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Chapter 1

Introduction



1.1 Traditional Homogeneous Memory System

For a long time, multiple memory devices have been used complementary in computer systems as
depicted in Fig. 1.1. Two types of memory devices have been used: DRAM-based main memory
and HDD/SSD-based auxiliary devices. DRAM-based main memory is volatile, high-speed, small
capacity devices. HDD/SSD-based devices are non-volatile, low-speed, large capacity devices.

DRAM stores data by holding an electric charge using one transistor and one capacitor. It
has higher density than SRAM used in CPU caches, and access latency about tens to hundreds of
nanoseconds. Density and operating speed have been improved over the years. JEDEC published
the specification of DDR5-8400 [JED22]. On the other hand, DRAM must be always energized
to hold data. Data is lost once power is gone. Besides, electric charges must be refilled regularly
by refresh operations due to destructive operations and current leakages. Larger DRAM consumes
more power by refresh operations. Data on DRAM is written into auxiliary devices for memory
capacity and non-volatility.

SSD stores data by holding an electron using a NAND flash. It can hold data across power fail-
ures unlike DRAM. Density and operating speed have been rapidly improved by 3D stacking, multi-
level cells, and so on. Kioxia corporation achieved HLC (Hexa Level Cell) in April 2021 [ATM™].
Despite these advantages, SSD operations and management are more complex than DRAM. Data
must be transferred by block units, and write latency is quite long due to its overwriting mecha-
nism. A program accesses data on SSD using device drivers and page caches provided by an OS.
It introduces system complexity and context switch overheads. SSD access latency is about tens of
microseconds even on the fastest SSD. Frequent SSD accesses severely degrade system performance.

The traditional memory hierarchy consisting of DRAM-based homogeneous memory systems
and SSD-based auxiliary devices has been used in computer systems. However, it is less attractive
for recent workloads. The homogeneous memory systems have difficulty in dealing with quite high
memory usage of ML/DL-based Al IoT and cloud computing have diversified computation plat-
forms and requirements, such as low-power, simple, and/or large memory devices. Heterogeneous
memory systems are expected approaches. They extend the traditional memory hierarchy with new
memory devices. For instance, HBM (High Bandwidth Memory) [AMD15] is a high-performance
memory device, between “Cache Memory” and “Main Memory” in Fig. 1.1. High-performance
platforms use it to alleviate the memory-wall problem [WM95]. This dissertation focuses on hetero-
geneous memory systems consisting of DRAM and NVMM (Non-Volatile Main Memory). NVMM
is a new memory device, with both characteristics of DRAM and SSD. (“Main Memory” and “Flash
Device” in Fig. 1.1). The heterogeneous memory systems are expected as large and simple memory

systems on edge devices.
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Figure 1.1: Memory Hierarchy



1.2 DRAM/NVMM Heterogeneous Memory System

NVMM (Non-Volatile Main Memory) is a new memory device with new non-volatile memory cells.
NVMM has similar characteristics to DRAM rather than SSD. NVMM works on a memory bus with
byte accessibility and short latency of about tens to hundreds of nanoseconds. Various non-volatile
memory cells have been proposed: Phase Change Memory [WRK ™ 10], Ferroelectric Random Access
Memory [SJH'96], Magnetoresistive Random Access Memory [BasFC"90], Spin Transfer Torque-
MRAM [CADT10], Resistive Random Access Memory [SWW71]. While most of them are under
research yet, Intel and Micron brought the first commercially available NVMM, Intel Oprante
DC Persistent Memory (DCPMM) [Int19] to production in 2019. It has 3D-Xpoint memory cells
[Web18], a kind of phase change memory. DCPMM is physically compatible with the DDR4 memory
interface. A memory controller can directly access data on DCPMM in hundreds of nanoseconds
using a DDR-T protocol. Barlow Pass DCPMM realized 512-GiB memory capacity on the same
footprint as a DDR4 DIMM.

NVMM is a large and non-volatile memory device. A memory controller can directly access
data on NVMM in similar latency to DRAM. DRAM/NVMM heterogeneous memory systems
have become attractive memory systems for contemporary workloads. Larger memory space can
be realized than DRAM-based homogeneous memory systems. An Ice Lake SP Xeon CPU with
DCPMM can have up to 3TB of memory space on each CPU socket. DCPMM is introduced into
in-memory database systems, like SAP HANA. On the other hand, NVMM can be used as auxiliary
non-volatile devices. NVMM-based devices can realize simple operations, byte accessibility, and low
latency. Complex device drivers provided by an OS are not required unlike traditional block devices.
Data persistency on NVMM can be guaranteed much easier than that on block devices. Page caches
are used for block devices to alleviate long latency and block-unit accessibility. This mechanism
requires two data evictions to guarantee data persistency. Data are evicted from CPU caches to
main memory (page caches), then, page caches are evicted to block devices. System calls for page
cache evictions introduce context switch overheads. In contrast, page caches should be omitted for
NVMM. Data persistency on NVMM can be guaranteed only by CPU cache evictions. Line unit
evictions are faster than block unit writebacks to block devices.

DRAM/NVMM heterogeneous memory systems are expected as new sufficient memory systems
for various platforms, from large servers to small edge devices. This dissertation focuses on small
edge devices like IoT edge or embedded devices. These small devices have been widely used in
recent years with the growing IoT. They often have strict requirements for power consumption,
size, runtime, and so on. NVMM has attractive features for them: OS-free accessibility, high

density, low latency, and high endurance (DCPMM has tens to hundreds Peta-Byte Written).
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1.3 Existing Evaluation Platforms for DRAM/NVMM
Heterogeneous Memory Systems

To effectively utilize DRAM/NVMM heterogeneous memory systems, the whole system must be
optimized for the heterogeneous memory system. NVMM has different characteristics from both
DRAM and block devices. NVMM latency (~ several hundreds of nanoseconds) is several times
longer than DRAM (~ a hundred of nanoseconds), on the other hand, quite shorter than block
devices (~ a hundred of microseconds). In addition, NVMM latency is asymmetric. Write latency
is several times longer than read latency. Optimization techniques for DRAM may not be effective
on NVMM. Long and asymmetric latency may severely degrade system performance. Optimization
techniques for SSD are redundant for NVMM due to byte accessibility and short latency. Page
caches and device drivers incur unnecessary overheads. Data persistency can be guaranteed by only
CPU cache eviction.

Exploration of system-wide optimization techniques for DRAM/NVMM heterogeneous memory
systems is challenging on existing evaluation platforms. Most of NVMM is still under research except
DCPMM. However, DCPMM works on only specific Intel server-grade CPUs due to the DDR-T
protocol. The lack of NVMM for edge devices results in the widespread use of simulators and
emulators. The former evaluates workloads by building the whole system, and the latter evaluates
workloads by extending a base system.

Several software simulators have been proposed: NVMain [PX12] [PZX15], NVMainExt [KHC18],
HMMSim [BCMM15], NMTSim [GLH"20], SIM-PCM [LLZ12], SpinSim [MWA "21]. They simulate
NVMM performance by adjusting memory latency. NVMM simulation is based on modeled NVMM
architectures and behaviors. NVMM models in existing simulators represent NVMM with similar
structures to DRAM, having banks, rows, and columns. Memory system simulators (NVMain and
HMMSim) are often used with system simulators such as gem5 [BBBT11]. Software simulators
provide high flexibility, and detailed system statistics. On the other hand, these advantages prolong
evaluation time. Simulator’s evaluation may take hundreds to tens of thousands longer evaluation
time than real hardware. The whole system simulation consisting of multi CPUs, caches, peripher-
als, and OSs takes tens of hours to days. Therefore, existing software simulators are not suitable for
exploring system-wide optimization techniques for DRAM /NVMM heterogeneous memory systems.

