + · · ·+ tny

n+a)dy

=

[
t0

1 + a
x1+a +

t1
2 + a

x2+a + · · ·+ tn
n+ 1 + a

xn+1+a

]1

0

+

[
t0

1 + a
y1+a − t1

2 + a
y2+a + · · ·+ tn

n+ 1 + a
yn+1+a

]1

0

However, we could not define the addition between fpsa with different exponential

part a, so we defined a “class” as




|x|a1P1(x)

...
|x|anPn(x)



 := |x|a1P1(x) + · · ·+ |x|anPn(x)

using a vector, which is named vfpsa. Here, the derivative of fpsa is also held by

vfpsa. The operations are defined as follows.

vfpsa :

• Addition

• Subtraction

• Mmultiplication

• pow

• First-order derivative

• Second-order derivative

• Integration

• cast function (from fpsa to vfpsa)

3.6 Numerical results of the existence of solutions

In this section, we present numerical results where the existence of solutions of (3.2)

was proved for p = 3 via the method presented in Sections 3.3 and 3.4. All computa-

tions were implemented on a computer with 2.20 GHz Intel Xeon E7-4830 CPUs ×
4, 2 TB RAM, and CentOS 7 using MATLAB 2019b with GCC Version 6.3.0. All
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rounding errors were strictly estimated using the toolboxes kv Library [22] Version

0.4.49 and Intlab Version 11 [15]. Therefore, the accuracy of all results was guaranteed

mathematically.

First, we discuss the effects of singular functions. Figure 3.1 shows the comparison

with and without singular basis functions. According to the Figure 3.1, if we mixed

a singular fuction φ0 to construct approximate solution û, the upper bound for the

residual norm falls well enough to satisfy the condition αβ ≤ 1/2, so we succeeded

in verifying the existance of the solution. On the other hand, if we did not mix a

singular fuction φ0 to construct approximate solution û, the upper bound for the

residual norm does not fall sufficiently, so we failed in verifying the existance of the

solution. Furthermore, without a singular fuction φ0, the residual norm only drops

to about 1.16525e-4 even when increasing to Mu = 100. In that case, the residuals

do not reach the order of the case with singular functions when Mu = 30. Therefore,

the effect of the singular function is large.

Table 3.1 Verification results for p = 3, l = 3.

φ0 © ×

û

-1 -0.5 0 0.5 1
0

2

4

6

8

-1 -0.5 0 0.5 1
0

2

4

6

8

Mu 30 30

M 30 30

‖F (û)‖H−1 4.53868e-5 7.75707e-3

‖F ′−1
û ‖L(H−1,H1

0 )
2.10553 2.10553

L 3.22221e+1 3.23520e+1

α 9.55632e-5 1.63328e-2

β 6.78446e+1 6.81181e+1

αβ 6.48344e-3 1.11256

rA 1.22503e-4 fail

rR 8.98750e-6 fail

Mu: number of smooth basis functions for constructing approximate solution û ∈ VMu

M : number of basis functions for calculating λM

‖F (û)‖H−1 : upper bound for the residual norm estimated via (3.15)

‖F ′−1
û ‖L(H−1,H1

0 )
: upper bound for the inverse operator norm estimated via Theorem 9

L: upper bound for Lipschitz constant satisfying (3.14)

α: upper bound for α required in Theorem 8

β: upper bound for β required in Theorem 8

rA: upper bound for absolute error ‖u− û‖H1
0

rR: upper bound for relative error ‖u− û‖H1
0
/‖û‖H1

0

Next, we discuss how we have been able to verify solutions in areas not previously

analyzed. We remark that S. Tanaka [30, 31] already proved that a symmetric solution

and asymmetric solutions exist if l ≥ 2 with p = 3, and if l = 0 then only one

symmetric solution exists. Now, we focused in the interval 0 < l ≤ 2 where previously

unknown area.
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Table 3.2 shows the approximate solutions together with their verification results

where some sample points l = 1, 1.5, 1.75. To satisfy inequality (3.6), our program set

τ to the next floating-point number after a computed upper bound of the right side

of (3.6). Therefore, when û vanishes at some point on Ω, τ is set to the floating-point

number after zero, which is approximately 4.9407× 10−324. In Table 3.2, ‖F (û)‖H−1 ,

‖F ′−1
û ‖L(H−1,H1

0 )
, L, α, and β denote the constants required by Theorem 8. Moreover,

rA and rR denote an upper bound for absolute error ‖u − û‖H1
0
and relative error

‖u− û‖H1
0
/‖û‖H1

0
, respectively. The values in row “Peak” represent upper bounds for

the maximum values of the corresponding approximate solutions in decimal form.

