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Chapter 1

Overview

In this paper, we consider the Hénon equation

—Au = |z — xo'|ulP"lu in Q,
u=20 on 0,

where Q@ C RY(N = 1,2,3) is a bounded domain. The real parameter [ > 0 is
the potential index, and the real parameter 2 < p < p* (p* = co if N = 1,2 and
p* =5 if N = 3) is the polytropic index. This Hénon equation, a generalized form of
the Emden equation, admits symmetry-breaking bifurcation for the potential index
l. Therefore, it has asymmetric solutions on a symmetric domain even though the
Emden equation has no asymmetric unidirectional solution on such a domain. In
chapter 2, we discuss a numerical verification method for proving the existence of
solutions of the Hénon equation on a bounded domain. By applying the method to
a line-segment domain and a square domain, we numerically prove the existence of
several solutions of the Hénon equation for [ = 0,2,4 with fixed p = 3. As a result,
we find a set of undiscovered solutions with three peaks on the square domain.
However, the singularity of the Hénon equation prevents to verify the solution when
the parameter [ is not even number using only the chapter 2 method. It also makes
it difficult to verify the bifurcation point and branches. In chapter 3, we focused on

the one-dimensional Hénon equation

—u" = |z |ulP u, x € (—1,1),
u(—=1) =u(l) =0,

and developed a numerical verification method that follows the singularity of the
Hénon equation. By applying the method, the existence of multiple solutions can
be proved efficiently even when [ is not even number. As a result, we succeeded
in verifying the branches and bifurcation points of the simple symmetry-breaking

bifurcation of the one-dimensional Hénon equation.



Chapter 2

Basic numerical verification method
and newly discovered solutions of the
Hénon equation

2.1 Introduction

The Hénon equation was proposed as a model for mass distribution in spherically
symmetric star clusters, which is important in studying the stability of rotating stars

[1]. One important aspect of the model is the Dirichlet boundary value problem

{—Au:|x—wo|l|up_1u in Q, 21)

u=20 on O,

where Q C RY(N = 1,2,3) is a bounded domain, x is the location of the star, and
u is the positive solution because it stands for the stellar density. Particularly, xq
is often set to the center of the symmetry axis if the domain has some symmetry.
The real parameter 2 < p < p* (p* = o0 if N = 1,2 and p* = 5 if N = 3) is the
polytropic index, determined according to the central density of each stellar type.
The real parameter [ > 0 is the ratio of the transverse velocity to the radial velocity.
These velocities can be derived by decomposing the space velocity vector into the
radial and transverse components.

When [ = 0, the Hénon equation coincides with the Emden equation —Au =
|u/P~tu in Q. In this case, the transverse velocity vanishes and the orbit becomes
purely radial. Gidas, Ni, and Nirenberg proved that the Emden equation has no
asymmetric unidirectional solution in a rectangle domain [2]. However, Breuer, Plum,
and McKenna reported some asymmetric solutions obtained with an approximate
computation based on the Galerkin method [3], which were called “spurious approx-
imate solutions” caused by discretization errors. This example shows the need to
verify approximate computations. By contrast, a theoretical analysis [4] for large I
(when the orbit tends to be purely circular) found that the Hénon equation admits
symmetry-breaking bifurcation, thereby having several asymmetric solutions even on
a symmetric domain.

The importance of the Hénon equation has led to active mathematical study on it

over the last decade. For example, Amadori and Gladiali [5] analyzed the bifurcation
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structure of (2.1) with respect to parameter p. They applied an analytical method
to the Hénon equation that had worked for the Emden equation. Additionally, sev-
eral numerical studies have been conducted on the Hénon equation [6, 7, 8, 9]. In
particular, we are motivated by the work of Yang, Li, and Zhu [6], who developed an
effective computational method to find multiple asymmetric solutions of (2.1) on the
unit square € = (0, 1)? using algorithms based on the bifurcation method. They gen-
erated the bifurcation curve of (2.1) with p = 3 and numerically predicted bifurcation
points around [ = 0.5886933 and | = 2.3654862 using approximate computations.
The purpose of our study is to prove the existence of solutions of (2.1) using the
Newton—Kantorovich theorem (see Theorem 2). We prove their existence through the

following steps:

1. We construct approximate solutions # using the Galerkin method with polyno-
mial approximations.

2. Using the Newton-Kantorovich theorem (Theorem 3), we prove the existence
of solutions u of (2.1) with nearby approximations & while sharply evaluating

the error bound between u and 4 in terms of the H}-norm ||V - || 2.

By applying the above steps to the problem (2.1) on the domains Q = (0,1)V
(N = 1,2), we successfully prove the existence of several solutions for | = 0,2,4.
In particular, we find a set of solutions with three peaks, which were not revealed in
[6] (see Figure 2.2).

The remainder of this chapter is organized as follows. Some notation is introduced
in Section 2.2. Sections 2.3 and 2.4 describe numerical verification based on the
Newton-Kantorovich theorem together with evaluations of several required constants.
Section 2.5 shows the results numerically proving the existence of several asymmetric
solutions of (2.1). Subsequently, we discuss the solution curves of the problem for

p = 3 based on an approximate computation.

2.2 Preliminaries

We begin by introducing some notation. For two Banach spaces X and Y, the set
of bounded linear operators from X to Y is denoted by £(X,Y). The norm of
T € L(X,Y) is defined by

T
Iy = sup Ll (22)

0£ueX ullx
Let LP(Q) (1 < p < o0) be the function space of p-th power Lebesgue integrable
functions over a domain ) with the LP-norm |[u||z» := (f, \u(x)|pdx)1/p < 0o. When
p =2, L*(Q) is the Hilbert space with the inner product (u,v)r2 := [, u(z)v(x)dz.
Let L>°(Q) be the function space of Lebesgue measurable functions over 2, with the
norm ||uf g := esssup{|u(z)| : z € Q} for u € L>°(Q). We denote the first-order L>
Sobolev space in  as H*(£2) and define

Hy(Q) :={ue€ H'(Q) : u =0 on 9Q in the trace sense}
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as the solution space for the target equation (2.1). We endow H{ () with the inner

product and norm
(w,v)gp 2= (Vu, Vo)rz + 7(u,v) 2, u,v € Hi(Q), (2.3)

lull g = = \/(w. )y, w € Hy(Q), (2.4)
where 7 is a nonnegative number chosen as
7> —plx — zol'|i(z)[P! ae xe (2.5)

for a numerically computed approximation @ € Hg (2). The condition (2.5) is required
in Subsection 2.4.2 and @ is explicitly constructed in Section 2.5. Because the norm
(||| zz2 monotonically increases with respect to 7, the HY(Q) norm ||V+| 2 is dominated
by the norm || - || 1 for all 7 > 0. Therefore, the error bound [lu — [z is always an
upper bound for ||V(u — @)| 2. The topological dual space of H}(2) is denoted by
H~' with the norm defined by

Tu
[y [
0AuEH} ||U||H3
The bound for the embedding H{(2) < LP(Q) is denoted by C, (p > 2). More

precisely, C}, is a positive number satisfying
Il e < C’p||u||H01 for all u € H3(Q). (2.6)

Note that [lullz-1 < CpllullL, u € LP () holds for p’ satisfying p~' + p'~* = 1
. Explicitly estimating the embedding constant C, is important for our numerical

verification. When p = 2, we use the following optimal inequality:

lullz2 <

=l

where ) is the first eigenvalue of the minus Laplacian in the weak sense. Especially
when Q = (0,1)", we have \; = N72. When p is not 2, we use the following theorems
depending on the dimension of 2. We use [10, Lemma 7.12] to obtain an explicit value

of ), for a one-dimensional bounded domain.

Theorem 1 ( [10, Lemma 7.12] ) Let Q = (a,b) C R, with a € RU{—o0}, b €
RU {400}, a < b. Moreover, let p* denote the minimal point of the spectrum of —u'
on HY(Q), i.e. p* =72/(b—a)? if (a,b) is bounded. Then, for all u € H}(Q),

lullr < Cpllully  (p € (2,00)),

where, abbreviating ¢ := 2 € (0, 1),

2
P

V2

\/plﬁ (p*)%(l_a) otherwise ,

¢ .{1(1—€>i<1—6><1+a>i<1+6>r—i<l+6> i <TiE
p -

for p € (2,00).
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When N > 2, we use [11, Corollary A.2] or [10, Lemma 7.10] to obtain C, for
bounded domains € RY. In our numerical experiments in Section 2.5, C) evaluated
by [11, Corollary A.2] is smaller than that evaluated by [10, Lemma 7.10]. In [11,
Corollary A.2|, Cp, is evaluated for [ull» < Cp||Vul|pz, but since [[Vulrz < [[ull

for all 7, the same C), can be used for ||ull» < Cp|lul|p;.

Theorem 2 ( [11, Corollary A.2] ) Let @ C RN(N > 2) be a bounded domain,
the measure of which is denoted by |)|. Let p € (N/(N —1),2N/(N —2)] if N > 3,
p € (2,00) if N =2. We set g = Np/(N +p). Then, (2.6) holds for

CP(Q) = |Q|2;qup'

Here, T, is defined by

2|

q—1)13 L (1+Y)r(w)

F(%)F(1+N—%)

Tp:ﬂ'i%N_% (

where I" is the gamma function.

2.3 Numerical verification method

This section discusses the numerical verification method used in this chapter. We

first define the operator f as
I’ u(-) = Lol ul) [P (),
| H (@) - HY
where 2 < p < p* (p* =00 if N =1,2 and p* =5 if N = 3). Furthermore, we define
the nonlinear operator F : Hi(Q2) — H~! by F(u) := —Au — f(u), which is given by
(F(u),v) = (Vu, V)2 — (f(u),v) forall ve HJ (),

where (f(u),v) = [,(|& — o|'|u(x)[P~ u(z))v(z)de. The Fréchet derivatives of f
and F at ¢ € HE(Q) are denoted by [, and I, respectively, and given by

(fluv) = / (pla — mo||p(@) P Vu(@)o(@)de  forall wve HAQ), (27)
(Flu,v) = (gu7 Vo)rz — (fLu,v)  forall  w,ve Hy(Q). (2.8)

Then, we consider the following problem:
Find we€ Hg(Q) st. F(u) =0, (2.9)

which is the weak form of the problem (2.1). To conduct the numerical verification for
this problem, we apply the Newton—Kantorovich theorem, which enables us to prove
the existence of a true solution u near a numerically computed “good” approximate
solution @ (see, for example, [12]). Hereafter, B(@,r) and B(,r) respectively denote
the open and closed balls with center approximate solution @ and radius r in terms

of norm | - || 1.
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Theorem 3 (Newton—Kantorovich’s theorem) Let 4 € H}(Q) be some approz-

imate solution of F(u) = 0. Suppose that there exists some o > 0 satisfying
-1 ~
|F 7 F @)y < (2.10)
Moreover, suppose that there exists some 3 > 0 satisfying
1FH(EFy = )l eema may < Bllv —wllgg,  for allv,w € D, (211)

where D = B(,2a + 6) is an open ball depending on the above value o > 0 for small
0>0.If

1
< —
af <5,

then there exists a solution u € HE(Q) of F(u) =0 in B(1, p) with

1—yT=2a8
p=——FG

Furthermore, the solution u is unique in B(i,2a).