Several software emulators have been proposed: PCMSim [WW17], Quartz [VMCL15] [KHAT17],
LEAF [ZLWD17], HME [DLLJ18], PMEP [DKK"14]. They treat a part of DRAM memory space
as an NVMM region, then inject additional latency into memory accesses to the region. Emulators
periodically get the number of NVMM accesses, and suspend program execution to emulate NVMM
performance. The suspend time is calculated by “the number of NVMM accesses x (average NVMM
latency - average DRAM latency)”. Software emulators are implemented as additional modules on

base platforms. They can evaluate workloads quite faster than software simulators at the speed of
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base platforms. On the other hand, detailed memory access monitoring is difficult on their designs.
Their latency injection based on average latency cannot capture the impact of detailed memory ac-
cesses. NVMM latency should be non-deterministic depending on the hit ratio to on-module buffers.
Intel DCPMM has an internal buffer indeed. DCPMM read latency increases up to 2x, and write
latency increases up to 8 x when missing the on-module buffer [WLY *20, OK21]. Buffer hit ratio is
an essential factor to exploit NVMM advantages while minimizing performance degradation. It is
ignored on existing software emulators. Therefore, existing software emulators are not suitable for
exploring system-wide optimization techniques for DRAM/NVMM heterogeneous memory systems.

The above discussion shows the tradeoff of existing works between evaluation speed and evalua-
tion details. Hardware simulators are expected solutions. They are built on existing SoCs: TUNA
[LKP*14, LY17], and Petropoulos’s emulator [PA17] 1. NVMM simulation is realized by modifying
hardware modules. Hardware simulators can run workloads at the speed of base SoCs like software
emulators. They can monitor all memory accesses at a memory bus and/or a memory controller
like software simulators. TUNA extends the existing ARM SoC on an FPGA. Additional latency is
injected on a memory bus or a memory controller. The petropoilos’s emulator have focused on only
PCM (Phase Change Memory). TUNA vl [LKP"14] injects the same latency into ALL memory
accesses like software emulators. TUNA v2.1 [LY17] introduced a new latency injection technique
by extending a memory controller. It should be able to capture an impact of buffer hit ratio unlike
existing works. However, the work [LY17] just evaluated average latencies for random memory
accesses. The impact was not fully discussed in existing works. Besides, they did not focus on CPU
cache eviction. Explicit cache eviction and its overhead must be considered when using NVMM.
The effectiveness of the new latency injection technique is still unclear in exploring optimization
techniques for DRAM/NVMM heterogeneous memory systems.

In addition, existing works presuppose that NVMM architectures are similar to DRAM. The as-
sumption should be true on some NVMM, however, Intel DCPMM has a different architecture from
DRAM [LX19]. Among developing NVMM, DCPMM and its technology should have important
roles in the future as the first commercially available NVMM. Exploring optimization techniques
for DCPMM is meaningful. Existing evaluation platforms for DCPMM [WLY "20] are software

simulators. They have same issues of evaluation speed on system-wide optimizations.

!Some papers categorize them into “hardware emulators” because they extend existing SoCs
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1.4 Secure Computing on IoT Edge Devices

Secure computing on edge devices is one of the expected DRAM/NVMM heterogeneous memory
systems’ usecases. With growing IoT, computation platforms for ML /DIL-based Al inference have
been diversifying. Edge devices traditionally collect data by using sensors and send them to cloud
servers. Cloud servers do inference using the given data and trained model, then send results to
edge devices. However, Al inference has been gradually shifted to edge devices because of high
attention on data privacy. In traditional AI systems, data is exposed to various attacks related to
network connections and cloud storage. These threats can be ignored when inference is processed
completely on edge devices. Some smart speakers and smartphones already have features to do
some inferences, such as face authentication. Autonomous driving cars must do inference locally
to be independent of network states. On-device inference requires trained AI models stored on
local storage devices. The models must be protected because they contain confidential data and/or
possibly personal information. Adversarial attackers can touch the devices much easier than servers
in data centers. Edge devices are constantly exposed to not only software attacks but also hardware
attacks. Attackers can directly observe and analyze the device’s behaviors. The whole system
including privileged hardware and software may be unknowingly controlled by attackers. To deal
with these attacks, secure computing using TEE (Trusted Execution Environment) is expected.

TEE is a framework to securely run a program on untrusted computation platforms while keeping
program code and data secret. Each program on TEE owns a part of memory regions as its isolated
private region when launching. Only the owner process can access the isolated region. All memory
accesses to the region are checked by a CPU. If non-owner processes try to access the region, the
memory accesses are rejected and errors are raised. This hardware-enforced access management is
always applied to memory accesses regardless of their privilege levels. Therefore, the code and data
are always kept secret when a program on TEE runs on polluted systems. Its memory isolation
can be broken by tampering with on-chip CPUs and memory controllers, however, it is impossible
[LKST20]. These strict data protections are attractive for Al inference on edge devices. Three TEE
are mainly proposed: Intel SGX [CD16], ARM TrustZone [Alv04], RISC-V Keystone [LKS'20].
SGX and TrustZone work on specific Intel or ARM CPUs. They are not suitable to encompass
various design demands of edge devices. Keystone works on a RISC-V CPU, that is open-source
and well standardized ISA [WA19, WAH21]. RISC-V CPUs are customizable depending on platform
requirements and demands. This dissertation focuses on Keystone TEE as TEE for edge devices.
Despite strict data protection, Keystone has two issues with memory systems: auxiliary devices and
off-chip memory protection.

As described above, Keystone presupposes wholly polluted systems. An untrusted OS and kernel
may be under the attacker’s control. Once data is passed to them, data may be stolen and/or

tampered with. However, Keystone must use their functions to access data on auxiliary devices.

13



The fully verified Keystone runtime does not have complex device drivers. It is not desirable to
introduce device drivers into the runtime because their codes cause verification complexity and
may raise vulnerabilities. Therefore, Keystone cannot securely use data on auxiliary devices. To
overcome this issue, a DRAM/NVMM heterogeneous memory system is expected. NVMM is a
non-volatile storage device that can be directly accessed by a memory controller without the help
of complex device drivers (Section 1.2). More applications can be securely executed on Keystone
by integrating DRAM/NVMM heterogeneous memory systems into Keystone.

In addition, Keystone mainly focuses on on-chip security and does not provide off-chip memory
protection. The hardware-enforced access control uses RISC-V CPU features. Off-chip memory
accesses bypassing CPUs are not checked, such as DMA transfers, tapping on off-chip memory
buses, and cold-boot attacks. All data becomes untrusted once they are stored on off-chip memory.
Secure computing using Keystone can trust only on-chip memory, thus, program code and data
must be smaller than on-chip memory (CPU caches). Few applications can be securely executed
on Keystone. The off-chip memory accesses are critical to DRAM/NVMM heterogeneous memory
systems due their its non-volatility. Data on DRAM will be lost once power is gone except for special
techniques such as cold-boot attacks. In contrast, data on NVMM is not lost across power failures.
Adversarial attackers can steal data on NVMM after withdrawing the power supply. They also can
pollute the system by tampering with data on NVMM. For instance, a tampered AI model should
cause incorrect inference results, then possibly cause undefined behavior. Some server-grade CPUs
have a feature to protect data on off-chip memory: Intel TME [Int21], AMD SEV [KPW16]. They
encrypt cachelines before leaving on-chip memory. Even if attackers can get encrypted data, they
cannot decrypt the data without encryption keys. Nevertheless, memory encryption is meaningless
to memory tampering. Attackers can tamper with data without any decryption to cause system
failures. For these reasons, secure computing on TEE and DRAM/NVMM heterogeneous memory
systems also requires a feature to protect data from both stealing and tampering. It can be realized

by MPE (Memory Protection Engine) using an integrity tree [SABI15].
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1.5 Off-Chip Memory Protection Using Integrity Tree

An integrity tree provides memory encryption and tamper detection on off-chip memory. It is mostly
implemented as a hardware MPE (Memory Protection Engine) module in a memory controller.
Software-implemented MPE [GDD™"20] is not desirable on real systems because it incurs infeasible
performance overhead especially for large data exceeding on-chip memory (CPU caches). Various
integrity trees have been proposed: Merkle Tree [Mer80], Bonsai Merkle Tree [RCPS07], TEC-Tree
[ECLT07], and SGX-style Integrity Tree [Guel6]. BMT (Bonsai Merkle Tree) and SIT (SGX-style
Integrity Tree) have been mainly used in existing works. This dissertation uses SIT since it is used
on the commercially available TEE, Intel SGX.