The values in rows µ1–µ5 represent approximations of the five smallest eigenvalues

of (3.18) discretized in VM ⊂ H1
0 (Ω), which is spanned by the basis functions φn

(n = 1, 2, · · · ,M) without the restriction of symmetry. When l = 1, symmetric

solutions have one negative eigenvalue. When l = 1.5, 1.75, symmetric solutions have

two negative eigenvalues and asymmetric solutions have one negative eigenvalue.

Table 3.2 Verification results for p = 3, l = 1, 1.5, 1.75.

l 1 1.5 1.75

û

-1 -0.5 0 0.5 1
0

1

2

3

4

-1 -0.5 0 0.5 1
0

1

2

3

4

5

-1 -0.5 0 0.5 1
0

1

2

3

4

5

-1 -0.5 0 0.5 1
0

1

2

3

4

5

-1 -0.5 0 0.5 1
0

1

2

3

4

5

-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

Mu 60 70 70 40 40

M 40 40 40 40 40

‖F (û)‖H−1 9.61364e-5 1.33983e-5 3.93196e-4 4.74513e-5 8.24456e-4

‖F ′−1
û ‖L(H−1,H1

0 )
1.76503e+1 1.07965e+1 7.65807 5.94630 4.32131

L 1.51833e+1 1.92976e+1 1.87386e+1 2.14042e+1 2.02870e+1

α 1.69684e-3 1.44654e-4 3.01112e-3 2.82160e-4 3.56273e-3

β 2.67988e+2 2.08346e+2 1.43501e+2 1.27276e+2 8.76663e+1

rA 3.52331e-3 1.95542e-4 5.53575e-3 3.50669e-4 5.19979e-3

rR 6.00061e-4 2.56602e-5 7.29735e-4 4.10380e-5 6.16444e-4

Peak 3.53591 4.39542 4.60383 4.82846 5.07378

µ1 -1.99999 -1.99999 -1.99999 -2.00000 -1.99999

µ2 0.076502 -0.09263 0.164225 -0.16818 0.272274

µ3 0.735955 0.717610 0.695956 0.710254 0.684876

µ4 0.825836 0.802359 0.855733 0.792345 0.865012

µ5 0.907874 0.900254 0.892713 0.897159 0.899653

Mu: number of smooth basis functions for constructing approximate solution û ∈ VMu

M : number of basis functions for calculating λM

‖F (û)‖H−1 : upper bound for the residual norm estimated via (3.15)

‖F ′−1
û ‖L(H−1,H1

0 )
: upper bound for the inverse operator norm estimated via Theorem 9

L: upper bound for Lipschitz constant satisfying (3.14)

α: upper bound for α required in Theorem 8

β: upper bound for β required in Theorem 8

rA: upper bound for absolute error ‖u− û‖H1
0

rR: upper bound for relative error ‖u− û‖H1
0
/‖û‖H1

0
Peak: upper bound for the maximum values of the corresponding approximation
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µ1–µ5: approximations of the five smallest eigenvalues of (3.18)

3.7 Branches

In this section, we introduce the method of verifing solution branches of (3.2) based on

[10, Section 9.1 Solution Branches]. Here, we are interested in the problem depending

on a real parameter l (with a fixed parameter p), and not only in solutions u for one

or finitely many selected values of l, but in branches (ul)l∈I of solutions depending

smoothly on the parameter l within some compact interval I ⊂ R. Let J ⊂ R be

some open interval, and we extend (3.10) and consider the problem

F (u, l) = 0, (3.29)

with the continiously Fréchet differentiable mapping F : H1
0 (Ω) × J → H−1. Let

DuF [v, l] : H1
0 (Ω) → H−1 be the Fréchet derivative in the u-direction at v ∈ H1

0 (Ω).

Suppose that, for finitely many parameter values l0, . . . , lM ∈ J , ordered according to

l0 < l1 < · · · < lM ,

with “small” distances li − li−1, approximate solutions û0, · · · , ûM ∈ H1
0 (Ω) to prob-

lem (3.29) have been computed, giving rise to the conjecture that a continuum

(ul)l∈[l0,lM ] of solutions to problem (3.29), with uli “close to” ûi, exists.

We assume that, for each i ∈ {0, . . . ,M}, constants δi, Ki, Li are known via the

method presented in Sections 3.3 and 3.4 which satisfy

‖F (ûi, li)‖H−1 ≤ δi, (3.30)

∥∥∥DuF [ûi, li]
−1

∥∥∥
L(H−1,H1

0)
≤ Ki (3.31)

‖DuF [v, (1− t)li−1 + tli]−DuF [w, (1− t)li−1 + tli]‖L(H1
0 ,H

−1) ≤ Li‖v − w‖H1
0
,

for all v, w ∈ D and t ∈ [0, 1] ,
(3.32)

where, D = B((1− t)ûi−1 + tûi, δiKi + δi−1Ki−1 + ‖ûi − ûi−1‖H1
0
/2) is an open ball

depending on the above value δi > 0 and Ki > 0. Now we define a l-piecewise linear