2.4 Evaluation for a and (8

To apply Theorem 3 to the numerical verification for problem (2.1), we need to ex-

plicitly evaluate a and . The left side of (2.10) is evaluated as

17 P (@)

’Hg = HFé_lHL(H—l,Hg) £ @) -1
Therefore, we set
a= HF{1HL(H—17H3) [E (@) -2

Moreover, the left side of (2.11) is estimated as

||F7f;1 (Fy = F{u)Hg(Hg,Hg) < ||F1£L_1HL(H—17H3) £ = FLJHE(H(},H*Q

= ||F1£L_1H[:(H*1,Hf}) £y = f{UHﬁ(H(},H*l) :
Hence, the desired value of § is obtained via
B<NF e mn Ls
where L is the Lipschitz constant satisfying
Ilf — f;||£(Hé7H_1) <Lljv—-w|g forallv,we D. (2.12)

We are left to evaluate the inverse operator norm ||F, " | 2(zr—1,m1), the residual norm

|F(@)]| -1, and the Lipschitz constant L for problem (2.9).



8

Chapter 2 Basic numerical verification method and newly discovered solutions of the Hénon equation

2.4.1 Residual norm || F(u)|| g1

If the approximation @ is sufficiently smooth so that A4 € L?(f2), we can evaluate

the residual norm || F(@)|| g-1 as follows:
[F(@)]| -1 < Col| At + f(@)]| L2, (2.13)

where Cy is the embedding constant satisfying (2.6) for p = p’ = 2. Our numerical
experiments discussed in Section 2.5 use this evaluation, calculating the L?-norm via
stable numerical integration with all rounding errors strictly estimated.

However, the condition A@ € L2(f2) is not satisfied such as when we construct
@ with a piecewise linear finite element basis. We use the method of [10, Subsec-
tion 7.2] to evaluate the residual norm applicable to such a case. The following
is a brief description of the evaluation method. First, we find an approximation
p € H(div,Q) = {7 € L* ()" :divr € L*(Q)} to Va. Then, the residual norm is

evaluated as

[F(@) g = [ — Ad — f(@)|[ g1,
= —Ad+divp—divp — f(@)| g,
< | div(=Vi + p)l|g-+ + || divp + f(@)] -1,
<[ = Vi +plz + Col divp + f(@)| L2,

where we used ||divw||g-1 < ||w|/2 for w € H(div,Q). As mentioned in [10, Sub-
section 7.2], p can be computed without additional computational resources when we
use the mixed finite element method to construct .

2.4.2 Inverse operator norm ‘|F1£_1‘|L(H—1,Hé)

In this subsection, we evaluate the inverse operator norm |F; || p(a-1,mp)- To this
end, we use the following theorem.

Theorem 4 ([13]) Let ® : H}(Q) — H~! be the canonical isometric isomorphism;
that is, ® s given by

(Pu,v) = (u,v) g for u,v € Hy(Q).

1
0
If
po :=min {|pu| : p€ oy (<I>_1Fé) u{1}} (2.14)
is positive, then the inverse of F}. exists, and we have
/—1 -1
e H[,(H*l,H(}) = Ko s (2.15)
where o, (P1F}) denotes the point spectrum of ®~'F}.
The eigenvalue problem ® ' F/u = pu in H}(Q) is equivalent to

(Vu, Vo). — (fiu,v) = p (u,v) gy forall v e H (), (2.16)
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where (u,v) py denotes the inner product defined in (2.3) that depends on 7 and
(ftu,v) is given by (2.7).

We consider the operator N' := ® — F} from H}(Q) to H~!, which satisfies
(Nu,v) = [,,(ple — zol'|a(z) [P~ )u(z)v(x)de for all u,v € H}(Q). Because N maps
H}(Q) into L?(Q2) and the embedding L?*(2) < H~! is compact, N : H}(Q) — H~1
is a compact operator. Therefore, F} is a Fredholm operator, and the spectrum
o (®7'F}) of ®1F} is given by

o (@ 'F) =1-0 (2 'N) =1— {0, (2 'NV)U{0}} =0, (2~ F}) U{1}.

Accordingly, it suffices to look for eigenvalues p # 1. By setting A = (1 — )~ !, we
further transform this eigenvalue problem into
Find u € Hj(Q) and A € R s.t. (u,0) gz = M(7 + fi)u,v) forallv e H;(9Q),
(2.17)
where (7 + f)u,v) = [o(T + ple — xol'|a(x)|P~)u(z)v(z)de for u,v € H{(Q).
Because 7 is chosen so that 7 + f becomes positive (see (2.5)), (2.17) is a regular
eigenvalue problem, the spectrum of which consists of a sequence {\;}72; of eigenval-
ues converging to +oc. To compute || F; || c(a-1,mp) on the basis of Theorem 4, we
need to enclose the eigenvalue A of (2.17) that minimizes the corresponding absolute

value of || (= |1 — A7!|). We consider the approximate eigenvalue problem

Find up; € Vay and AM € R s.t. (UMWM)H(% = M{((1 + f)unr,var) for all vy € Vi,
(2.18)

where V) is a finite-dimensional subspace of H} () such as the space spanned by the
finite element basis and Fourier basis. For our problem, Vj; will be explicitly chosen
in Section 2.5. Note that (2.18) is a matrix problem with eigenvalues that can be
enclosed with rigorous computation techniques (see, for example, [14, 15, 16]).

We then estimate the error between the k-th eigenvalue Ay of (2.17) and the k-th

eigenvalue A\M of (2.18). We consider the weak formulation of the Poisson equation,
(ug, U)Hé = (g,v);. forallve Hy(Q) (2.19)

given g € L? (2). This equation has a unique solution u, € Hj(Q2) for each g € L? ()
[17]. Let P, : H3(Q) — Vs be the orthogonal projection defined by

(Pyru — u,UM)Hé =0 forall u € H}(Q) and vy € Vay.

The following theorem enables us to estimate the error between Ax and )\kM .

Theorem 5 ([18, 19]) Let & € H}(Q) N L*°(Q). Suppose that there exists CT; > 0
such that

lug = Prrugll gy < Cirllgll L2 (2.20)

for any g € L? (Q) and the corresponding solution u, € H}(Q) of (2.19). Then,

AL < Ap < AM
NICT2T+ follpe +1 = 70 =700
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where the L>®-norm is defined by || + f4||r= := esssup {|7 + plx — zo|'|0(x)|P}]| :
x € Q}.

The right inequality is known as the Rayleigh—Ritz bound, which is derived from the

min-max principle:

0]l 72
A = min max h;(’ < /\24,
HrCHY(Q) \ve€HR\{0} ||av]| 72

where a(x) = /7 + plz — xo|!|d(x)[P~!, and the minimum is taken over all k-

dimensional subspaces Hy of H(2). The left inequality was proved in [18, 19)].
Assuming the H?2-regularity of solutions to (2.19) (which follows, for example, when
) is a convex polygonal domain [17, Section 3.3]), [18, Theorem 4] ensures the left
inequality. A more general statement that does not require the HZ2-regularity is
proved in [19, Theorem 2.1].

When the solution of (2.19) has H?-regularity, (2.20) can be replaced with

llu = Prrull gy < Chy l[=Au+Tul| . for all u e H*(Q) N H(Q). (2.21)
The constant C}, satisfying (2.21) is obtained as C};, = Cu 1+7(Co)? (see
[20, Remark A.4]), where we denote Cpy = C3%; with 7 = 0. For example, when
Q = (0,1)N, an explicit value of Cj; is obtained for Vj; spanned by the Legendre
polynomial basis using [21, Theorem 2.3]. This will be used for our computation in
Section 2.5.
Theorem 6 ([21]) When Q = (0,1)", the inequality

IV (u — Py 12 < Onrl|Aull 2 for all w € H*(Q) N Hy (Q)

holds for

1 1
+ ;
2(2M 4+ 1)(2M +5)  4(2M + 5)v/2M + 3v2M + 7

Cuy zmax{

(NI

1 1 1
4(2M + 5)V2M + 32M + 7 + 2(2M +5)(2M +9) + 42M + 9)V2M +72M + 11}

2.4.3 Lipschitz constant L

Hereafter, we denote d (= d(£,1)) := max{|x — zo|' : & € Q}. The Lipschitz constant

L satisfying (2.12), which is required for obtaining £, is estimated as follows:

T —1 _ 1
1o = full (g, -1y S _sup - sup g |= = ol (v@)" “él@) — ho(@)P”¢())) (@)da
0 0£SEHY Ope HY @z 191] 22
<pd sup  sup | Jo(Jo(@)[P~! — |w($)\p71)¢(m)¢(f’f)dm|.
0£PEHS 0£YEH] ||¢HH(}||¢||H5

(2.22)
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Using the mean value theorem, the numerator of (2.22) is evaluated as

’/Q(Iv(ﬂc)l”_1 = Jw(@) P~ ¢(x)v(x)da

/Q / (b — Dsign(w(z) + H(o(@) — w(@)))|w(@) + o) - w(z)P2d

(v(@) — w(z))p(x)(z)dx

1
—(p-1) / /Q sign(w(e) + to(x) — w(@))w(@) + () — w) P2

(v(a) - w(m))as(w)w(w)dxdt]
1
<=1 [ o+ 0=l o = w6l il

1
<(p-1)C, / o+ (1 = tywlZs2dello — wl gy 9l 2y 16 2
< (p— 1)C3,, max {foll o, 1wl zoss 2 o = w0l g 1
for all 0 # ¢, € H(S2). Therefore, we have
L < plp — 1)dC%4 max {[[o]l o, [ o P2

Choosing v, w from D = B(a,r), r = 2a + ¢ for small § > 0, we can express them as

v+, lnlm <1,
w=a+7E ||elm <1.