SIT encryption and tamper detection use keys, spatial nonces, and temporal nonces. The
keys are stored on trusted on-chip memory which is only visible from trusted hardware modules.
Attackers cannot decrypt or tamper with data on off-chip memory with the keys. Two nonces are
used against replay attacks. Spatial nonces are physical addresses of cachelines. If the same data is
written into two cachelines, encrypted or hashed lines differ. Temporal nonces are version numbers
of cachelines, in other words, the number of writes to cachelines. If the same data is written into
one cacheline multiple times, encrypted or hashed lines differ. Version numbers on SIT nodes are
protected by hashed octrees. All cachelines are verified before fetching them from off-chip memory
using the version numbers. SIT can detect any tampering on off-chip memory. The hash algorithm
of SIT, CWMAC [WC81], has enough collision resistance. Thus, SIT can protect data on off-chip

memory even if it is exposed to physical attackers.
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1.6 Existing Evaluation Platforms for Secure Edge Com-
puting

Section 1.4 and Section 1.5 described the necessity of TEE, DRAM/NVMM heterogeneous memory
systems, and an integrity tree in secure edge computing. Exploration of optimization techniques for
the combination is difficult on existing works. There are various RISC-V platforms compatible with
Keystone: from production boards such as SiFive Unmatched/Unleashed and Microchip PolarFire,
to open-source designs such as Rocket-chip and BOOM. However, they do not support DRAM /N-
VMM heterogeneous memory systems and MPE. Software simulators with the combination require
long evaluation time. The paper [HLC 21, AAPLP21] shows that even simple Keystone benchmarks
take tens to hundreds 10% seconds on Keystone-compatible gem5. DRAM/NVMM heterogeneous
memory systems and MPE prolong their evaluation time. While the hardware simulator PENGLAI
[FLD*21] has both Keystone and MPE, DRAM/NVMM heterogeneous memory systems are not

supported. It is difficult to extend the closed design for heterogeneous memory systems.
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1.7 Dissertation Proposals

This dissertation proposes evaluation platforms for DRAM/NVMM heterogeneous memory systems
and secure computing memory systems.

First, this dissertation proposes hardware DRAM/NVMM heterogeneous memory simulators to
solve issues of existing works discussed in Section 1.1, Section 1.2 and Section 1.3: (1.a) a tradeoff
between evaluation speed and accuracy, (1.b) the lack of DCPMM simulation, (1.c) insufficient
validation and discussion about NVMM simulations, and (1.d) the NVMM’s impact on real ap-
plications. The proposed simulator works on an FPGA to solve the tradeoffs of existing works
(L.a). The simulator provides three NVMM simulation models: Coarse-Grain, Fine-Grain, and
DCPMM. The first two models are extensions of existing works considering NVMM architectures
and behaviors. The DCPMM model is a new model that represents actual DCPMM behaviors (1.b).
Chapter 2 proposes a heterogeneous memory simulator on hard processor systems. Chapter 3 ex-
tends the NVMM models for soft processor systems, and proposes the simulator employing them.
Each NVMM model is validated on the proposed simulators against golden models (1.c). Then, the
chapters confirm the effectiveness of NVMM models, and reveal the direction and essential factors
for DRAM/NVMM heterogeneous memory systems (1.d). The simulators provide a way to explore
optimization techniques for DRAM/NVMM heterogeneous memory systems on edge devices.

Second, this dissertation proposes a secure edge computing simulator employing all of TEE,
NVMM, and MPE to solve issues of existing works discussed in Section 1.4, Section 1.5 and Sec-
tion 1.6: (2.a) the lack of an evaluation platform for secure computing using the combination.
Chapter 4 implements MPE based on SIT, then integrates it into the DRAM/NVMM heteroge-
neous simulator proposed in Chapter 3. It has Keystone-compatible RISC-V CPUs. The chapter
validates MPE behavior and the impacts of MPE on memory latency, for DRAM and simulated
DCPMM. The simulator widely provides a way to explore optimization techniques for secure com-

puting on edge devices (2.a).

17



1.8 Dissertation Outline

This dissertation consists of 5 chapters.

Chapter 1 “Introduction”, current chapter, describes this dissertation’s background, related
works, and proposals.

Chapter 2 “DRAM/NVMM Heterogeneous Memory Simulator on Hard Processor Systems”
proposes a hardware DRAM/NVMM heterogeneous memory simulator working on hard processor
systems, especially ARM SoC. This chapter consists of 4 parts: NVMM behavior models, simu-
lator implementation, validation of the behavior models, and experimental evaluation. The first
part discusses and defines three NVMM behavior models that represent NVMM architectures and
behaviors. The Coarse-Grain and Fine-Grain models represent NVMM behaviors with similar ar-
chitectures to traditional DRAM-based memory. Only the Fine-Grain model can capture memory
access characteristics to reduce NVMM latency, such as access locality. The DCPMM model is a
new behavior model that represents the actual DCPMM behavior with some constraints for edge
devices. The second part describes the whole simulator implementation: delay injection techniques
to simulate NVMM performance based on three behavior models, kernel modification, kernel mod-
ule, and management library to use the NVMM region effectively. The third part validates the
NVMM behavior models by comparing them with golden models (existing NVMM simulators and
a real DCPMM). The validation also confirms that the Fine-Grain behavior model can capture an
impact of memory access characteristics that is ignored in the Coarse-Grain behavior model. The
fourth part evaluates real applications chosen from SPEC CPU 2017 benchmarks on the proposed
simulator using three NVMM behavior models. The result shows that the frequency of NVMM ac-
cesses, access locality, and bank parallelism are essential factors in exploiting NVMM performance.
The last two factors can alleviate the first factor’s impact; however, frequent memory accesses spoil
them and severely degrade system performance.