(and l-continuous) approximate solution branch (û(l))l∈[l0,lM ] by

û(l) :=
li − l

li − li−1
ûi−1 +

l − li−1

li − li−1
ûi (li−1 ≤ l ≤ li, i = 1, . . . ,M) (3.33)

Using these constants δi, Ki, Li, we have to compute piecewise constant and lower

semi-continuous mappings [l0, lM ] → (0,M), l ,→ δ(l), l ,→ K(l), l ,→ L(l) , such that

(a) The upper bound of the residual norm δ(l) satisfying

‖F (û(l), l)‖H−1 ≤ δ(l), for all l ∈ [l0, lM ] , (3.34)

(b) The upper bound of the inverse operator norm K(l) satisfying
∥∥∥∥DuF

[
û(l), l

]−1
∥∥∥∥
L(H−1,H1

0)
≤ K(l), for all l ∈ [l0, lM ] , (3.35)



32Chapter 3 Advanced numerical verification method and analysis of bifurcation phenomena of the Hénon equation

(c) The upper bound of the Lipschitz constant L(l) satisfying

‖DuF [v, l]−DuF [w, l] ‖L(H1
0 ,H

−1) ≤ L(l)‖v − w‖H1
0
,

for all v, w ∈ D and l ∈ [l0, lM ] ,
(3.36)

where, D = B(û(l), 2δ(l)K(l)+δ) is an open ball depending on the above value δ(l) > 0

and K(l) > 0 for small δ > 0.

ad (a) We fix i ∈ {0, . . . ,M} and l ∈ [li−1, li], and define t := (l− li−1)/(li − li−1) ∈
[0, 1], hence

l = (1− t)li−1 + tli, û(l) = (1− t)ûi−1 + tûi (3.37)

Suppose that we know some τi > 0 (not depending on t) such that

‖(1− t)F (ûi−1, li−1) + tF (ûi, li)− F ((1− t)ûi−1 + tûi, (1− t)li−1 + tli) ‖H−1 ≤ τi
(3.38)

In our problem, the computation of τi essentially reduces to computing some function

τ̄i : Ω → [0,∞) suth that

| (1− t)f (ûi−1, li−1) + tf (ûi, li)− f ((1− t)ûi−1 + tûi, (1− t)li−1 + tli) |≤ τ̃i(x)
(3.39)

for all x ∈ Ω where we set f : H1
0 (Ω)× J → H−1 as

f(u, l) := |x|lu(x)p.

Here f is twice continuously differentiable with respect to u and l, the standard

interpolation error bound gives (3.39) for

τ̃i(x) :=
1

8

[
|ûi(x)− ûi−1(x)|2 max

(y,µ)∈A(x)

∣∣∣∣
∂2f

∂y2
(x, y, µ)

∣∣∣∣

+ 2 |ûi(x)− ûi−1(x)| |li − li−1| max
(y,µ)∈A(x)

∣∣∣∣
∂2f

∂y∂l
(x, y, µ)

∣∣∣∣

+ |li − li−1|2 max
(y,µ)∈A(x)

∣∣∣∣
∂2f

∂l2
(x, y, µ)

∣∣∣∣

]
(3.40)

where A(x) := [min {ûi−1(x), ûi(x)} ,max {ûi−1(x), ûi(x)}]× [li−1, li].

Clearly, τ̃i(x) is quadratically small when li − li−1 is sufficiently small, and the

associated approximate solutions ûi and ûi−1 are close to each other. It depends on

choosing a sufficiently fine grid {l0, . . . , lM}.
Hence, also τi satisfying (3.38) (computed based on τ̃i(x)) will be quadratically

small. By (3.37), (3.38), and the residual norm ‖F (ûi, li)‖H−1 , it is now very simple

to estimate

‖F (û(l), l)‖H−1 ≤ (1− t)‖F (ûi−1, li−1) ‖H−1 + t‖F (ûi, li) ‖H−1 + τi

≤ max {δi−1, δi}+ τi

=: δ(l).



3.7 Branches 33

Thus, the constant δ(l) is small when δi−1 and δi are small (i.e. when ûi−1 and ûi

have been computed with sufficient accuracy) and the grid points li−1 and li (and the

associated approximate solutions ûi−1 and ûi) are sufficiently close to each other.

ad (b),(c) We fix i ∈ {0, . . . ,M} and l ∈
[
1
2 (li−1 + li) ,

1
2 (li + li+1)

]
, where we

formally put l−1 := l0, lM+1 := lM . Hereafter, we denote dµ(x) := |x|li(|x|µ− 1), and

assume that some ρi > 0 has been computed such that

‖DuF [ûi, li + µ]−DuF [ûi, li]‖L(H1
0 ,H

−1)