Hence, it follows that

L < p(p — 1)dC2,y max {||i+ rol| o1, |6+ 7] oss }P 2
< p(p —1)dC3, (@] o + Cparr)P 72 (2.23)

2.5 Numerical results

In this section, we present numerical results where the existence of solutions of (2.1)
was proved for p = 3 on the domains Q = (0,1)" (N = 1,2) via the method presented
in Sections 2.3 and 2.4. All computations were implemented on a computer with 2.20
GHz Intel Xeon E7-4830 CPUs x 4, 2 TB RAM, and CentOS 7 using MATLAB
2019b with GCC Version 6.3.0. All rounding errors were strictly estimated using the
toolboxes kv Library [22] Version 0.4.49 and Intlab Version 11 [15]. Therefore, the
accuracy of all results was guaranteed mathematically. We constructed approximate
solutions of (2.1) from a Legendre polynomial basis discussed in [21]. Specifically,
we constructed approximate solutions 4 using the basis functions ¢,, (n =1,2,3,---)
defined by

1 dQn
n(n + l)x(l —2) dx (z)

Pn(x) =
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2.5.1 Numerical results on the unit line-segment

To apply our method to = (0, 1), we define the finite-dimensional subspace Vjs of
H}(Q) as

M
Vi = {Z uidi(x) @ u; € R},

i=1
where 2 < M < oco. We computed approximate solutions 4 € Vj; by solving the

problem of the matrix equation
Find @ € Vi s.t. (Vi, Voar) 2 = (f(@),var) 2 for all vy € Vi (2.25)

using the usual Newton method. When we look for a symmetric solution, we restrict
the solution space and its finite-dimensional subspace. The following subspace V! of

H}(Q) is endowed with the same topology
1 1 . S 1
V= {u € Hy(Q) : u is symmetric with respect to z = 2} . (2.26)

Then, we define the finite-dimensional subspace Vi, (M > 2) of V! as

M
Vi = Z uipi(x) + u €R
=1
i is odd

The method presented in Sections 2.3 and 2.4 can be directly applied when the func-
tion spaces Hj(2) and V) are replaced with V! and V};, respectively. This restric-
tion reduces the amount of calculation because the matrices in (2.25) become smaller.
Moreover, because eigenfunctions of (2.18) are also restricted to be symmetric, eigen-
values associated with anti-symmetric eigenfunctions drop out of the minimization in
(2.14). Therefore, the constant K can be reduced. The other constants required in the
verification process (that is, C}, and ||F(4)||g-1) are not affected by the restriction.
Using the evaluation (2.23) when p = 3 and Q = (0,1) with the center x¢ = (1/2),

we evaluated the Lipschitz constant L as

N L
L<6 <2) C3(||al s + Cyr).

Table 2.1 shows the approximate solutions together with their verification results
on = (0,1). The red dashed lines indicate the symmetry of each solution. To
satisfy inequality (2.5), our program set 7 to the next floating-point number after a
computed upper bound of the right side of (2.5). Therefore, when @ vanishes at some
point on €, 7 is set to the floating-point number after zero, which is approximately
4.9407 x 107324, In Table 2.1, ||F(@)||z-1, IF; 'l z-1,m1), Ly @, and B denote the
constants required by Theorem 3. Moreover, r4 and rr denote an upper bound for
absolute error ||u—a|| g1 and relative error |[u—l| g /[|4| z3, respectively. The values
in row “Peak” represent upper bounds for the maximum values of the corresponding

approximate solutions in decimal form.
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The values in rows p1—us5 represent approximations of the five smallest eigenvalues
of (2.16) discretized in Viy C HE(Q), which is spanned by the basis functions ¢,
(n = 1,2,---,40) without the restriction of symmetry. When | = 2,4, symmetric
solutions have two negative eigenvalues and asymmetric solutions have one negative
eigenvalue.

Our approximate computation obtained Figure 2.1, the solution curve of (2.1) for
0 <1< 8 (lis always a multiple of 0.05). The verified points where [ = 0,2, 4 lie on
the solution curves. According to Figure 2.1, a bifurcation point is expected to exist
around [1.20, 1.25].

Table 2.1 Verification results for I =0,2,4 on Q = (0, 1).

l 0 2 4
. / : \
. al o/ \ W N ® \
U o/ ’ \ ;n o : Y \\ 5 ; d
. \ o
Solution space Vi Vi \%4 Vi \%
M, 40 40 40 40 40
M 40 40 40 40 40
1 F ()]l -1 2.95468¢-12 | 8.35842¢-8 4.03869¢-6 9.25374e-6 3.36995¢-4
||F7;71H£(H—17H01> 2.02207 4.19470 3.25043 1.82276 2.16009
L 1.28660 2.04106 1.89034 1.78289 1.47489
«a 5.97456e-12 3.50610e-7 1.31275e-5 1.68674e-5 7.27937e-4
B 2.60158 8.56162 6.14441 3.24977 3.18587
A 6.04051e-12 4.15274e-7 1.51947e-5 2.06429e-5 9.27220e-4
TR 7.60887e-13 7.72615e-9 2.89288e-7 1.00215e-7 4.97806e-6
Peak 3.70815 21.0522 22.0954 70.3607 71.2910
I -1.99999 | -2.00000  -1.99999 | -1.99999 -1.99999
n2 0.500000 -0.238397 0.356085 -0.657337 0.588997
"3 0.800001 0.703809 0.679874 0.671403 0.755696
4 0.892858 0.783274 0.865471 0.733254 0.859840
us 0.933334 0.894429 0.910538 0.880449 0.924964

Solution space: V := HJ(Q) and the subspace V! is defined by (2.26)

M, number of basis functions for constructing approximate solution @ € Vi, or @ € Vl\l/[u

M: number of basis functions for calculating AM
[|F(@)|| —1: upper bound for the residual norm estimated via (2.13)

||F73—1 Hg(H*l,Hé): upper bound for the inverse operator norm estimated via Theorem 4

L: upper bound for Lipschitz constant satisfying (2.12)

a: upper bound for « required in Theorem 3

[3: upper bound for 8 required in Theorem 3

r4: upper bound for absolute error ||u — @l ;1

rgr: upper bound for relative error ||u — a”H},/”ﬁHH(}

Peak: upper bound for the maximum values of the corresponding approximation
n1—ps: approximations of the five smallest eigenvalues of (2.16)
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Figure 2.1 Solution curves for (2.1) on the unit line segment (0, 1).

2.5.2  Numerical results on the unit square

We apply our method to 2 = (0,1)? in this subsection. As in Subsection 2.5.1,
we again restrict solution spaces and their finite-dimensional subspaces to look for
symmetric solutions. The following sub-solution spaces of HE(€2) are endowed with
the same topology:
1 1 . L 1

V' i=<u e Hy(Q) : uis symmetric with respect to z = 50
GRE {u € H}(Q) : u is symmetric with respect to y = x} ,

V3= {u € H}(Q) : u is symmetric with respect to y = 2 and y = —x + 1} ,

1 1
vi= {u € Hy(Q) : u is symmetric with respect to z = 3Y=59=2 and y = —x + 1} .
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Then, using ¢; defined in (2.24), we construct finite-dimensional subspaces Vi, (M >
2) for each V' (i = 1,2,3,4) as

MM
Vi = Z Z ui ;9 ()9 (y) + uij ER P,

—1 i=1
[3 ILS odd J
M M
2 . .
Viar = E E wi 5 j(2,y) © uig €R B,
i=1 =i

VJ\34 = Z Z w; i (2, y) Z Z i i g(T,y) : uig €R oy

iis odd jis odd iis even j is even

M M
Vip=4 >0 3 wigti(ey) uig €Ry,

=i
iis odd j is odd

where v; ; is defined as
bij(2,y) = ¢i(2) 9 (y) + ¢;(2)9i(y), (z,y) € Q,

which is symmetric with respect to the line y = z. Note that we use the same notation
V1 and V}; with different meanings than in Subsection 2.5.1. The method presented
in Sections 2.3 and 2.4 can be directly applied when the function spaces Hg(£2) and
Vs are replaced with V¥ and V7, respectively. In the solution space V};, approximate

solutions u were obtained by solving the matrix equation
Find @ € Vi s.t. (Vi, Voar) . = (F(@),var) 2 for all vy € Vi, (2.27)

via the usual Newton method. Restricting solution spaces reduces the amount of
calculation for the same reasons as described in Subsection 2.5.1. Using the evaluation
(2.23) when Q = (0,1)? with the center zo = (1/2,1/2), we evaluated the Lipschitz

constant L as

L<6 (\1[>104(||uL4 + Cyr).

Tables 2.2 and 2.3 show the approximate solutions together with their verification
results. The red dashed lines indicate the symmetry of each solution. We again set

~ 4.9407 x 107324, the minimal positive floating-point number after zero. In the
tables, || F(@)||g-1, HFqéL_l”L(H*l,Hé)a L, a, and 8 denote the constants required by
Theorem 3. Moreover, 4 and rg denote an upper bound for absolute error ||u— || H}
and relative error [|u—l| g /[|4]| g2, respectively. The values in row “Peak” represent
upper bounds for the maximum values of the corresponding approximate solutions.
We see that error bounds are affected by the number of peaks — fewer peaks lead
to larger error bounds. As [ increases, the peaks approach the corners of the domain
and become higher. Therefore, a larger [ makes verification based on Theorem 3
more difficult. We succeeded in proving the existence of solutions in all cases in

which [ = 0,2, 4, including three-peak solutions not found in [6].
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The values in rows p1—us represent approximations of the five smallest eigenvalues
of (2.16) discretized in Vao C HE(Q), which is spanned by the basis functions ¢,
(n =1,2,---,30) without the restriction of symmetry. When [ = 4, the number of
negative eigenvalues p coincides with the number of peaks.

Our approximate computation obtained Figure 2.2, the solution curves of (2.1) for
0 <1 < 8 (Iis always a multiple of 0.05). If the vertical axis scaling is changed,
the curves coincide with those in [6, Figure 2] except for that corresponding to the
three-peak solutions after the point around [2.35,2.40]. The verified points where
1 =0,2,4 lie on the solution curves. According to Figure 2.2, two bifurcation points
are expected to exist around [0.55, 0.60] and [2.35, 2.40]. We expect the single-solution

curve bifurcates to three at the first bifurcation point around [0.55,0.60], and then

one of them further bifurcates to three at the second point around [2.35,2.40].