Chapter 3 “DRAM/NVMM Heterogeneous Memory Simulator on Soft Processor Systems” pro-
poses a hardware DRAM/NVMM heterogeneous memory simulator working on soft processor sys-
tems, especially RISC-V SoC. The Fine-Grain behavior model proposed in Chapter 3 cannot be
directly applied to soft processor systems because the model presupposes that a CPU runs suffi-
ciently faster than a memory system. The Fine-Grain model on soft processor systems shows the
same behavior as the Coarse-Grain one, even if an application has high access locality. This chapter
proposes a new NVMM behavior model, “Extended Fine-Grain”, that can exploit access locality
even on soft processor systems. Besides, the simulator’s RISC-V core design is modified so a user
program can directly evict a cacheline. Validation using micro benchmarks and experimental eval-
uation using SPEC CPU 2017 benchmarks shows that the Extended Fine-Grain model can capture
an impact of access locality even on soft processor systems, unlike the existing Coarse-Grain and
Fine-Grain models. The DCPMM model on the simulator is validated against a real DCPMM.
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Chapter 4 “Secure Edge Computing Simulator Employing DRAM/NVMM Heterogeneous Mem-
ory Systems” proposes a hardware simulator having all of TEE, DRAM/NVMM heterogeneous
memory system, and MPE. Among existing TEEs, this dissertation focuses on open-source RISC-V
Keystone TEE that can satisfy various requirements for edge devices. This chapter implements an
MPE, then integrates it into the DRAM /NVMM simulator proposed in Chapter 3. The Rocket core
on the simulator is compatible with Keystone TEE. The MPE is based on SGX-style Integrity Tree
used in Intel SGX TEE. Pipelined modules in the MPE cooperatively work as much as possible to
maximize throughput. The MPE is designed to cover a large memory region with limited hardware
resources by introducing dynamic tree roots and modules while keeping Tree parallelism. Experi-
mental evaluation on the proposed simulator shows that the MPE incurs 2.55x/4.16x for DRAM
read/write, respectively. It also showed that MPE incurs 3.05x/5.40x for simulated DCPMM
read/write, respectively.

Chapter 5 “Conclusion” concludes this dissertation.
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Chapter 2

DRAM/NVMM Heterogeneous
Memory Simulator on Hard Processor
Systems *

*This chapter is based on the paper “Non-Volatile Main Memory Emulator for Embedded Systems Employing
Three NVMM Behaviour Models”, The 8th IEEE Non-Volatile Memory Systems and Applications Symposium (IEEE
NVMSA 2019), Aug. 2019
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2.1 Preface

As described in Section 1.2, DRAM/NVMM heterogeneous memory systems are expected to satisfy
diversifying demands of computer architectures and workloads. The heterogeneous memory system
is attractive for edge devices thanks to its high density, simple accessibility, and similar latency to
DRAM.

This chapter proposes a hardware simulator on an FPGA to explore optimization techniques for
DRAM/NVMM heterogeneous memory systems on edge devices. It solves the tradeoff of existing
works described in Section 1.3. Besides, the simulator provides DCPMM performance simulation
by modeling actual DCPMM behaviors. DCPMM has not been considered in existing works. All
NVMM behavior models are validated against golden models. Then, optimization techniques for
the heterogeneous memory system are explored using benchmark programs.

This chapter is organized as follows: Section 2.2 discusses the presupposed NVMM architectures
and introduces “NVMM Behavior Model”s. Section 2.3 describes the whole simulator implementa-
tion: NVMM performance simulations, the modified Linux kernel and a kernel module for NVMM
cacheability, and an NVMM management library. Section 2.4 and Section 2.5 validate the NVMM
behavior models and reveal essential factors for DRAM/NVMM heterogeneous memory systems.

Section 2.6 concludes this chapter.
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2.2 NVMM Behavior Model

NVMM performance simulations are realized by injecting additional latency into memory accesses.
These latency injections are based on some presupposed NVMM architectures. Various NVMM
cells have been proposed, however, there are no standardized or de facto technologies. To simulate
NVMM behaviors, NVMM models must be defined. This dissertation defines them as “NVMM
Behavior Model”s that represent the NVMM behavior and architecture including on-module buffers,
memory cells, and so on. Three NVMM behavior models are proposed in this chapter: Coarse-Grain,
Fine-Grain, and DCPMM. The first two models are based on NVMM having similar architectures
to DRAM. The last one is based on a real DCPMM.

2.2.1 Overview of traditional DRAM-based Main Memory

NVMM performance simulations proposed in existing works [LKP 14, LY17] presuppose NVMM
having similar and extended architectures to DRAM. This section describes overviews of DRAM
modules, memory controllers, and DDR. protocols. The NVMM behavior models proposed in Sec-
tion 2.2.2 and Section 2.2.3 are based on these behaviors.

Fig. 2.1 depicts a DRAM-based main memory system. DRAM memory cells consist of several
banks, and each bank consists of rows. Data on DRAM are read from or written into by the
row-unit. Each bank has one row-buffer that can hold one row. All data are transferred via the
row-buffer between memory cells and a memory controller. A memory request from a CPU will be
split into several DDR commands [JED12] in a memory controller. Three commands are mainly
used: ACTIVATE, READ/WRITE, and PRECHARGE.

e ACTIVATE opens a row and loads data into a row-buffer.
e READ/WRITE reads data from or writes data into the row-buffer.
e PRECHARGE writes the row-buffer into the row, then closes the row.

A row-buffer works as a write-allocate, simple write-back cache. ACTIVATE and PRECHARGE
are issued only when a memory request misses a row-buffer. Memory latency depends on row-buffer
hit ratio because a row-buffer is much faster than memory cells.

The Coarse-Grain model (Section 2.2.2) and the Fine-Grain model (Section 2.2.3) differ in
ways to inject additional latency. The Coarse-Grain model injects additional latency into memory
requests on a memory bus, on the other hand, the Fine-Grain model injects additional latency into

DDR commands in a memory controller.
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Figure 2.1: Overview of the DRAM-based Main Memory System [OK21]

2.2.2 Coarse-Grain Behavior Model

Most existing works [WW17, VMCL15, LKP"14] inject additional latency into ALL memory re-

quests to simulate NVMM performance and latency. They support asymmetric latency by injecting
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different latency for read and write requests. The simple latency injection ignores details of memory
requests. Whether memory requests can use data on row-buffers, they are always delayed. There-
fore, this behavior model can represent an NVMM without any on-module buffer. In comparison
to Section 2.2.3, this model coarsely represents NVMM behaviors and architectures. This chapter

defines the model as “Coarse-Grain Behaviour Model”.

2.2.3 Fine-Grain Behavior Model

The NVMM performance simulation technique proposed in TUNA v2.1 [LY17] injects additional
latency into DDR commands in a memory controller. DDR commands and timing parameters are

defined as follows:
e READ/WRITE cannot be issued within tRCD from the preceding ACTIVATE.
e ACTIVATE cannot be issued within ¢tRP from the preceding PRECHARGE.

In other words, data is read from memory cells in tRCD, and written back to memory cells in
tRP. Thus, tRCD and tRP correspond to read and write latency of memory cells, respectively.
By injecting additional latency into these timing parameters, memory accesses are delayed only
when missing row-buffers. This behavior model can represent an NVMM with on-module buffers
like DRAM. In comparison to Section 2.2.3, this model finely represents NVMM behaviors and
architectures. This chapter defines the model as “Fine-Grain Behaviour Model”.

This chapter extends the existing Fine-Grain behavior model as follows:
1. Memory cells are accessed only by ACTIVATE and PRECHARGE.

2. A memory controller is extended to manage the dirt of row-buffers. Only dirty row-buffers
are written back to memory cells by PRECHARGE.

In addition to long latency, NVMM cells are worn out especially by write operations. All row-buffers
must not be always written back into memory cells because NVMM operations are not destructive
unlike DRAM. For these reasons, a memory controller of NVMM should be extended to maximize

memory lifetime and reduce memory latency.

2.2.4 Overview of Intel Optane DC Persistent Memory

Fig. 2.2 depicts the DCPMM architecture [LX19]. Its memory cells, Optane Media, are based on 3D
Xpoint [Web18]. Data on Optane Media is cached on Optane Buffer. Data transfers between Optane
Media and Optane Buffer are managed by Optane Controller. Besides, DCPMM has an address
translation table (AIT) for wear leveling. Data is transferred between iMC (integrated Memory
Controller) and DCPMM in cacheline unit (64-Bytes) like DRAM. In contrast, data is transferred

between Optane Controller and Optane Media in a 256-Byte unit. These architectures and behaviors
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show different characteristics from DRAM-based memory. This chapter models DCPMM behaviors

and architectures as “DCPMM Behavior Model” with some constraints for edge devices.