≤ p sup
0$=φ∈H1

0

sup
0$=ψ∈H1

0

|
∫
Ω(|x|

li+µ|ûi(x)|p−1φ(x)− |x|li |ûi(x)|p−1φ(x))ψ(x)dx|
‖φ‖H1

0
‖ψ‖H1

0

= p sup
0$=φ∈H1

0

sup
0$=ψ∈H1

0

|
∫
Ω dµ(x)|ûi(x)|p−1φ(x)ψ(x)dx|

‖φ‖H1
0
‖ψ‖H1

0

≤ p sup
0$=φ∈H1

0

sup
0$=ψ∈H1

0

‖dµûp−1
i ‖Lp+1‖φ‖Lp+1‖ψ‖Lp+1

‖φ‖H1
0
‖ψ‖H1

0

≤ pC2
p+1‖dµû

p−1
i ‖Lp+1 =: ρi for all µ ∈

[
−1

2
(li − li−1) ,

1

2
(li+1 − li)

]
. (3.41)

Furthermore, we suppose that the grid {l0, . . . , lM} has been chosen fine enough, and

that also the associated approximate solutions are sufficiently close to each other, to

ensure that

κi := max

{
Li

(
1

2
‖ûi − ûi−1‖H1

0

)
, Li+1

(
1

2
‖ûi+1 − ûi‖H1

0

)}
+ ρi <

1

Ki
, (3.42)

with Ki from (3.31) and Li from (3.32); here we formally have to put the L0-term

and the LM+1-term occurring in (3.42) for i = 0 and for i = M , respectively, equal

to zero.

Now suppose first that i ≥ 1 and l ∈
[
1
2 (li−1 + li) , li

]
, and define t :=

(l − li−1) / (li − li−1) ∈
[
1
2 , 1

]
, whence again (3.37) holds. Therefore,

∥∥∥DuF
[
û(l), l

]
−DuF [ûi, li]

∥∥∥
L(H1

0 ,H
−1)

≤

‖DuF [(1− t)ûi−1 + tûi, (1− t)li−1 + tli]−DuF [ûi, (1− t)li−1 + tli]‖L(H1
0 ,H

−1)

+ ‖DuF [ûi, (1− t)li−1 + tli]−DuF [ûi, li]‖L(H1
0 ,H

−1)

≤ Li

(
(1− t) ‖ûi − ûi−1‖H1

0

)
+ ρi ≤ κi, (3.43)

using (3.32) for u := (1 − t)(ûi − ûi−1), and (3.41) for µ := −(1 − t)(li − li−1) in

the last line. (3.43) together with (3.31) and (3.42) implies that ‖Rl‖L(H1
0 ,H

−1) <

1 for Rl := DuF [ûi, li]
−1 (DuF

[
û(l), l

]
−DuF [ûi, li]), and hence DuF

(
û(l), l

)
=

DuF (ûi, li)
(
idH1

0
+Rl

)
is bijective.

If i ≤ M − 1 and l ∈
[
li,

1
2 (li + li+1)

]
, we define t := (l − li) / (li+1 − li) ∈ [0, 1/2],

whence (3.37) holds with i replaced by i+1. A calculation similar to the one leading

to (3.43) now gives

∥∥∥DuF
[
û(l), l

]
−DuF [ûi, li]

∥∥∥
L(H1

0 ,H
−1)

≤ Li+1

(
t ‖ûi+1 − ûi‖H1

0

)
+ ρi ≤ κi (3.44)
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and bijectivity of DuF
[
û(l), l

]
follows as before.

Using (3.31) and (3.43), (3.44), we obtain, for each u ∈ H1
0 ,

‖u‖H1
0
≤ Ki ‖DuF [ûi, li] [u]‖H−1 ≤ Ki

(∥∥∥DuF
[
û(l), l

]
[u]

∥∥∥
H−1

+ κi‖u‖H1
0

)
,

which by our assumption (3.42) implies that (3.35) holds, for l ∈
[
1
2 (li−1 + li) ,

1
2 (li + li+1)

]
,

when we choose

K(l) :=
Ki

1−Kiκi
(3.45)

In this way we obtain a piecewise constant function [l0, lM ] → (0,∞), l ,→ K(l).

Choosing again the smaller of the two values at the points 1
2 (li−1 + li) (i = 1, . . . ,M),

whereK(l) is possibly doubly defined by (3.45), this mapping is lower semi-continuous.

Finally we define the Lipschitz constant L(l), for l ∈ [li−1, li] (i = 1, . . . ,M),

L(l) := Li

and then, we can set α(l) and β(l) such that

α(l) = δ(l)K(l),

β(l) = K(l)L(l).

Here, if

α(l)β(l) ≤ 1

2
, (3.46)

is satisfied we can verify the solution u(l) based on Theorem 8. (3.46) for each l ∈
[l0, lM ] amount to finitely many inequalities which are therefore computer-tractable.