Table 2.2 Verification results for [ = 0,2 on the unit square (0, 1)2.

l 0 2
3D o i 5 a ‘
Solution space V4 V4 Vi V2
M, 40 40 60 60
M 40 40 40 40
1 F(@)|| -1 1.17370e-7 3.96407e-7 1.19312¢-8 4.22257e-7
1F5 N ea—1,m3) | 170326 2.26200 15.19763 36.47472
L 6.78398e-1 1.64252 1.43209 1.21150
o 1.99910e-7 8.96672¢-7 1.81325¢-7 1.54017e-5
8 1.15549 3.71537 21.76424 44.18887
A 4.63296¢-8 2.55597e-7 1.44557¢-7 2.48634¢-5
TR 3.76958¢-9 3.98528¢-9 2.45351¢-9 4.63166e-7
Peak 6.62326 24.36528 29.03437 29.20268
wm ] 199999 | 199999 199999  -1.99999
2 0.220034 -0.410090 -0.273589 0.196622
3 0.220034 -0.410090 0.233061 0.208937
m 0.604521 0.114826 0.457439 0.585268
s 0.658421 0.298974 0.517021 0.639470

Solution space: restricted solution space V' C H{ ()

M,,: number of basis functions with respect to z and y for constructing approximate solution 4 € V]f/[u

M: number of basis functions with respect to x and y for calculating A\

[|F(@)|| y—1: upper bound for the residual norm estimated via (2.13)

||F1{L—1 Hﬁ(HJ,Hé): upper bound for the inverse operator norm estimated via Theorem 4

L: upper bound for Lipschitz constant satisfying (2.12)

«: upper bound for « required in Theorem 3

B: upper bound for 8 required in Theorem 3
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r4: upper bound for absolute error ||u — @l ;1

rgr: upper bound for relative error ||u — ﬁ”Hé/”ﬁ”Hé

Peak: upper bound for the maximum values of the corresponding approximation
n1—ps: approximations of the five smallest eigenvalues of (2.16)

Table 2.3 Verification results for [ = 4 on the unit square (0, 1).

l 4

h ' .

Solution space V2

M, 70 70 70 70 70

M 80 80 80 80 80

1E(@)|| -1 1.88534e-11 7.91070e-6 4.76970e-7 8.47044e-6 3.47384e-8

||F1{L_1HL(H—1,H(}) 6.82420 24.18779 78.96665 21.26750 47.44875

L 2.31308 1.46531 1.55126 1.18832 1.97091

o 1.28659e-10 1.91343e-4 3.76648e-5 1.80145e-4 1.64830e-6

B 15.78486 35.44250 1.22498e+2 25.27251 93.51720

A 4.95952e-11 1.73351e-4 8.76586e-5 1.53306e-4 2.32064e-6

TR 2.35369e-13 9.86681e-7 5.12219e-7 1.20925e-6 1.16657e-8

Peak 62.30489 68.15045 66.28947 69.69524 64.16408
N 199999 -1.99996  -1.99999  -1.99999 -1.99999

w2 -0.995156 -1.86714 -1.64594 0.177691 -1.46267

3 -0.995156 0.166245 0.130875 0.251043 -1.14006

14 -0.689431 0.205039 0.253364 0.591950 0.131828

s 0.210478 0.258004 0.272595 0.658008 0.175494

Solution space: restricted solution space V¢ C HZ(Q)

M,,: number of basis functions with respect to x and y for constructing approximate solution 4 € V;\:lu
M: number of basis functions with respect to 2 and y for calculating AM

[|[F(@)|| f—1: upper bound for the residual norm estimated via (2.13)

||F7{l—1 Hz:(H*l,Hé): upper bound for the inverse operator norm estimated via Theorem 4
L: upper bound for Lipschitz constant satisfying (2.12)

«: upper bound for « required in Theorem 3

B: upper bound for g required in Theorem 3

ra: upper bound for absolute error ||u — 12||Hé

rg: upper bound for relative error ||u — ﬁlng/llﬂlng

Peak: upper bound for the maximum values of the corresponding approximation

n1—ps: approximations of the five smallest eigenvalues of (2.16)
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80

Figure 2.2 Solution curves for (2.1) on the unit square (0, 1)%.

2.6 Short summary of chapter 2

We designed a numerical verification method for proving the existence of solutions of
the Hénon equation (2.1) on a bounded domain based on the Newton-Kantorovich
theorem. We applied our method to the domains Q = (0,1)Y (N = 1,2), proving
the existence of several solutions of (2.1) nearby a numerically computed approxima-
tion 4. In particular, we found a set of undiscovered solutions with three peaks on
the square domain = (0,1)2. Approximate computations generated the solution
curves of (2.1) for 0 < I < 8 in Figures 2.1 and 2.2. Our next goal should verify
the existence of solutions for arbitrary I € [0,a], given a large a > 0, and prove
the bifurcation structure for (2.1) in a strict mathematical sense. Next chapter, we
introduce the method and results verifying the branches and bifurcation points of

symmetry-breaking bifurcation for the one-dimensional Hénon equation (2.1).



Chapter 3

Advanced numerical verification
method and analysis of bifurcation
phenomena of the Hénon equation

3.1 Introduction

The Hénon equation was proposed as a differential equation describing the density
distribution of celestial bodies [1]. And some papers [4, 5, 6, 7, 8, 9] have discussed
the Dirichlet boundary value problem

{—Au:|w—m0|l|up_1u in Q, (3.1)

u=20 on 0,
where Q C RY(N = 1,2,3) is a bounded domain. Particularly, xo is set at the center
of the domain. The real parameter [ > 0 is the potential index, and the real parameter
2<p<p* (p* =00 if N =1,2and p* =5 if N = 3) is the polytropic index. In
this chapter, we consider the one-dimensional Hénon equation which is the two-point

boundary value problem

(3.2)

—u" = [allfurtu, @€ (~1,1),
u(~1) = u(1) =0,

where ! > 0, 2 < p < co. It is known that if [ = 0, then there is no asymmetric positive
solution [23, 24, 25], and if [ > 0 is sufficiently large, then there are some asymmetric
solutions [26, 27, 28, 29]. Recent interest in the symmetry-breaking phenomena has
spurred a great deal of mathematical research into the Hénon equation over the last
decade. S. Tanaka [30, 31] proved that if [(p — 1) > 4, the Morse index of the positive
least energy solution equals 1 and the Morse index of the positive symmetric solution
equals 2, and hence the positive least energy solution is asymmetric and symmetry-
breaking phenomena occur. It is also shown that if [ and p are sufficiently small,
then there is no positive asymmetric solution and the Morse index of the symmetric
positive solution equals 1. However, still only sufficient conditions for symmetry—
breaking bifurcation have been clarified, and the existence of multiple solutions near
the bifurcation point and the structure of the bifurcation are not known completely.

The purpose of our study was to verify the existence of multiple solutions of (3.2)

near the bifurcation point, and tracking the bifurcation diagrams by computer assis-

19
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tance. Due to the variable coefficient |z|' in the problem (3.2), the solution u has a
singularity at z = 0. We design a numerical verification method that follows such
a internal singularity. By applying the method, the existence of multiple solutions
can be proved efficiently. As a result, we succeeded in verifying the branches and
bifurcation points of the simple symmetry-breaking bifurcation (see Figure 3.1).
The remainder of this chapter is organized as follows. Some notation is introduced
in Section 3.2. Sections 3.3 and 3.4 describe numerical verification based on the
Newton—Kantorovich theorem together with evaluations of several required constants.
Section 3.5 shows the consideration of singularity. Subsequently, Section 3.6 shows
the results numerically proving the existence of several solutions of (3.2) using the
method that follows a internal singularity. Sections 3.7 and 3.8 show the numerical
verification method and results for the branches of (3.2). Sections 3.9 and 3.10 show

the numerical verification method and results for the bifurcation point of (3.2).

3.2 Preliminaries

We begin by introducing some notation. For two Banach spaces X and Y, the set
of bounded linear operators from X to Y is denoted by L£(X,Y). The norm of
T € L(X,Y) is defined by

Tu Y
1Tl cx,v) == sup [ .
0£ueX HUHX

(3.3)
Let LP(Q) (1 < p < o0) be the function space of p-th power Lebesgue integrable
functions over a domain Q) with the LP-norm ||u||z» := (f, \u(x)|pdm)1/p < 0o. When
p =2, L*(Q) is the Hilbert space with the inner product (u,v)r2 := [, u(z)v(z)dz.
Let L>°(Q) be the function space of Lebesgue measurable functions over 2, with the
norm ||[uf = := esssup{|u(z)| : z € Q} for u € L>(Q). We denote the first-order L?

Sobolev space in  as H*(£2) and define
H(Q) :={u € H'(Q) : u =0 on 9Q in the trace sense}
as the solution space for the target equation (3.1). We endow Hg(£2) with the inner
product and norm
(u,0) gz = = (W', 0") 2 +7(u,0) 2, w,v € Hy(S), (3.4)
flry = Jw @)y, we HYQ), (3.5)
where 7 is a nonnegative number chosen as
7> —plzl|a(z)[P~ ae € (3.6)

for a numerically computed approximation @& € Hg (2). The condition (3.6) is required
in Subsection 3.4.2 and @ is explicitly constructed in Section 3.6. Because the norm
||| zz; monotonically increases with respect to 7, the HY(Q) norm ||-/|| 2 is dominated
by the norm || - [z for all 7 > 0. Therefore, the error bound [u — [z is always
an upper bound for ||(u — @)’| 2. The topological dual space of H}(Q) is denoted by

H~! with the usual supremum norm defined in (3.3).
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The bound for the embedding H{(2) < LP(Q) is denoted by C, (p > 2). More

precisely, C}, is a positive number satisfying
Il e < Cp||u||H3 for all u € Hj(Q). (3.7)

Note that |lullg-1 < Cpllullpe, u € L) holds for ¢ satisfying p~ + ¢~ ' =1
. Explicitly estimating the embedding constant Cj, is important for our numerical
verification. When p = 2, we use the following optimal inequality:
1
Jullz2 < \/ﬁ”UHHl},
where \; is the first eigenvalue of the minus Laplacian in the weak sense. Especially
when 2 = (—1,1), we have \; = 72/4. When p is not 2, we use the following theorems
depending on the dimension of 2. We use [10, Lemma 7.12] to obtain an explicit value

of C,, for a one-dimensional bounded domain.