Intel Optane DC Persistent Memory (DCPMM)
O~ N ot |w|o|~lo|lo|2
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256-Byte
Optane Buffer AlT
Optane Controller (DRAM)
A

|
64-Byte
\ 2

WPQ (Write Pending Queue)
iMC
(integrated Memory Controller)

Figure 2.2: Intel Optane DC Persistent Memory Architecture [LX19]

Fig. 2.3 shows the actual DCPMM behavior while changing access strides. It is measured by the
micro benchmark shown in Algorithm 1, on the machine shown in Table 2.1. The result is measured

under the following conditions to reduce various noises:
e The execution core is bonded by taskset to prevent task migration.
e Hardware prefetchers are disabled to prevent speculative memory access optimization.

e The micro benchmark uses non-temporal instruction [Int22b] to prevent caching.
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e The allocated region is filled with zero in advance to prepare page tables. Then, all CPU

cachelines are evicted.

Algorithm 1 Pseudocode for Measuring Average Latency on a DCPMM [OK21]

1: base := the pointer to the allocated region
2: size := the allocated size to base
3:

4: timerg < current timer

5: addr < 0

6: while addr < size do

7 ptr < base + addr

8: if Read then

9: movntdqa(ptr)

10: else

11: movntdq(ptr, 0)

12: end if

13:

14: if with MFENCE then

15: -mm_mfence()

16: end if

17:

18: addr < addr + STRIDE

19: end while

20: timer; < current timer

21: average latency = (timer; — timerg)/(size/STRIDE)

Table 2.1: DCPMM Configuration [OK21]

CPU Xeon Gold 5222 @3.80 GHz
DCPMM Module 1st Gen (Apache Pass) 128 GiB
DCPMM Memory Type AppDirect (not Interleaved)
DCPMM Mode device DAX (devdax)
Operating System Ubuntu 18.04LTS

When looking over Fig. 2.3 left to right, latency trends change at three points: 256-Byte,
4-KByte, and 64-KByte. Memory accesses of “with MFENCE” are strictly ordered by memory
barriers. They are always issued in the expected (program) order. Asynchronous and/or out-
of-order processing in iMC and Optane Controller does not affect the results. Memory accesses of
“without MFENCE” are loosely ordered. They may be re-ordered in iMC and/or Optane Controller
to maximize throughput by asynchronous and/or out-of-order processing. “Read with MFENCE”
(plotted in blue circles) steeply increases to 256-Byte, slowly increases to 4-KByte, then shows
constant latency. “Read without MFENCE” (plotted in orange rectangles) slowly increases to 4-
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KByte, decreases to 64-KByte, then shows constant latency. “Write with MFENCE” (plotted in
gray diamonds) sharply increases to 4-KByte, decreases to 64-KByte, then shows constant latency.
“Write without MFENCE” (plotted in green triangles) shows almost the same behavior as “Write
with MFENCE” except for the behavior from 64-KByte.
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800 i > A -y : -=Read without MFENCE
1
700 ; x : A\ : Write with MFENCE
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- : / E —+Write without MFENCE
£ 600 ! | A\ '
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Figure 2.3: Average Latency on a Real DCPMM[OK21]

2.2.5 DCPMM Behavior Model

This dissertation focuses on “with MFENCE” in Fig. 2.3 to model the DCPMM behavior for
edge devices considering constraints of power consumption and chip area. The results of “without
MFENCE” are caused by advanced controls of rich iMC and on-module controllers. It is not
expected on edge devices. Besides, the behavior of “Write with MFENCE” from 4-KByte must
be discussed. While detailed DCPMM architecture is unclear, the behavior should derive from
the advanced Optane Controller for wear leveling, address indirection, and/or some interleaving.
Bank parallelism on 8 chips in Optane Media (Fig. 2.2) should not be the factor. If it is true,
latency increases at some points after 4-KByte due to bank conflicts. Therefore, this chapter
defines “DCPMM Behavior Model” by modeling the actual DCPMM behavior as follows:

e Read latency steeply increases between 64 and 256-Byte, slowly increases between 256-Byte
and 4-KByte, then shows constant latency.

e Write latency steeply increases between 64 to 4-KByte, then shows constant latency.

e The bank parallelism does not exist.
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2.3 Details of Simulator Implementation

This chapter proposes the DRAM/NVMM heterogeneous memory simulator. It works on an FPGA,
Xilinx Zyng-7000 SoC ZC706 board. The simulator specification is listed in Table 2.2. ZC706 has
two parts: PS (Processing System) and PL (Programmable Logic). PS has a dual core ARM
Cortex-A9 SoC and peripherals. PL has an FPGA module. Each part has one DIMM. Only the PL
DIMM is treated as NVMM. The NVMM region is controlled by a memory controller, Xilinx MIG,
implemented on the PL as depicted in Fig. 2.4. This section describes the simulator implementation

as follows:
1. Latency injection techniques based on NVMM behavior models
2. Kernel modification to make the NVMM region cacheable
3. Kernel module to call cache flush operations from user space

4. NVMM management library

Table 2.2: The Proposed Simulator Specification [OK21]

FPGA Xilinx Zyng-7000 SoC ZC706

Device Zyng-7000 XC7Z045-2FFG900C SoC

CPU Core Cortex-A9 Dual Core, 667 MHz

L1 Cache 1=32 KiB/core, D=32 KiB/core

L2 Cache 512 KiB/SoC

PS DRAM 1 GiB, DDR3-1066, 16bx2 components

PL DRAM 1 GiB, DDR3-1600, 8bx8, SO-DIMM

PL Frequency 200 MHz

Linux Kernel GNU/Linux 4.14.0-xilinx-00081-g88¢c987 [Xil]

Operating System  Ubuntu 16.04 LTS
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Figure 2.4: Overview of the Proposed Simulator [OK21]

2.3.1 Coarse-Grain Delay Injection

The coarse-grain delay injection is based on the coarse-grain behavior model (Section 2.2.2). Addi-
tional latency is injected by an additional module on a memory bus, between the LLC and the MIG
(Fig. 2.1). Data is transferred between them using the AXI4 protocol [ARM13]. The Coarse-grain
delay injection delays AXI4 protocol handshakes. When the module accepts a memory request from
the LLC, the module keeps the request for specified delay clocks, then sends it to the MIG. The
module does not interfere with any data communication. Read delay clocks and write delay clocks

can be specified independently to represent asymmetric NVMM performance.

2.3.2 Fine-Grain Delay Injection

The fine-grain delay injection is based on the fine-grain behavior model (Section 2.2.3). Additional
latency is injected by the modified MIG (Fig. 2.1). The MIG waits for tRCD nanoseconds after
issuing ACTIVATE, and ¢tRP nanoseconds after issuing PRECHARGE. The modified MIG waits
for additional cycles after issuing them. The clocks can be specified independently as the same
as coarse-grain delay injection. Each bank on DIMMSs corresponds to one module in the MIG.
The modules work independently, thus, bank parallelism can be explored in the fine-grain delay

injection.
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2.3.3 DCPMM Delay Injection

The DCPMM delay injection is based on the DCPMM behavior model (Section 2.2.5). The delay
injection is the extension of the coarse-grain delay injection. Additional latency is injected into
memory requests when crossing 256-Byte and/or 4-KByte boundaries. This technique realizes the
behavior depending on memory request intervals (Section 2.2.4). For instance, when a CPU issues

two memory requests to 0x8000-0000 and 0x8000-0004, only the former one will be delayed.