3.8 Numerical results of bifurcation branches

In this section, we present numerical results of bifurcation branches for (3.2). Our

approximate computation obtained Figure 3.1, the solution curves of (3.1) with p = 3

for 0 ≤ l ≤ 4 (l is always a multiple of 2−7). We remark that S. Tanaka already

proved the existence of a symmetric solution and asymmetric solutions [30, 31] when

l ≥ 4, so we focused in the interval 0 ≤ l ≤ 4. First, we computed approximate solu-

tions û0, . . . , ûM ∈ H1
0 (Ω) with Mu = 40, as well as constants δ0, . . . , δM , constants

K0, . . . ,KM , and constans L0, . . . , LM are satisfying Newton–Kantorovich theorem.

Then, we applied the verification method of section 3.7 for symmetric solution’s lines

(blue lines in Figure 3.1) and asymmetric solution’s lines (orange lines in Figure 3.1).

As a result, symmetric solution’s lines where 0 ≤ l ≤ 1, 1.5 ≤ l ≤ 4, and asymmetric

solution’s lines where 1.5 ≤ l ≤ 4 are verified. Tables 3.3, 3.4 contains the computed

values δ(l) , K(l) , L(l) , α(l) , β(l) for some of the l-intervals.

The next goal is to find and verify the bifurcation point that corresponds to the

red dot on Figure 3.1.
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Figure 3.1 Solution curves for (3.2) with p = 3.

Table 3.3 Verification results for symmetric branch.

l-interval δ(l) K(l) L(l) α(l) β(l) α(l)β(l)

(0.5, 0.5 + 2−7) 3.24322e-4 5.34505 11.2525 1.73352e-3 60.1450 0.10426

(1, 1 + 2−10) 3.99253e-5 22.2019 15.1826 8.86415e-4 3.37082e+2 0.29880

(1.5, 1.5 + 2−10) 1.34583e-5 12.7289 19.3053 1.71307e-4 2.45734e+2 4.20961e-2

(3, 3 + 2−7) 6.64243e-4 3.66165 32.2902 2.43223e-3 1.18236e+2 0.28758

Table 3.4 Verification results for asymmetric branch.

l-interval δ(l) K(l) L(l) α(l) β(l) α(l)β(l)

(1.5, 1.5 + 2−10) 2.69964e-4 8.44707 18.7367 2.28041e-3 1.58270e+2 0.36092

(3, 3 + 2−7) 2.81497e-4 2.96478 27.9466 8.34578e-4 82.8556 6.91494e-2

3.9 Bifurcation point

This section discusses the numerical verification method to find the symmetry break-

ing bifurcation point of the problem (3.2) for the parameter l. We consider an ex-

panded equation that resolves the singularity that arises at the bifurcation point.

Let Vs be a symmetric subspace of H1
0 (Ω) and the topological dual space of Vs is

denoted by V ∗
s . Let As : Vs → V ∗

s as

〈Asu, v〉 = (u, v)Vs , u, v ∈ Vs,
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and f : Vs × R → V ∗
s as

f(u, l) := |x|lu(x)p,

and F1 : Vs × R → V ∗
s as

F1(u, l) := Asu− f(u, l).

Then, the one-dimensional Hénon equation (3.2) can be described as

F1(u, l) = 0.

Moreover, let F1 be Fréchet differentiable in the u-direction, and let DuF1[v, l] : Vs →
V ∗
s be the Fréchet derivative in the u-direction at v ∈ H1

0 (Ω). Next, let Va be an

asymmetric subspace of H1
0 (Ω) and we set the solution space V = Vs × Va × R. The

solution space V is a Hilbert space because it consists of a direct product of Hilbert

spaces. Then, the symmetry breaking bifurcation point is l satisfying the problem

Find (u,φ, l) ∈ V s.t.




F1(u, l)
DuF1[u, l]φ
‖φ‖2L2 − 1



 =




0
0
0



 .

In other words, let F1, F2, F3 be

F1(u, l) := Asu− |x|lup : Vs × R → V ∗
s ,

F2(u,φ, l) := Aaφ− p|x|lup−1φ : Vs × Va × R → V ∗
a ,

F3(φ) := ‖φ‖2L2 − 1 : Va → R,

and F : V → V ∗ be

F (u,φ, l) :=




F1(u, l)
F2(u,φ, l)
F3(φ)





where V ∗ = V ∗
s × V ∗

a ×R. Then we define u := (u,φ, l) and we consider the follwing

problem

Find u ∈ V s.t. F (u) = 0. (3.47)

To conduct the numerical verification for this problem, we also apply the Newton–

Kantorovich theorem (Theorem 8), which enables us to prove the existence of a true

solution u in B̄(û, ρ). Then, we can prove that the bifurcation point l exists in

B̄(l̂, ρ). We are left to evaluate the residual norm ‖F (û)‖V ∗ , the inverse operator

norm ‖F ′−1
û ‖L(V ∗,V ), and the Lipschitz constant L for problem (3.47).