Theorem 7 ( [10, Lemma 7.12] ) Let 2 = (a,b) C R, with a € RU{—00}, b €
RU{+o0}, a < b. Moreover, let p* denote the minimal point of the spectrum of —u”
on H}(Q), i.e. p* =7%/(b—a)? if (a,b) is bounded. Then, for all u € H}(Q),

[ullr < Cpllullmy  (p € (2,00)),

where, abbreviating € := % € (0,1),

V2 1+e?

L (p*)%(l_g) otherwise ,

i(l _ E)i(l—e)(l + E)%(l—i—a)T—i(l-&-a) if pr < Fl=e
Cp fp—
Ve

forp € (2,00).

3.3 Numerical verification method

This section discusses the numerical verification method used in this chapter. We

first define the operator f as

;. {u(-) | ) P (),
| H Q) —HT

where 2 <p < p* (p* =0 if N =1,2 and p* =5 if N = 3). Furthermore, we define
the nonlinear operator F' : H} (Q) — H~! by F(u) := —u" — f(u), which is given by

(F(u),v) = (u/,v") 2 — (f(u),v) forall ve& H(Q),
where (f(u),v) = [o(|z|'|u(z)|P~ u(z))v(z)dz. The Fréchet derivatives of f and F

at ¢ € Hj(Q) are denoted by f/ and F, respectively, and given by

<f:0u, v) = /Q(p\a:|l|<p(x)|p_1)u(m)v(x)da: for all w,v € Hy(Q), (3.8)

(FLu,v)y = (W',0") g2 — (fLu,v)  forall w,ve Hy(Q). (3.9)
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Then, we consider the following problem:
Find we€ Hg(Q) st. F(u) =0, (3.10)

which is the weak form of the problem (3.2). To conduct the numerical verification for
this problem, we apply the Newton—Kantorovich theorem, which enables us to prove
the existence of a true solution w near a numerically computed “good” approximate
solution 4 (see, for example, [12]). Hereafter, B(i,r) and B(,r) respectively denote
the open and closed balls with center approximate solution @ and radius r in terms

of norm || - || 1.

Theorem 8 (Newton—Kantorovich’s theorem) Let i € H}(Q) be some approz-

imate solution of F(u) = 0. Suppose that there exists some o > 0 satisfying
15 F (@) | gy < e (3.11)
Moreover, suppose that there exists some 3 > 0 satisfying
15 (E = Fo)lleemp.mgy < Bllo —wllgy,  for allv,w € D, (3.12)

where D = B(4,2a+ 6) is an open ball depending on the above value o > 0 for small
0>0.If

IN

1
- 3.13
0B <L, (3.13)
then there exists a solution u € HE(Q) of F(u) =0 in B(1, p) with

1—I—-2ap3
=

Furthermore, the solution u is unique in B(i, 2a).

3.4 Evaluation for o and (8

To apply Theorem 8 to the numerical verification for problem (3.2), we need to ex-

plicitly evaluate a and . The left side of (3.11) is evaluated as
E2 P @)l g < 1 gy 1@
Therefore, we set
a= HFzg_lﬂc(Hfl,Hé) 1 F (@) |-

Moreover, the left side of (3.12) is estimated as

HF{l (F) = F;J)HL(H(},H(}) < HF{lHL(H—l,H[}) 17, = levﬂa(H[},H—l)

=N N v gy 1 = Fil ey, -

Hence, the desired value of § is obtained via

B < ||F{1HL(H—1,H(})L7
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where L is the Lipschitz constant satisfying
Ifo— f{v||£(Hé7H_1) <Llv—w|g foralv,weD. (3.14)

We are left to evaluate the inverse operator norm ||F, " | 2(z—1,m1), the residual norm

|F'(@)|| -1, and the Lipschitz constant L for problem (3.10).

3.4.1 Residual norm || F()|| g

If the approximation 4 is sufficiently smooth so that 4" € L?(£2), we can evaluate the

residual norm || F ()| 7-1 as follows:
[F(@)|| -1 < Colld” + f(@)] 2, (3.15)

where Cy is the embedding constant satisfying (3.7) for p = p’ = 2. Our numerical
experiments discussed in Section 3.6 use this evaluation, calculating the L?-norm via
stable numerical integration with all rounding errors strictly estimated.

However, the condition @’ € L?(Q) is not satisfied such as when we construct
@ with a piecewise linear finite element basis. We use the method of [10, Subsec-
tion 7.2] to evaluate the residual norm applicable to such a case. The following
is a brief description of the evaluation method. First, we find an approximation
p € H(div,Q) = {7 € L*( Q)" :divr € L*(Q)} to @’. Then, the residual norm is
evaluated as

[F@@) -2 = | = a@" = f(@)]| -1,
= | —a" +divp—divp — f(@)[lz-,
< |[div(=a" + p)llgr—+ + | div p + f(@) ] -1,
< | =@+ pllge + Colldiv p + f(@)] 22,

where we used ||divw||g-1 < |lw||p2 for w € H(div,§2). As mentioned in [10, Sub-
section 7.2], p can be computed without additional computational resources when we

use the mixed finite element method to construct «.

3.4.2 Inverse operator norm ||F1£_1||L(H71,H5)

In this subsection, we evaluate the inverse operator norm |F; 'l L(u-1,m1)- To this
g

end, we use the following theorem.
Theorem 9 ([13]) Let ® : H}(Q) — H~! be the canonical isometric isomorphism;
that is, ® s given by

(Pu,v) == (u,v);n for u,v € Hg(Q).

0
If

po :==min{|pu| : p€ o, (@'F,) U{1}} (3.16)
is positive, then the inverse of F) exists, and we have

HF;LilHL(H—l,H(}) < #61, (3.17)

where oy, (P7'F}) denotes the point spectrum of ®~1FY.
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The eigenvalue problem ® ' F/u = pu in H}(Q) is equivalent to
() 2 — {fhty0) = 1y 0) gy for all v € HA(Q), (3.18)

where (u,v) gy denotes the inner product defined in (3.4) that depends on 7 and
(flu,v) is given by (3.8).

We consider the operator N' := ® — F) from H}(Q) to H~', which satisfies
(Nu,v) = [,(plz|'|a(z)|P~ ) u(z)v(z)dz for all u,v € Hg(S2). Because N maps Hg (€2)
into L?(Q2) and the embedding L?*(Q) — H~! is compact, N : H}(Q) - H~ ! is a
compact operator. Therefore, F); is a Fredholm operator, and the spectrum o (<I>’1F5)

of ®~1F! is given by
o(@'F) =1-0(®'WN) =1— {0, (®7'WV)U{0}} =0, (27" F}) U{1}.

Accordingly, it suffices to look for eigenvalues u # 1. By setting A = (1 — )™}, we
further transform this eigenvalue problem into
Find v € Hj(Q) and X € R s.t. (u,0) gz = M(T + f)u,v) forall v e Hi(Q),
(3.19)
where (7 + fi)u,v) = [o(7 + pla|'|i(z) [P~ u(z)v(z)ds for u,v € H (). Because
T is chosen so that 7+ f, becomes positive (see (3.6)), (3.19) is a regular eigenvalue
problem, the spectrum of which consists of a sequence {\;}72; of eigenvalues con-
verging to +oco. To compute ”Fé_l”L(H*l,Hé) on the basis of Theorem 9, we need to
enclose the eigenvalue A of (3.19) that minimizes the corresponding absolute value of

lu| (=11 = A7*[). We consider the approximate eigenvalue problem

Find uy, € Viy and MM € R s.t. (UMJJM)H& = )\M<(T + fi)unr,var) for all vy € Vi,
(3.20)

where V) is a finite-dimensional subspace of H} () such as the space spanned by the
finite element basis and Fourier basis. For our problem, Vj; will be explicitly chosen
in Section 3.6. Note that (3.20) is a matrix problem with eigenvalues that can be
enclosed with rigorous computation techniques (see, for example, [14, 15, 16]).

We then estimate the error between the k-th eigenvalue Ay of (3.19) and the k-th

eigenvalue A\ of (3.20). We consider the weak formulation of the Poisson equation,
(ug, U)Hé = (g,v) . forallv e Hy(Q) (3.21)

given g € L? (2). This equation has a unique solution u, € Hj(Q2) for each g € L? ()
[17]. Let P, : H3(Q) — Vi be the orthogonal projection defined by

(Pfu— u,vp)gy =0 forallue Hj(Q) and vy € V.

The following theorem enables us to estimate the error between Ay and AM.

Theorem 10 ([18, 19]) Let 4 € Hi(Q) N L>®(Q). Suppose that there exists CT; > 0
such that

lug = Pirugll s < Chyllgll L2 (3.22)
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for any g € L* () and the corresponding solution u, € H () of (3.21). Then,

AL <A < \M
MNICT2T+ fillpe +1 = 7F =700

where the L -norm is defined by |7+ fL| L~ := esssup {|7 +plz|'|a(z)[P~1| : z € Q}.

The right inequality is known as the Rayleigh—Ritz bound, which is derived from the

min-max principle:

[ol77
)\k = min max Iéo S Aéwa
H.CHE(Q) \ v€Hi\{0} |lav| 72

where a(z) = /7 + plz|!|a(z)|P~!, and the minimum is taken over all k-dimensional

subspaces Hy, of H}(2). The left inequality was proved in [18, 19]. Assuming the
H?2-regularity of solutions to (3.21) (which follows, for example, when (2 is a convex
polygonal domain [17, Section 3.3]), [18, Theorem 4] ensures the left inequality. A
more general statement that does not require the HZ2-regularity is proved in [19,
Theorem 2.1].

When the solution of (3.21) has H?-regularity, (3.22) can be replaced with

lu — Phyullgy < Cfy l—u” +7ull . forallue H*(Q)N Hy(Q). (3.23)
The constant CJ, satisfying (3.23) is obtained as C7, = C%;\/1+ 7 (C’R/I)2 (see [20,
Remark A.4]). For example, when Q = (—1,1), an explicit value of CY; is obtained

for Vs spanned by the Legendre polynomial basis using [21, Theorem 2.3]. This will

be used for our computation in Section 3.6.