2.3.4 Kernel Modification for NVMM Cacheability

The proposed simulator has the DRAM/NVMM heterogeneous memory systems (Table 2.2). The
DRAM region and NVMM region must be individually managed to exploit the advantages of the
memory system. If the NVMM region is included in system RAM, the region may be unintentionally
allocated to processes by a Linux kernel. Its memory allocation may severely degrade system
performance. However, the Linux kernel [Xil] provided by Xilinx on the proposed simulator treats
only system RAM as cacheable. If the NVMM region is excluded from system RAM, NVMM
accesses bypass CPU caches. CPU caches must be applied to NVMM accesses to reduce its long
latency.

This dissertation modifies the Linux kernel to make the NVMM region outside system RAM
cacheable. A process uses the mmap system call to map arbitrary memory regions into its memory
space. On the modified kernel, mapped region cacheability can be specified through the mmap
system call. The “O_SYNC” flag on the given file descriptor specifies cacheability. The mapped
region becomes cacheable only if the flag is NOT specified. This modification does not interfere

with the default behavior. If “O_SYNC” is not specified, memory accesses may be asynchronous.

2.3.5 Kernel Module for User-Space Cache Flush

Data persistency is guaranteed only when data reaches NVMM. When CPU caches are enabled,
modified data is written into only CPU caches. Thus, explicit cache eviction is required to guarantee
data persistency. While ARM Cortex-A9 on the simulator has cache flush instructions as a part of
ARM-v7 ISA [ARMOS8], they are privileged instructions. A user process cannot call them directly.

This chapter implements the kernel module to expose an API to evict cachelines from user
processes. The API takes two arguments: the start virtual address, and the region size. The ARM-
v7 cache flush instructions evict one cacheline at a time. If the instructions are directly exposed,
multiple context switches between the “User mode” (equivalent to ring-3 in x86) and the “Privileged
mode” (equivalent to ring-0 in x86) incur severe overheads. Evicted lines will be written back into
NVMM in parallel as much as the hardware allows. Memory barriers are issued before and after

the eviction to guarantee data ordering.

30



W N =

2.3.6 NVMM Allocation Library

As described in Section 2.3.4, the NVMM region is excluded from system RAM. The non system
RAM region is not managed by the Linux kernel. The region cannot be allocated and deallocated
by using dynamic memory allocation functions provided by libc (malloc, calloc, realloc, and free)
because libc functions internally borrow a part of system RAM. While the mmap system call can
be used, its low-level API has difficulty in allocating arbitrary size regions.

This chapter implements the NVMM management library with libc-compatible APIs. The
library provides arbitrary size allocation and deallocation by wrapping mmap/munmap system

calls. The APIs are as follows:

void *NVMM_Malloc(size_t size)

void *NVMM_Calloc(size_t nmemb, size_t size)
void *NVMM_Realloc(void *ptr, size_t size)
void NVMM_Free(void *ptr)
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2.4 Validation of NVMM Behavior Models

This section validates three behavior models: Coarse-Grain (Section 2.2.2), Fine-Grain (Section 2.2.3),
and DCPMM (Section 2.2.5) by comparing them with golden models. In other words, this section
confirms that the models show expected behaviors. The following golden models are used in this

chapter:

e Coarse-Grain Behavior Model: The existing NVMM hardware simulator TUNA [LKP"14].

e Fine-Grain Behavior Model: The existing software NVMM simulator gem5 [BBB*11] and
NVMain2.0 [PZX15).

e DCPMM Behavior Model: The real DCPMM.

2.4.1 Coarse-Grain Behavior Model

The coarse-grain behavior model and delay injection are the same as the technique proposed in
TUNA [LKP"14]. Tt validates the implementation by confirming that the measured latency follows
the expected (configured) latency. This section uses the same validation method.

Algorithm 2 shows the pseudo code of the micro benchmark. The access stride (STRIDE in
Algorithm 2) is set to 32 or 8192. These two strides should result in different row-buffer hit ratios.
The DIMM on the simulator has 8192-Byte row-buffers. Most memory requests hit row-buffers
when STRIDE is 32. In contrast, all memory requests miss row-buffers when STRIDFE is 8192. If
the coarse-grain delay injection can capture the impact of row-buffer hit ratio, STRIDE=32 shows
shorter latency than STRIDE=8192.

Table 2.3a and Table 2.3b show the measured results. 32 and 8192 are access strides (STRIDE
in Algorithm 2). “Expected Latency” in the Table is the expected (configured) latency. The
latency is injected into only read or write memory requests. “Measured Latency” in the Table is
the measured latency. If the coarse-grain delay injection works as expected, the measured latency
matches the expected one. First, there are small errors between the expected and the measured
latency. These errors should derive from the detailed SoC architecture. The expected latency
is injected into memory requests on memory buses. The measured latency observed from CPUs
includes overheads in CPU cores, caches, and on-chip buses, in addition to the expected latency.
These overheads should be almost constant independent from expected latency. The errors follow
this discussion. Second, in Table 2.3a and Table 2.3b, access strides have no impact on measured
latency. It indicates that the coarse-grain behavior model cannot capture the impact of row-buffer
hit ratio as described in Section 2.2.2.

Through this section, the coarse-grain delay injection was validated in comparison to the TUNA
vl’s evaluation [LKP"14]. The coarse-grain delay injection shows the following behavior as ex-

pected:
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Algorithm 2 Pseudocode for Measuring Average Latency [OK21]

: base := the pointer to the allocated region
: size := the allocated size to base

: timery < current timer
s addr < 0
: while addr < size do
ptr < base + addr
if Read then
V < *plr
else
0 — xptr
end if
addr < addr + STRIDE
: end while
: timery < current timer
. average latency = (timer; — timerg)/(size/STRIDE)

e e e e o
I VAR - > seli S

e ALL memory requests are delayed for the specified clocks.

e No row-buffer hit ratio can be explored.
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Table 2.3: Average Latency on the Proposed Simulator (Coarse-Grain Behavior Model)
[OK21]

(a) Read Latency

Expected Latency [ns] Measured Latency [ns]
STRIDE =32 STRIDE = 8192
200 211 211
400 411 416
600 612 615
800 812 815
1,000 1,012 1,015

(b) Write Latency

Expected Latency [ns] Measured Latency [ns]
STRIDE =32 STRIDE = 8192
200 215 217
400 414 422
600 616 623
800 817 817
1,000 1,019 1,023