The residual norm ‖F (û)‖V ∗ can be evaluated as follows

‖F (û)‖V ∗ ≤
√
‖F1(û)‖2V ∗

s
+ ‖F2(û)‖2V ∗

a
+ ‖F3(û)‖2R.

For the problem (3.47), the inverse operator norm ‖F ′−1
û ‖L(V ∗,V ) cannot be eval-

uated in the way that is based on Theorem 9. In such cases, there is a method by

Nakao et al [10, Theorem 3.17]. First, we set operators A : V → V ∗ and f : V → V ∗

are defined by

A :=




As 0 0
0 Aa 0
0 0 1



 ,
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and

f(u) :=




|x|lup

p|x|lup−1φ
‖φ‖2L2 − 1



 ,

For u ∈ V , the Ritz projection Rh : V → Vh is defined by

((I −Rh)u,vh)V = 0,vh ∈ Vh,

where Vh is a finite-dimensional subspace of V . Let V⊥ := {u ∈ V : (u,vh)V = 0,vh ∈ Vh}
be anorthogonal complement of Vh. Let f ′

v : V → Vh be the Fréchet derivative at

v ∈ V of nonlinear term f(u), and F ′
v be a linear operator defined by

F ′
v := A− f ′

v.

Let T : Vh → Vh be a finite-dimensional operator:

T = RhA−1F ′
û |Vh

where · |X denotes the restriction for the domain of the operator. Let B : V⊥ → V⊥

be a linear operator defined by

B := (I −Rh)A−1f ′
û |V⊥ +(I −Rh)A−1f ′

û |Vh T−1RhA−1f ′
û |V⊥ .

Let S : V⊥ → V⊥ be a linear operator defined by

S := IV⊥ −B

Then, following theorem can be used.

Theorem 12 [33, Corollary 1] It follows that

‖F ′−1
û ‖L(V ∗,V ) ≤

∥∥∥∥∥∥∥





∥∥∥T−1 + T−1A−1
h f ′

û

∣∣
V⊥S−1A−1

⊥ f ′
û

∣∣
Vh

T−1
∥∥∥
L(V ,V )

∥∥∥T−1A−1
h f ′

û

∣∣
V⊥

S−1
∥∥∥
L(V ,V )

)

∥∥∥S−1A−1
⊥ f ′

û

∣∣
Vh

T−1
∥∥∥
L(V ,V )

∥∥S−1
∥∥
L(V ,V )





∥∥∥∥∥∥∥
E

,

where ‖ · ‖E denotes a matrix norm induced by the Euclidean vector norm | · |E.

Subsequently, the Lipschitz constant L can be evaluated as follows :

L ≤
∥∥∥∥
∫ 1

0
F ′′
û+2αtdt

∥∥∥∥
L(V ,V )

.

by applying [34, Corollary 1]. Then, we set α and β such that

α = ‖F (û)‖V ∗‖F ′−1
û ‖L(V ∗,V ),

β = ‖F ′−1
û ‖L(V ∗,V )L,

and if

αβ ≤ 1

2
, (3.48)
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then there exists a solution u ∈ V of F (u) = 0 in B̄(û, ρ) with

ρ =
1−

√
1− 2αβ

β
,

based on Theorem 8. Finally, there exists a true bifurcation point l ∈ R in B̄(l̂, ρ),

because

|l − l̂| ≤ ‖u− û‖V .

In other words, there exists a true bifurcation point l in the interval
[
l̂ − ρ, l̂ + ρ

]
.

Remark 2 “log type singularity” and improvement of fpsa and vfpsa

When generating Jacobi matrices of (3.47), we need to integrate over the form

|x|l log |x|up by partial differentiation of parameter l for the terms in |x|lup. We

added a element for the integration of fpsa and vfpsa. In order to deal with the

“algebraic type singularity” and the “log type singularity”, the following integration is

performed.

• Integration (“algebraic type singularity” + “log type singularity”):

∫ 1

−1
|x|a log |x|P(x)dx

=

∫ 1

−1
|x|a log |x|(t0 + t1x+ · · · tnxn)dx

=

∫ 1

0
xa log x(t0 + t1x+ · · · tnxn)dx+

∫ 0

−1
(−x)a log(−x)(t0 + t1x+ · · · tnxn)dx

=

∫ 1

0
(t0x

a log x+ t1x
1+a log x+ · · ·+ tnx

n+a log x)dx

+

∫ 1

0
(t0y

a log y − t1y
1+a log y + · · ·+ tny

n+a log y)dy

=

[
t0
(1 + a) log x− 1

(1 + a)2
x1+a + t1

(2 + a) log x− 1

(2 + a)2
x2+a + · · ·+ tn

(n+ 1 + a) log x− 1

(n+ 1 + a)2
xn+1+a

]1

0

+

[
t0
(1 + a) log y − 1

(1 + a)2
y1+a − t1

(2 + a) log y − 1

(2 + a)2
y2+a + · · ·+ tn

(n+ 1 + a) log y − 1

(n+ 1 + a)2
yn+1+a

]1

0

3.10 Numerical results of the bifurcation point

In this section, we present numerical results of the bifurcation point for (3.2) with

p = 3 like the red dot on Figure 3.1. First, we computed approximate solutions

û = (û, φ̂, l̂) with Mu = 100 (see Table 3.5). Next, we computed the residual norm