Theorem 11 ([21]) When Q = (—1,1), the inequality

H (u— P](Cfu)/HLQ <Ol Nz for all u € H*(Q) N Hy () (3.24)
holds for
1 1
CO = 2 ’
M = &max { 2(2M + 1)(2M 1 5) | 4(2M + 5)vaM T 3V 17

1 1 1
+ +
4(2M +5)V2M +3vV2M +7  2(2M +5)(2M +9) ' 4(2M + 9)v2M + 7/2M + 11 }

3.4.3 Lipschitz constant L

Hereafter, we denote d (= d((,1)) := max{|z|' : € Q}. The Lipschitz constant L

satisfying (3.14), which is required for obtaining 5, is estimated as follows:

| Jo |2l ([o(@) [P~ (@) — Jw(@)[P~ ¢(x))¢(x)da|

||f£—f{v||£(Hé7H,1) <p sup sup

0£GEHL 0ApeHY ol 191l 722
v()P~! = Jw(z) P~V é(z)(x)dx
I 11t G0 i A CoTL O )
0#£pEHL 0#£peH} ||¢HH3||¢||H(}

(3.25)

=
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Using the mean value theorem, the numerator of (3.25) is evaluated as
’/Q(I’U(JU)”_1 = lw(@)[Ph) ()¢ (2)dw

/Q / (p — Dsign(w(z) + t(v(z) — w(@)))|w(z) + H(o(z) — w(z))P~2dt

(v(@) —w(z))¢(x)(z)de

— 1) / / sign(w(x) + H(v(x) — w(@))w(z) + () — w(z)P?

(v(a) - w<x>>¢<x>w<x>dazdt’
1
<G [ oo+ (- Oull o = wli ol vl

1
< (p-1)Cpiy /0 [to + (1 = tywll, 2 dtllo — wll g |6] g 1] ez
< (p = 1)Cpyy max {[[v] Losr, 1wl o 372 o = wll g |60 sz 101 113 »
for all 0 # ¢, € H(2). Therefore, we have
L < p(p — 1)dCy .y max {|[v] o1, [[w]| os: 72
Choosing v, w from D = B(u,7), r = 2« + ¢ for small § > 0, we can express them as

v=a+rn, |nlm <1,
w=t+rE, [|€llm <1

Hence, it follows that

L < plp — 1)AC3,; max {[[i+ rnll g, & + €] o}~
< p(p — 1ACE, ([l pos1 + Cpar)? 2. (3.26)

When Q = (—1,1), (3.26) is reduced to

L < p(p = DGy (all s + Cpyar)? =2,

3.5 Consideration of singularity

Due to the variable coefficient |z|' in the problem (3.2), the solution u has a singu-
larity at x = 0. Then, we present a numerical verification method that follows such a
internal singularity in this section. In general, if the solution u contains singularity,
constructing the approximate solution @ with only smooth basis functions results in
a large residual. Its large residuals make it difficult to satisfy the condition (3.13)
of Newton—Kantorovich’s theorem. An example of dealing with a problem involving
singularity is Kobayashi’s research for finite element discretizations in a non-convex
domain using singular functions [32]. We apply the technique of using singular func-
tions to our problem with internal singularity. The idea is to construct approximate

solutions as

My,
(x) = updo(x) + Zuiqﬁi(x), u; € R.
i=1



3.5 Consideration of singularity

27

by using a singular function ¢g(z) and smooth functions sequence ¢,(x) (n =
1,2,3,---).
Specifically, we define the finite-dimensional subspace V(2 < M < oo) of H}(Q)

as

M
Vi = {UO¢Q($) + Z ulqbl(x) DU € R} ,
=1

where, smooth functions ¢, (x) (n =1,2,3,---)[21] defined by

1 dQn

bn(z) = m(w +1)(1—2) I (z)
with Qn(z) = S:é?j (;i) z+1)"1—-2)", n=1,2,3,---,

(3.27)

and the singular function is defined as ¢g(z) = |z|**!'¢1(x). We computed approxi-

mate solutions u € Vi by solving the matrix equation
Find @ € Vi s.t. (@,0)) 2 = (f(4),vpr) 2 for all var € Viy (3.28)

using the usual Newton’s method.

Remark 1 Let VY, be a finite dimensional subspace of Hi(Q) such as the space
spanned by the Legendre polynomial basis, and let Va(:= VY, @ {¢o}) be a finite
dimensional subspace of H} () containing singularities, and Py : H} () — Vs be

the projection. Since VJ\04 C Vi and

[(u = Parw)|| o < | (w = PRy

9

L2

the constant CY; in (3.24) can be also used for Ciy to evaluate that

||(u — PMu)/HL2 < Cuyllu||zz for all w € H*(Q) N H(Q).

3.5.1 Techniques for computing singular functions

Since we need to calculate for the singular function such as ¢o(z) = |z|?>T ¢ (z), we
defined a“class” that can holds the exponential part a and the polynomial part P(z)

of
|lz|*P(x)

at the same time. We named the “class” as fpsa. The operations are defined as

follows.

fpsa :

e Addition : |z|*Py1(z) + |z|*Pe2(x) = |z|*(P1(x) + Pa2(x))

e Subtraction : |z|*Py(x) — |z|*P2(x) = |2|*(P1(x) — P2(x))

e Mmultiplication : |z|* Py () x |2|*2Pa(z) = |z|** T2 (P (x) X Pa(z))
o pow : pow([z|P(z), b)=|z|"*PH(z)
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e First-order derivative : |z|*~2(azP(x)) + |z|*P’ ()
e Second-order derivative : |2|*~2(a(a — 1)P(z)) + |z|*~2(2a2P'(x)) + |2|*P" (z)

e Integration

In order to deal with the “algebraic type singularity”, the integration is performed as

follows.

1 1
[ alP@de = [ et e+t

0

1
= / x(to + t1z + -+ - tpx™)da + / (—2)*(to + trz + - - - tpx™)dx
0 -1

1 1
N / (tox® + tr2' T + - "t da + / (toy® — try" ™ + -+ + by ) dy
0 0

1

= t70x1+a+t71$2+a+...+t7"xn+l+a
14+a 2+4+a n+14+a 0
1
to ylte b 2ta cee - tn ytita
1+a 24+a n+1-+a 0

However, we could not define the addition between fpsa with different exponential

part a, so we defined a “class” as

(2] Py ()
: = x| Pr(x) + - + || Pp(x)
|z[ " P ()

using a vector, which is named vfpsa. Here, the derivative of fpsa is also held by
vfpsa. The operations are defined as follows.

vipsa :

e Addition

Subtraction

Mmultiplication
e pow

First-order derivative

Second-order derivative

Integration

cast function (from fpsa to vfpsa)

3.6  Numerical results of the existence of solutions

In this section, we present numerical results where the existence of solutions of (3.2)
was proved for p = 3 via the method presented in Sections 3.3 and 3.4. All computa-
tions were implemented on a computer with 2.20 GHz Intel Xeon E7-4830 CPUs x
4, 2 TB RAM, and CentOS 7 using MATLAB 2019b with GCC Version 6.3.0. All
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rounding errors were strictly estimated using the toolboxes kv Library [22] Version
0.4.49 and Intlab Version 11 [15]. Therefore, the accuracy of all results was guaranteed
mathematically.

First, we discuss the effects of singular functions. Figure 3.1 shows the comparison
with and without singular basis functions. According to the Figure 3.1, if we mixed
a singular fuction ¢y to construct approximate solution 4, the upper bound for the
residual norm falls well enough to satisfy the condition af < 1/2, so we succeeded
in verifying the existance of the solution. On the other hand, if we did not mix a
singular fuction ¢g to construct approximate solution #, the upper bound for the
residual norm does not fall sufficiently, so we failed in verifying the existance of the
solution. Furthermore, without a singular fuction ¢, the residual norm only drops
to about 1.16525e-4 even when increasing to Mwu = 100. In that case, the residuals
do not reach the order of the case with singular functions when Mwu = 30. Therefore,

the effect of the singular function is large.

Table 3.1 Verification results for p = 3,1 = 3.

%o O X

/ \\ / \
M, 30 30
M 30 30
| E(@)]] -1 4.53868e-5 7.75707e-3
HF&ilng(H—l’Hé) 2.10553 2.10553
L 3.22221e+1  3.23520e+1
o 9.55632¢-5 1.63328e-2
8 6.78446e+1  6.8118le+1
afB 6.48344c-3 1.11256
TA 1.22503e-4 fail
TR 8.98750e-6 fail

M,,: number of smooth basis functions for constructing approximate solution @ € Vy,,
M: number of basis functions for calculating AM

[|[F(@)|| g—1: upper bound for the residual norm estimated via (3.15)

||F7;_1 Hﬁ(H*l,Hé): upper bound for the inverse operator norm estimated via Theorem 9
L: upper bound for Lipschitz constant satisfying (3.14)

a: upper bound for a required in Theorem 8

[: upper bound for 3 required in Theorem 8

T4: upper bound for absolute error ||u — 4| g1

rgr: upper bound for relative error ||u — 11||H(1)/||11HH(1)

Next, we discuss how we have been able to verify solutions in areas not previously
analyzed. We remark that S. Tanaka [30, 31] already proved that a symmetric solution
and asymmetric solutions exist if [ > 2 with p = 3, and if [ = 0 then only one
symmetric solution exists. Now, we focused in the interval 0 < [ < 2 where previously

unknown area.
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Table 3.2 shows the approximate solutions together with their verification results
where some sample points | = 1,1.5,1.75. To satisfy inequality (3.6), our program set
7 to the next floating-point number after a computed upper bound of the right side
of (3.6). Therefore, when @ vanishes at some point on €2, 7 is set to the floating-point
number after zero, which is approximately 4.9407 x 107324, Tn Table 3.2, || F(@)|| -1,
||F{1 ||£(H_17H5), L, o, and /3 denote the constants required by Theorem 8. Moreover,
ra and g denote an upper bound for absolute error ||u — @[z and relative error
lw— 1l g2 /|4l rz , respectively. The values in row “Peak” represent upper bounds for
the maximum values of the corresponding approximate solutions in decimal form.

The values in rows p1—us5 represent approximations of the five smallest eigenvalues
of (3.18) discretized in Vjy C Hg (), which is spanned by the basis functions ¢,
(n = 1,2,--- , M) without the restriction of symmetry. When | = 1, symmetric

solutions have one negative eigenvalue. When [ = 1.5,1.75, symmetric solutions have

two negative eigenvalues and asymmetric solutions have one negative eigenvalue.