2.4.2 Fine-Grain Behavior Model

This section validates the fine-grain behavior model and delay injection by comparing it with existing
NVMM software simulators: NVMain2 [PZX15] with gem5 [BBBT11]. They are configured as
listed in Table 2.4. A CPU model on the gemb is configured to represent the ARM Cortex-A9 core
according to the paper [ECC14]. NVMain2 is modified for the fine-grain behavior model (additional
tRCD and tRP). In addition, this section confirms the effectiveness of the fine-grain behavior model
by comparing it with the coarse-grain behavior model. If the fine-grain one works as expected, it
can capture the impact of the row-buffer hit ratio unlike the coarse-grain one (Section 2.2.3).
First, the average latency while changing additional latency is measured by using the same mi-
cro benchmark as the coarse-grain one (Algorithm 2). The additional latency is injected to tRCD
or tRP in the MIG. Fig. 2.5 and Fig. 2.6a show the results on the proposed simulator, and the
software simulators (gem5 + NVMain2), respectively. “32” and “8192” are access strides (STRIDE
in Algorithm 2). Results in Fig. 2.6a are calibrated based on the raw results shown in Fig. 2.6b.
Even if the same benchmark was run, the number of ACTIVATE and PRECHARGE differed.
For instance, when the micro benchmark issues 1,048,576 write requests, the number of ACTI-
VATE/PRECHARGE on the proposed simulator was 2,050,429, in contrast, that on the software

simulators was 1,656,898. These differences derive from the detailed memory controller architecture
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Table 2.4: gem5 and NVMain2 Configurations [OK21]

gemd

Simulation Mode

Syscall Emulation

CPU Frequency 667 MHz
CPU Core 0O3_ARM_v7a_3 x1
Cache Line Size 32 Byte
L1 Cache =32 KiB / D=32 KiB
L2 Cache 512 KiB
NVMain2
Frequency 166 MHz
Size 1 GiB
Command Queue READ=32 entries, WRITE=32 entries
Page Policy Relax Page

including command queues, arbiters, internal buses, and so on. To remove these differences, average
latency on Fig. 2.6b is calibrated against the number of ACTIVATE/PRECHARGE.
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Figure 2.5: Average Latency while Changing Additional Latency (Fine-Grain on the
Proposed Simulator) [OK21]

These graphs show four important results. First, the two graphs show almost the same behaviors.
It confirms that the fine-grain behavior model works as expected in comparison to existing golden

models. Second, the impact of additional latency depends on memory requests and access strides.
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Figure 2.6: Average Latency while Changing Additional Latency (Fine-Grain on the
Software Simulators) [OK21]
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“READ/32” is slightly affected by additional latency, on the other hand, “READ/8192” is heavily
affected. The read benchmark with 32-Byte stride should frequently hit row-buffers. In this case, less
ACTIVATE/PRECHARGE are issued, and less total additional latency is injected. In contrast, the
benchmark with 8192-Byte stride always misses row-buffer, then ACTIVATE/PRECHARGE are
always issued. This behavior confirms that the fine-grain delay injection can capture the impact of
row-buffer hit ratio. Third, “WRITE” results show about 3,000 nanoseconds. When CPU caches are
enabled, cachelines are always fetched before writes, then data is written only into CPU caches and
written back into a memory module later by line replacements. These behaviors require 1 memory
read request for fetching, and 1 memory write request for eviction. A memory controller receives
them in random order due to random cacheline replacements. It lowers row-buffer hit ratio, then
ACTIVATE and PRECHARGE are issued for most memory requests. Additional latency should be
injected four times (4,000 nanoseconds) in total, however, the results show about 3,000 nanoseconds.
It confirms that the row-buffers state management works as expected (Section 2.2.3). Memory read
requests for fetching do not modify row-buffers, thus, additional latency for PRECHARGE is not
injected. Fourth, the write results on Fig. 2.5 and Fig. 2.6a show almost the same behavior for
different access strides. It is due to CPU caches. Access locality is mostly absorbed in CPU
caches. Memory write requests are almost randomly issued to a memory controller. This behavior
is allowable because such a pure write benchmark is not suitable for NVMM.

Second, the average latency while changing the number of banks accessed in parallel is measured.
Algorithm 3 shows the pseudo code of the micro benchmark. The number of banks accessed in
parallel (NBANK in Algorithm 3) is set to 1, 2, 3, or 4. If the behavior model can capture bank
parallelism, the average latency decreases as increasing NBANK. Fig. 2.7a and Fig. 2.7b show the
normalized average read/write latency, respectively. “Coarse” are the result of the coarse-grain
behavior model on the proposed simulator. “Fine(Proposed)” and “Fine(gem5+NVMain2)” are
the results of the fine-grain behavior model on the proposed simulator and the software simulators,
respectively. For “Coarse”, additional 1,000 nanoseconds are injected into read or write requests.
For “Fine”, additional 1,000 nanoseconds are injected into tRCD or tRP. All results are normalized
against the result of NBANK=1. Comparison between “Coarse” and “Fine(Proposed)” reveals
that only the latter is affected by NBANK. The “Fine(Proposed)” read and write latency decrease
to 60% and 50% respectively, on the other hand, the “Coarse” latency shows constant. Besides,
“Fine(Proposed)” and “Fine(gem5+NVMain2)” show almost the same behaviors. While there are
some errors between them, the errors are allowable because they derive from the different detailed
internal architecture as described above.

Through this section, the fine-grain delay injection was validated in comparison to the existing
simulators, gem5 and NVMain2. The fine-grain behavior model shows the following behaviors as

expected:

e Only memory accesses missing row-buffers are delayed for the specified cycles.
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e Row-buffer hit ratio and bank parallelism can be explored on the fine-grain behavior model

unlike the coarse-grain behavior model.

e The fine-grain behavior model can show the same behaviors as the existing NVMM simulators.

The proposed simulator can provide reliable evaluations as the existing simulators.

Algorithm 3 Pseudocode for Measuring Bank Parallelism [OK21]

e e e e e
NP Q

// mem is an array of ROWs
// mem has BANK_PER_MEM banks, and each bank has ROW_PER_BANK rows
mem := ROW[BANK_PER_MEM|[ROW_PER_BANK]|

timerg < the current timer
// iterate each row, each bank
for row =0 ... ROW_PER_BANK do
for bank =0 ... NBANK do
if Read then
v < meml[bank][row]
else
0 — memlbank][row]
end if
end for

: end for
. timery < the current timer
. average latency = (timer) — timerg)/(ROW_PER_BANK X NBANK)
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2.4.3 DCPMM Behavior Model

This section validates the DCPMM behavior model and delay injection by comparing it with a
real DCPMM (Table 2.1). The latency trends are measured using the same benchmark shown in
Algorithm 1 with some adjustments. STRIDFE is set up to 1-MiB to get enough results on the
smaller NVMM region on the simulator than a real DCPMM. CPU caches were disabled instead of
non-temporal instructions used in Section 2.2.4.

Fig. 2.8a and Fig. 2.8a show the results. “Real DCPMM” (plotted in blue circles) shows the
result of a real DCPMM (“with MFENCE” on Fig. 2.3). “DCPMM Behavior Model” (plotted in
green squares) shows the result of the DCPMM behavior model. For “DCPMM Behavior Model”
results, read latency for 256-Byte and 4-KByte are 200ns and 225ns, and Write latency for 256-
Byte and 4-KByte are 500ns and 800ns, respectively. In Fig. 2.8a, a real DCPMM and the proposed
simulator show almost the same read latency trends between 64-Byte and 4-KByte. However, they
differ above 4-KByte. This error is allowable on the DCPMM behavior model on the simulator
(Section 2.2.5). The used micro benchmark issues continuous heavy read requests. Such memory
requests with wide strides (low access locality) are not desirable and should be avoided on NVMM,
thus the erroneous situation in Fig. 2.8a rarely happens.

In Fig. 2.8b, a real DCPMM and the proposed simulator show almost the same write latency
trends between 64-Byte and 4-KByte. The behavior above 4-KByte is out of scope in the DCPMM
behavior model (Section 2.2.5). Such advanced controllers are not expected on edge devices for
some limitations and costs.