‖F (û)‖V ∗ , the inverse operator norm ‖F ′−1
û ‖L(V ∗,V ), and the Lipschitz constant L

based on the section 3.9 to apply the Newton–Kantorovich theorem. As a result, we

got the approximate bifurcation point

l̂ = 1.216895863752014
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and the error upper bound is

ρ = 6.227185573261e− 4.

Therefore, the exact bifurcation point l exists in the interval

l ∈ [1.21627314519468, 1.21751858230934] .

Table 3.5 Approximate solution û at the bifurcation point (p = 3).

û φ̂ l̂

-1 -0.5 0 0.5 1
0

1

2

3

4

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

1.216895863752014

3.11 Short summary of chapter 3

We designed a numerical verification method for proving the existence of solutions

of the one-dimensional Hénon equation (3.2) on a bounded domain based on the

Newton-Kantorovich theorem. We applied our method that follows the singularity of

the Hénon equation, proving the existence of several solutions of (3.2) nearby a nu-

merically computed approximation û efficiently. As a result, we succeeded in verifying

the branches and bifurcation points of the simple symmetry-breaking bifurcation in

Figure 3.1.
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Chapter 4

Conclusion

In chapter 2, we designed a numerical verification method for proving the existence

of solutions of the Hénon equation (2.1) on a bounded domain based on the Newton-

Kantorovich theorem. We applied our method to the domains Ω = (0, 1)N (N = 1, 2),

proving the existence of several solutions of (2.1) nearby a numerically computed

approximation û. In particular, we found a set of undiscovered solutions with three

peaks on the square domain Ω = (0, 1)2. Approximate computations generated the

solution curves of (2.1) for 0 ≤ l ≤ 8 in Figures 2.1 and 2.2.

In chapter 3, we designed a numerical verification method for proving the existence

of solutions of the one-dimensional Hénon equation (3.2) on a bounded domain based

on the Newton-Kantorovich theorem. We applied our method that follows the singu-

larity of the Hénon equation, proving the existence of several solutions of (3.2) nearby

a numerically computed approximation û efficiently. As a result, we succeeded in veri-

fying the branches and bifurcation points of the simple symmetry-breaking bifurcation

in Figure 3.1.

In future work, we would like to deal with the Hénon equation (2.1) extended

to high-dimensional domains Ω. We aim to achieve this goal by implementing fast

numerical integration of multivariate functions with singularity. Eventually, we would

like to reveal all solution types in various domains through an algorithm for enclosing

all solutions.
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equation, Communications in Contemporary Mathematics 21(1) (2019) 1-24.



44 References

[32] K. Kobayashi. A constructive a priori error estimation for finite element dis-

cretizations in a non-convex domain using singular functions. Japan journal of

industrial and applied mathematics 26 (2) (2009) 493–516.

[33] K. Sekine, M. T. Nakao, S. Oishi, A new formulation using the Schur complement

for the numerical existence proof of solutions to elliptic problems: without direct

estimation for an inverse of the linearized operator, Numer. Math., 146, (2020)

907—926.

[34] K. Sekine, M. T. Nakao, S. Oishi, Numerical verification methods for a system of

elliptic PDEs, and their software library, Nonlinear Theory and Its Applications,

IEICE 12.1 (2021): 41–74.



No.1

Full Name： seal or signature

Date Submitted(yyyy/mm/dd):

種類別
(By Type)

論文(2件)

国際学会発表
(6件)

Kazuaki Tanaka, Kohei Yatabe, Taisei Asai, Sora Sawai: Rigorous simulation of reaction-diffusion
models with neural networks, The 41st JSST Annual International Conference on Simulation
Technology (JSST 2022), Online, Aug. 31, 2022. (査読有)

Taisei Asai, Kazuaki Tanaka, Kouta Sekine and Shin'ichi Oishi: Computer-assisted analysis for the
bifurcation phenomena of the one-dimensional Henon-type equation, International Workshop on
Reliable Computing and Computer-Assisted Proofs (ReCAP 2022), March 16, 2022.

Taisei Asai, Kazuaki Tanaka, Kouta Sekine and Shin'ichi Oishi: Computer-assisted analysis for
bifurcation diagrams of the one-dimensional Henon equation, The 19th International Symposium on
Scientific Computing, Computer Arithmetic, and Verified Numerical Computations (SCAN2020),
September 14, 2021. (査読有)

Taisei Asai, Kazuaki Tanaka, and Shin’ichi Oishi: Numerical verification for positive solutions of the H
énon equation on some bounded domain, The 40th JSST Annual International Conference on Simulation
Technology, September 2, 2021. (査読有)

Taisei Asai, Kazuaki Tanaka, and Shin’ichi Oishi: Existence proofs for asymmetric solutions of Hénon
equation using verified numerical computations, International Workshop on the Verified Numerical
Computations and its Applications (INVA), March 6-12, 2020 (conference cancelled).