Table 3.2 Verification results for p = 3,1 = 1,1.5,1.75.

l 1 1.5 1.75

. . \ : ’ \

3 : ‘ \ : |

I \o '/ o
i /
M, 60 70 70 40 40
M 40 40 40 40 40
|F (@) -1 9.61364¢-5 1.33983¢-5 3.93196¢-4 4.74513e-5 8.24456e-4
||F{1H5(H—1,H&) 1.76503e+1 1.07965e+1  7.65807 5.94630 4.32131
L 1.51833e4+1 | 1.92976e+1  1.87386e+1 | 2.14042e+1  2.02870e+1
a 1.69684e-3 1.44654e-4 3.01112¢-3 2.82160e-4 3.56273e-3
8 2.67988¢+2 | 2.08346e+2  1.4350le+2 | 1.27276e+2  8.76663c+1
N 3.52331e-3 1.95542¢-4 5.53575¢-3 3.50669¢-4 5.19979¢-3
TR 6.00061e-4 2.56602¢-5 7.29735e-4 4.10380e-5 6.16444e-4
Peak 3.53591 4.39542 4.60383 4.82846 5.07378
T -1.99999 | -1.99999 ~  -1.99999 | -2.00000  -1.99999

o 0.076502 -0.09263 0.164225 -0.16818 0.272274
w3 0.735955 0.717610 0.695956 0.710254 0.684876
4 0.825836 0.802359 0.855733 0.792345 0.865012
s 0.907874 0.900254 0.892713 0.897159 0.899653

My,: number of smooth basis functions for constructing approximate solution 4 € Vyr,

M: number of basis functions for calculating AM

[|F(@)|| g—1: upper bound for the residual norm estimated via (3.15)

||F1{;1 HL:(H_l’HUI): upper bound for the inverse operator norm estimated via Theorem 9

L: upper bound for Lipschitz constant satisfying (3.14)

«: upper bound for a required in Theorem 8

B: upper bound for g required in Theorem 8

r4: upper bound for absolute error ||u — @l| ;1

rgr: upper bound for relative error ||u — ﬁ”Hg/”ﬁHHé

Peak: upper bound for the maximum values of the corresponding approximation
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pu1—ps: approximations of the five smallest eigenvalues of (3.18)

3.7 Branches

In this section, we introduce the method of verifing solution branches of (3.2) based on
[10, Section 9.1 Solution Branches]. Here, we are interested in the problem depending
on a real parameter [ (with a fixed parameter p), and not only in solutions u for one
or finitely many selected values of I, but in branches (u;);er of solutions depending
smoothly on the parameter | within some compact interval I C R. Let J C R be

some open interval, and we extend (3.10) and consider the problem
F(u,l) =0, (3.29)

with the continiously Fréchet differentiable mapping F : H}(Q) x J — H~1. Let
D,Fv,l]: H(Q) — H~! be the Fréchet derivative in the u-direction at v € H} ().

Suppose that, for finitely many parameter values g, ...,ly; € J, ordered according to
o<l <"'<lM,

with “small” distances l; — l;_1, approximate solutions g, - - , s € Hg(£2) to prob-
lem (3.29) have been computed, giving rise to the conjecture that a continuum
(W)ie (10,15, ©f solutions to problem (3.29), with w;, “close to” @;, exists.

We assume that, for each ¢ € {0,..., M}, constants ¢;, K;, L; are known via the

method presented in Sections 3.3 and 3.4 which satisfy

1 F (@i, L)l -1 < 0, (3.30)

HDuF [ai,li]‘lu < K; (3.31)
L(H-,HY)
| DuF [0, (1 = t)li—1 + ] — Dy F [w, (1 —t)li—1 + tli]Hg(H[},H—l) < Liflv - w||Hé7

for all v,w € D and t € [0,1],
(3.32)

where, D = B((l - t)’lAj,Z;l + thy, 0, K + 01 K1 + ||ﬂl — aileHé /2) is an open ball
depending on the above value §; > 0 and K; > 0. Now we define a [-piecewise linear

(and I-continuous) approximate solution branch (ﬁ(l))le[lmlm by

Li—1 . =11 . .
oW = 4+ —ay (i <1<l i=1,...,M) (3.33)
li =11 li =11

Using these constants §;, K;, L;, we have to compute piecewise constant and lower
semi-continuous mappings [lo, [as] — (0, M), 1 +— 6O 1 — KO 1+ L®  such that

(a) The upper bound of the residual norm 6 satisfying
|F (@Y, D)) g-r <6, foralll € [lo,ln], (3.34)

(b) The upper bound of the inverse operator norm K satisfying

-1
HDuF {a“), z} < KO, forallle [lo,ln], (3.35)

L(H-1,HY)
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(¢) The upper bound of the Lipschitz constant LW satisfying

1D F [0,0] = DuF [w, )|y, -1y < Lo = wll g,

for all v,w € D and [ € [ly, lp],
(3.36)

where, D = B(a", 26 K() 1+-§) is an open ball depending on the above value §¢) > 0
and K > 0 for small § > 0.
ad (a) We fixi € {0,...,M} and [ € [l;_1,1;], and define ¢t := (I —;_1)/(li — l;—1) €
[0, 1], hence

l=1 =)+t oD =1 —t)a,_, +ta (3.37)
Suppose that we know some 7; > 0 (not depending on t) such that

(1 = )F (—1,li—1) + tF (43,1;) — F (1 — t)ity_1 + i, (1 — i1 + th) || g1 < 7
(3.38)

In our problem, the computation of 7; essentially reduces to computing some function
7; : Q — [0,00) suth that

| (L =) f (@imr, limr) +tf (1) = (L= )1 + iy, (L= )iy + ) [< T3(2)
(3.39)

for all z € Q where we set f: H3 () x J — H~1
Flu1) = 2| u(@)”.

Here f is twice continuously differentiable with respect to u and I, the standard

interpolation error bound gives (3.39) for

. 1. . 0?
) =g i) =~ s (@) | max | o)
o2 f
+2 Ai - Ai* l _lz Y
i) = tur s s max |2 (o)
92 f
bl o (T )| (3.40)
where A(x) := [min {@;—1(2), 4;(x)} , max {G;—1(x), 4;(x)}] % [li=1,1].

Clearly, 7;(z) is quadratically small when I; — [;_; is sufficiently small, and the
associated approximate solutions u; and u;_1 are close to each other. It depends on
choosing a sufficiently fine grid {ly,...,lp}.

Hence, also 7; satisfying (3.38) (computed based on 7;(x)) will be quadratically
small. By (3.37), (3.38), and the residual norm || F(d;, ;)| g-1, it is now very simple

to estimate
IF @D, D)l - < (1= OF (i1, lir) -1 + LIF (i, 1) |- + 7
S max{éi,l,&-} +Ti
=60,
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Thus, the constant §) is small when §,_; and §; are small (i.e. when 4;_; and 4;
have been computed with sufficient accuracy) and the grid points /;_; and I; (and the

associated approximate solutions 4;_1 and ;) are sufficiently close to each other.

ad (b),(c) We fix i € {0,...,M} and I € [1(li—1+1;), % (li +1i+1)], where we

2
formally put [_1 :=lo, Ipr41 := lpr. Hereafter, we denote d,(z) := |z|' (|z|* — 1), and

assume that some p; > 0 has been computed such that
[ Do [, 1; + p] — Dy F [, li]”ﬁ(H[},H—l)
| Jo (] () P~ ¢(a) — |z

l;

i(2)|P ¢(2))y (w)da|

<p sup sup

0£pe HY 0£pEH} oM ez [140]] 2z
_ | Jo (@) |ai(2) P~ ¢(x)¢p () da|
=p sup  sup

0£bEH 0#be H} Nl ez ol e

~p—1
NN 1 P 3 ey e
0£GEHY 0 H} @l 191l 722

(livt — zi)} . (3.41)

N =

L p— 1
< pC§+1||d#uf 1||Lp+1 = pP; for all 1% € |:2 (ll - li—l) y

Furthermore, we suppose that the grid {l,...,I{ns} has been chosen fine enough, and
that also the associated approximate solutions are sufficiently close to each other, to

ensure that
1. . R 1. . R 1
K = max 4 L; §||uz' — i1y |5 Lita §\|Ui+1 — Uil | p+pi < 5 (3.42)

with K; from (3.31) and L; from (3.32); here we formally have to put the Lo-term
and the Ljsyq-term occurring in (3.42) for ¢ = 0 and for ¢ = M, respectively, equal
to zero.

Now suppose first that ¢ > 1 and [ € [
(I—1i—1)/(li = li—1) € [4,1], whence again (3.37

l¢_1+l,’),li], and define t :=

1
3 (
) holds. Therefore,

HDuF [ﬁ(l), l} — D, F [ii, 1]

L(HY,H-) —
I DuF (1= 1)1 + tii, (1= Olioy + 8] = DuF [itg, (1= i + il 2113, 11
+ ||DuF [”LAI,“ (1 — t)li—l + tll} - DuF [’ll“ li]”[,(HOl,H_l)

<L ((1 - t) ||’&Z — 'IlileHé) + pi < Ky, (343)

using (3.32) for u := (1 — ¢)(d; — @;—1), and (3.41) for p := —(1 = t)(l; — l;—1) in
the last line. (3.43) together with (3.31) and (3.42) implies that HRlHL(Hg,Hﬂ) <
1 for Ry := D, F [, ;)" (DuF [a®V,1] —D,F[is1]), and hence D, F (a®,1) =
DuF (s, i) (idHé + Rl> is bijective.

Ifi<M—-1andl€ [li, % (L + li+1)], we define t := (I — ;) / (liz1 — ;) €10,1/2],
whence (3.37) holds with 4 replaced by ¢ + 1. A calculation similar to the one leading
to (3.43) now gives

HDuF [a”), l] — D, F [iy, 1]

L(HYHY) < Li+1 (t [tig1 — UiHHé) +pi <K (3.44)
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and bijectivity of D, F [ﬁ(l), l] follows as before.
Using (3.31) and (3.43), (3.44), we obtain, for each u € H},

llligy < K I DuF s, 1] Tl -1 < Ko (| DuF [a@] [l |-+ illullg )

-
which by our assumption (3.42) implies that (3.35) holds, for I € [3 (li—1 + 1), 3 (I + lit1)],
when we choose

K

KO .- 7t
1-— KZ'I{Z'

(3.45)

In this way we obtain a piecewise constant function [lg,l5] — (0,00),1 + K.

Choosing again the smaller of the two values at the points % (lici+ ) @E=1,...,M),

where K is possibly doubly defined by (3.45), this mapping is lower semi-continuous.
Finally we define the Lipschitz constant L"), for I € [l;_1,1;] (i = 1,..., M),

JACEE

and then, we can set o and AU such that

o) = 5O KM,
5(1) — KOO
Here, if
0aW <1

is satisfied we can verify the solution u(!) based on Theorem 8. (3.46) for each I €

[lo, Iar] amount to finitely many inequalities which are therefore computer-tractable.