Taisei Asai, Kazuaki Tanaka, and Shin’ichi Oishi: Numerical verification for asymmetric solutions of
the Henon equation, The 38th JSST Annual International Conference on Simulation Technology,
November 5th, 2019. (査読有)
多田秀介, 浅井大晴, 田中一成, 大石進一: Batt-Faltenbacher-Horst 方程式の解の精度保証付き数
値計算, 日本応用数理学会2022年度年会, Zoom, 2022年9月10日.

松江要, 落合啓之, 小谷久寿, 佐々木多希子, 浅井大晴: 常微分方程式の爆発解の複数項漸近展
開, 日本数学会2022年度年会, 埼玉大学, 2022年3月30日.

宮内洋明, 高安亮紀, 柏木雅英, 浅井大晴: ベッセル関数のType-ll PSAの計算について, 第18回
(2021年度)日本応用数理学会研究部会連合発表会, Zoom, 2022年3月8日.

List of research achievements for application of Doctor of Engineering, Waseda
University

浅井　大晴

題名、  発表・発行掲載誌名、　　発表・発行年月、　　連名者（申請者含む）
(theme, journal name, date & year of publication, name of authors inc. yourself)

2022/11/16

○Taisei Asai, Kazuaki Tanaka, Shin'ichi Oishi: Numerical verification for asymmetric solutions of the
Hénon equation on bounded domains, Journal of Computational and Applied Mathematics, 399, 113708
(2022). Journal (Open Access)

Kazuaki Tanaka, Taisei Asai: A posteriori verification of the positivity of solutions to elliptic boundary
value problems, Partial Differential Equations and Application, 3, 9 (2022). Journal (Open Access)

国内学会発表
(13件)



No.2

Full Name： seal or signature

Date Submitted(yyyy/mm/dd):

種類別
(By Type)

List of research achievements for application of Doctor of Engineering, Waseda
University

浅井　大晴

題名、  発表・発行掲載誌名、　　発表・発行年月、　　連名者（申請者含む）
(theme, journal name, date & year of publication, name of authors inc. yourself)

2022/11/16

松江要, 落合啓之, 小谷久寿, 佐々木多希子, 浅井大晴: 常微分方程式の爆発解の複数項漸近展
開, 2021年度応用数学合同研究集会, Zoom, 2021年12月17日.

浅井大晴, 田中一成, 関根晃太, 大石進一: 精度保証付き数値計算を用いた1次元エノン方程式
の分岐図の解析 , 第5回 精度保証付き数値計算の実問題への応用研究集会 (NVR 2021) (※
JST/CREST「モデリングのための精度保証付き数値計算論の展開」成果報告会と同時開催),
2021年11月28日 (Invited).

浅井大晴, 田中一成, 関根晃太, 大石進一: 精度保証付き数値計算を用いた1次元エノン型方程
式に対する分岐解析, RIMS共同研究（公開型）「常微分方程式の定性的理論とその応用」,
Zoom, 2021年11月11日 (Invited).

浅井大晴, 田中一成, 大石進一: 1次元エノン方程式の分岐図に対する計算機援用解析, 日本応
用数理学会2021年度年会, Zoom, 2021年9月9日.

浅井大晴, 田中一成, 大石進一: 特異関数を用いた1次元エノン方程式の解の精度保証付き数値
計算, 応用数理学会2021年研究部会連合発表会, 2021年3月4日.

浅井大晴, 田中一成, 大石進一: 精度保証付き数値計算を用いたHénon方程式の対称性に関す
る考察, 精度保証付き数値計算の実問題への応用研究集会 (NVR 2020), 2020年11月29日
(Invited).

浅井大晴, 田中一成, 大石進一: 精度保証付き数値計算を用いたHenon方程式の多重解の存在
証明, 日本応用数理学会2020年度年会, Zoom, 2020年9月10日.

田中一成, 浅井大晴: 楕円型境界値問題に対する解符号の事後検証法, 日本応用数理学会2020
年度年会, Zoom, 2020年9月10日.

浅井大晴, 田中一成, 大石進一: 精度保証付き数値計算を用いた Henon 方程式の非対称解の存
在証明, 2019年度応用数学合同研究集会, 龍谷大学瀬田キャンパス, 2019年12月13日.

浅井大晴, 田中一成, 大石進一: Henon方程式の非対称解に対する精度保証付き数値計算, 日本
応用数理学会2019年度年会, 東京大学駒場キャンパス, 2019年9月3日～5日.