3.8 Numerical results of bifurcation branches

In this section, we present numerical results of bifurcation branches for (3.2). Our
approximate computation obtained Figure 3.1, the solution curves of (3.1) with p = 3
for 0 <1 < 4 (I is always a multiple of 277). We remark that S. Tanaka already
proved the existence of a symmetric solution and asymmetric solutions [30, 31] when
I > 4, so we focused in the interval 0 <[ < 4. First, we computed approximate solu-
tions 4o, ..., 0y € Hg(Q) with M, = 40, as well as constants dy, ..., dxs, constants
Ky, ..., Ky, and constans Ly, ..., Ly, are satisfying Newton—Kantorovich theorem.
Then, we applied the verification method of section 3.7 for symmetric solution’s lines
(blue lines in Figure 3.1) and asymmetric solution’s lines (orange lines in Figure 3.1).
As a result, symmetric solution’s lines where 0 <[ <1, 1.5 <[ < 4, and asymmetric
solution’s lines where 1.5 <[ < 4 are verified. Tables 3.3, 3.4 contains the computed
values 60 | KO IO o® B0 for some of the l-intervals.

The next goal is to find and verify the bifurcation point that corresponds to the

red dot on Figure 3.1.
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Figure 3.1 Solution curves for (3.2) with p = 3.

Table 3.3 Verification results for symmetric branch.

l-interval s® K® LW a® so a®p®
(0.5,0.5+277)  3.24322e-4 5.34505 11.2525 1.73352e-3  60.1450 0.10426
(1,1 +2710) 3.99253e-5 22.2019 15.1826 8.86415e-4  3.37082e+2  0.29880
(1.5,1.5+2719)  1.34583e-5 12.7289 19.3053 1.71307e-4 2.45734e+2 4.20961e-2
(3,3+277) 6.64243e-4  3.66165 32.2902 2.43223e-3 1.18236e+2 0.28758
Table 3.4 Verification results for asymmetric branch.
l-interval 50 K® L® a® 10 a g
(1.5,1.5+2719)  2.69964e-4 8.44707 18.7367 2.28041e-3 1.58270e+2 0.36092
(3,3+277) 2.81497e-4  2.96478 27.9466 8.34578e-4 82.8556 6.91494e-2

3.9 Bifurcation point

This section discusses the numerical verification method to find the symmetry break-

ing bifurcation point of the problem (3.2) for the parameter I. We consider an ex-

panded equation that resolves the singularity that arises at the bifurcation point.

Let Vi be a symmetric subspace of H} () and the topological dual space of Vj is

denoted by V. Let A; : Vs — V. as

(Asu,v) = (u,v)v,,u,v € Vg,
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and f: Vo xR — V) as
Flu,1) o= |2 u(2)?,

and Fy : Vo x R — V7 as
Fi(u,l) := Asu — f(u,l).
Then, the one-dimensional Hénon equation (3.2) can be described as

Fl(u,l) =

Moreover, let Fy be Fréchet differentiable in the u-direction, and let D, Fi[v,l] : Vi —
V. be the Fréchet derivative in the u-direction at v € H}(Q). Next, let V, be an
asymmetric subspace of Hi () and we set the solution space V =V, x V,, x R. The
solution space V is a Hilbert space because it consists of a direct product of Hilbert

spaces. Then, the symmetry breaking bifurcation point is [ satisfying the problem

Fl(u,l) 0
Find (u,¢,1) € V s.t. D, Fi[u,ll¢p | =1 0
lolz: —1 0
In other words, let Fy, Fy, F3 be
Fi(u,l) := Agu — |z|'u? VexR—= V]
Fa(u, ¢,1) = Aagp = plz'u™'¢ Vi x Vo xR = V),
F3(¢) = ||¢ll7- — 1 Vo o R,

and F: V — V* be

Fi(u,1)

F(u,¢,1) = | Fa(u,0,1)

F3(¢)
= (

where V* = V* x V* x R. Then we define w :

problem

u, ¢, 1) and we consider the follwing

Find u € V s.t. F(u)=0. (3.47)

To conduct the numerical verification for this problem, we also apply the Newton—
Kantorovich theorem (Theorem 8), which enables us to prove the existence of a true
solution w in B(@,p). Then, we can prove that the bifurcation point [ exists in
B(l,p). We are left to evaluate the residual norm ||F(@)||y«, the inverse operator
norm ||F{1||£(V*}V), and the Lipschitz constant L for problem (3.47).

The residual norm ||F(@)||y* can be evaluated as follows

2.+ | Fo(a)]

IF(@)lv < /117 (@ 2o+ B (@)

For the problem (3.47), the inverse operator norm ||F1/fl||c(v*,v) cannot be eval-
uated in the way that is based on Theorem 9. In such cases, there is a method by
Nakao et al [10, Theorem 3.17]. First, we set operators A: V — V*and f: V — V*
are defined by

A, 0 0
A= 0 A, 0 |,
0 0 1
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and
|| uP
f(u) == plxlgup‘lq5 ;
[oll72 —1

For w € V, the Ritz projection Ry, : V — V}, is defined by

(I = Rp)u,vp)v = 0,vp € Vy,

where V4, is a finite-dimensional subspace of V.. Let VL := {u € V : (u,vn)y, = 0,vp € V3 }
be anorthogonal complement of V4. Let f, : V' — V}, be the Fréchet derivative at

v € V of nonlinear term f(u), and F), be a linear operator defined by
F :=A—fl.
Let T : Vi, — V4, be a finite-dimensional operator:
T = R,A'F} |v,

where - |y denotes the restriction for the domain of the operator. Let B: V| — V|

be a linear operator defined by

B = (I— R}L) A_lfé |VJ_ + (I — Rh) .A_lf;l Vi T_lR}LA_lfé |VJ_ .

Let §: V) — V| be a linear operator defined by
S:=1y, —B

Then, following theorem can be used.

Theorem 12 /33, Corollary 1] It follows that

IE, o=y <
. 1 A1 1 g1 g 1 —1 4—1 ¢/ -1

HT + T A G v STIAT iy, T H.c(v,v) HT A falv, Hz:(VV))

o

-1 —1
A - 157 cqv vy
where || - ||g denotes a matriz norm induced by the Fuclidean vector norm |- |g.

Subsequently, the Lipschitz constant L can be evaluated as follows :

1
L< H/o Fiio0qdt

L(V,V)

by applying [34, Corollary 1]. Then, we set « and S such that

a = [|F@) v Fy e vy,
B =F " e v)Ls

and if

(3.48)

DN | =
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then there exists a solution w € V' of F(u) = 0 in B(, p) with
1—+/1-2ap
p= #a

based on Theorem 8. Finally, there exists a true bifurcation point { € R in B(Z, 0),

because
=1 < u—alv.
In other words, there exists a true bifurcation point [ in the interval [i - p, [+ p} .

Remark 2 “log type singularity” and improvement of fpsa and vfpsa

When generating Jacobi matrices of (3.47), we need to integrate over the form
|z|' log |z|uP by partial differentiation of parameter | for the terms in |z|'u?. We
added a element for the integration of fpsa and vfpsa. In order to deal with the
“algebraic type singularity” and the “log type singularity”, the following integration is

performed.

e Integration (“algebraic type singularity” + “log type singularity”):

1
/ |z|*log |z|P(z)dx
1

1
= / |z|* log |x|(to + t1z + - - - tra™)dx
-1
1 0
= / x®logx(to + t1x + - - tpx™)da + / (—z)*log(—x)(to + tiz + - - - tpa™)dx
0

-1

1
= / (tox*logx 4+ t1z' T logx 4 - - - + t, 2" T log x)dx
0

1
+/ (toy*logy — t1y' T logy + - - - + t,y" " * log y)dy
0

(14a)logz -1 |, (24+a)logz -1 4, (n+1+a)logz—1 , . 1., !
= [top——2 5 T - et t,
[0 TETE T+ 2+a)? S CESETIE T .
1
o1 @raosy =1 i Lbalogy =1
(1+a)? (2+a)? " (n+14a)? o

3.10 Numerical results of the bifurcation point

In this section, we present numerical results of the bifurcation point for (3.2) with
p = 3 like the red dot on Figure 3.1. First, we computed approximate solutions
@ = (i, ,1) with M, = 100 (see Table 3.5). Next, we computed the residual norm
|| F(@)||y =, the inverse operator norm || F; '[|z(v+ v), and the Lipschitz constant L
based on the section 3.9 to apply the Newton—Kantorovich theorem. As a result, we

got the approximate bifurcation point

[ = 1.216895863752014
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and the error upper bound is

p = 6.227185573261e — 4.

Therefore, the exact bifurcation point [ exists in the interval

[ €[1.21627314519468, 1.21751858230934] .

Table 3.5 Approximate solution @ at the bifurcation point (p = 3).

: \ \/ 1.216895863752014

3.11 Short summary of chapter 3

We designed a numerical verification method for proving the existence of solutions
of the one-dimensional Hénon equation (3.2) on a bounded domain based on the
Newton-Kantorovich theorem. We applied our method that follows the singularity of
the Hénon equation, proving the existence of several solutions of (3.2) nearby a nu-
merically computed approximation @ efficiently. As a result, we succeeded in verifying
the branches and bifurcation points of the simple symmetry-breaking bifurcation in

Figure 3.1.
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Chapter 4

Conclusion

In chapter 2, we designed a numerical verification method for proving the existence
of solutions of the Hénon equation (2.1) on a bounded domain based on the Newton-
Kantorovich theorem. We applied our method to the domains Q = (0, 1) (N = 1,2),
proving the existence of several solutions of (2.1) nearby a numerically computed
approximation @. In particular, we found a set of undiscovered solutions with three
peaks on the square domain Q = (0,1)2. Approximate computations generated the
solution curves of (2.1) for 0 <! < 8 in Figures 2.1 and 2.2.

In chapter 3, we designed a numerical verification method for proving the existence
of solutions of the one-dimensional Hénon equation (3.2) on a bounded domain based
on the Newton-Kantorovich theorem. We applied our method that follows the singu-
larity of the Hénon equation, proving the existence of several solutions of (3.2) nearby
a numerically computed approximation # efficiently. As a result, we succeeded in veri-
fying the branches and bifurcation points of the simple symmetry-breaking bifurcation
in Figure 3.1.

In future work, we would like to deal with the Hénon equation (2.1) extended
to high-dimensional domains 2. We aim to achieve this goal by implementing fast
numerical integration of multivariate functions with singularity. Eventually, we would
like to reveal all solution types in various domains through an algorithm for enclosing

all solutions.
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