Through this section, the DCPMM behavior model was validated in comparison to a real
DCPMM. The DCPMM behavior model shows the following behavior:

e Read latency steeply increases between 64 and 256-Byte, slowly increases between 256-Byte
and 4-KByte, then shows constant latency.

e Write latency steeply increases between 64 to 4-KByte, then shows constant latency.

e The bank parallelism does not exist since the DCPMM behavior model is an extension of the

coarse-grain behavior model.
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2.5 Experimental Evaluation of NVMM Behavior Mod-
els with SPEC CPU Benchmarks

This section explores essential factors for the DRAM/NVMM heterogeneous memory system with
SPEC 2017 CPU benchmarks [Sta]. Three NVMM delay injections are configured as follows:

e Coarse-Grain: 1,000ns for both read and write requests
e Fine-Grain: 1,000ns for both tRCD and tRP

e DCPMM: 1,000ns for base latency, additional 2,000ns/2,500ns for reads crossing 256-Byte/4-
KByte, additional 5,000ns/8,000ns for writes crossing 256-Byte/4-KByte, respectively

On the DCPMM behavior model, additional latency is calculated as follows: Section 2.2.4 and
Intel [Int22a] indicate that read requests to DCPMM become twice slower when missing Optane
Buffer. In other words, a read request accesses a different Optane line (256-Byte). Thus, 2,000ns are
injected for 256-Byte boundaries. The latency for other boundaries is defined according to Fig. 2.3.

2.5.1 Normalized Execution Time

This section shows how three NVMM behavior models affect real application performance, then
explores factors for optimizations on DRAM/NVMM heterogeneous memory systems. Programs
with various characteristics from SPEC 2017 CPU benchmark [Sta] are used. Fourteen of 24 bench-
marks are chosen from CPU rate benchmark programs. They can be compiled and executed on
the proposed simulator. All memory allocations in the programs are replaced with the NVMM
management library (Section 2.3.6) to allocate heap objects on the NVMM region.

Fig. 2.9 shows the results. The horizontal axis shows the normalized execution time on the
simulated NVMM against that on DRAM (no additional latency). The bars filled with blue dots,
green diagonal lines, and orange cross stripes are the results of coarse-grain, fine-grain, and DCPMM
behavior models. The bars are sorted in the ascending order of “Fine-Grain” from left to right. In
the graph, “Coarse-Grain” and “DCPMM?” show the same trends since the latter is an extension of
the former one. Throughout this section, “Coarse-Grain” is discussed on behalf of “Coarse-Grain”
and “DCPMM”.

Fig. 2.9 shows that behavior models differently affect each program execution time. For instance,
544.nab_r and 511.povray_r are not almost affected by different behavior models. They show almost
1.0 for both the coarse-grain and fine-grain behavior models. However, for 519.1bm_r, the normalized
execution time of the coarse-grain model is 8.3 while that of the fine-grain model is 13.4. The fine-
grain model heavily affects execution time 1.61 times more than the coarse-grain one. Besides,
in the graph, the fine-grain model generally shows longer normalized execution time than coarse-

grain. Four applications do not follow the trend: 531.deepsjeng_r, 520.omnetpp-r, 505.mcf_r, and
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510.parest_r. The coarse-grain model on them shows higher execution time than the fine-grain
model.

For detailed investigations, two application characteristics are measured: access locality and
bank parallelism. Access locality is the ratio of ACTIVATE to memory requests. It is calculated as
“(1 - (the number of ACTIVATE /the number of requests))”. The number of ACTIVATE is counted
in the MIG, and the number of requests is counted on a memory bus (between the LLC and the
MIG). High access locality indicates that more memory requests hit row-buffers. Bank parallelism
is the ratio of memory requests accessing the different banks from the preceding request. Higher
bank parallelism indicates that more memory requests are processed in parallel.

Table 2.5 shows access locality and bank parallelism. The exceptions shown in the above dis-
cussion are underlined. The programs are similarly sorted as Fig. 2.9 from top to bottom. In the
4 underlined exceptions, 531.deepsjeng_r, 520.omnetpp_r, and 505.mcf_r show high access locality
(0.367, 0.118, and 0.191), and 520.omnetpp_r and 505.mcf_r show high bank parallelism (0.270,
0.280). The fine-grain model can capture these characteristics as confirmed in Section 2.4.2. The
results show the importance of access locality and bank parallelism in optimization for NVMM,
besides, prove the fine-grain delay injection.

However, these two factors cannot explain the behavior of 510.parest_r. Its access locality and
bank parallelism are not good unlike others. The behavior is due to the memory requests’ read /write
ratio. In the coarse-grain delay injection, while the read and write memory bus work in parallel,
each bus can keep only one request at a time. An application having an excessive read/write
ratio is heavily affected by NVMM latency. 510.parest_r shows a high read/write ratio (25.0).
The significantly high read/write ratio for the coarse-grain behavior model spoils the parallelism of
memory accesses, resulting in a longer execution time than expected.

The above discussion shows the effectiveness of the fine-grain behavior model. An important
question exists yet: Which of the program characteristics mainly affects the execution time? In
other words, which factors mainly determine the order of programs in Fig. 2.9 from left to right?
Table 2.5 shows that 505.mcf_r has higher access locality (0.191) and bank parallelism (0.280) than
538.imagick_r, however, Fig. 2.9 shows that the latter one is more affected by NVMM latency.
To investigate this question, cache hit ratio for the LLC and the memory access frequency to the
NVMM are also measured. They are measured without any additional latency. The memory access
frequency is measured on a memory bus (between the LLC and the MIG).

Table 2.6 shows the measurement results for each program. The programs are similarly sorted as
Fig. 2.9 from top to bottom. In other words, the normalized execution time of the fine-grain model
gets longer from top to bottom. Longer execution time derives from a lower cache hit ratio and
higher memory request frequency except for some underlined benchmarks. Considering Table 2.5,
the impact of memory access frequency on them is reduced by access locality and bank parallelism.

Regarding the relationship between 505.mcf_r and 538.imagick_r, the former accesses NVMM
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twice as often as the latter one. Although the impact of NVMM latency on 505.mcf_r is reduced
by its characteristics (Table 2.5), it is more heavily affected than 538.imagick_r. This result implies
that the impact of the memory access frequency exceeds the reduction by access locality and bank
parallelism. The same situation is found in 519.]bm_r and 510.parest_r.

This section reveals that the impact of NVMM latency are affected by the following factors:

e Memory access frequency increases the impact of NVMM latency on program execution time.
e High access locality reduces the impact by effectively using on-module buffers.

e High bank parallelism reduces the impact by processing memory requests in parallel.

e Quite high memory access frequency exceeds the reduction by access locality and bank paral-

lelism.
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Table 2.5: Access Locality and Bank Parallelism [OK21]

Benchmark Access Locality Bank Parallelism
544.nab_r 0.011 0.000
511.povray_r 0.156 0.000
531.deepsjeng._r 0.367 0.170
525.x264 0.036 0.070
508.namd_r 0.055 0.080
520.omnetpp_r 0.118 0.270
541.]leela_r 0.087 0.000
557.xz_1r 0.079 0.050
523.xalancbmk_r 0.030 0.000
538.imagick._r 0.013 0.000
505.mcf r 0.191 0.280
510.parest_r 0.064 0.001
519.1bm_r 0.066 0.220

Table 2.6: Cache Hit Ratio and Memory Access Frequency[OK21]

Benchmark Cache Hit Ratio [%] Memory Access Frequency [/s]
544.nab_r 99.998 2,615
511.povray_r 99.983 85,219
531.deepsjeng_r 99.784 623,954
525.x264 r 99.926 493,471
508.namd_r 99.858 669,040
520.omnetpp_r 97.968 1,561,328
541.]leela_r 99.785 852,818
557.xz.1 99.596 1,824,788
523.xalancbmk_r 99.516 1,295,606
538.imagick._r 99.356 1,540,642
505.mcf_r 93.501 4,170,876
510.parest_r 95.384 5,967,728
519.1bm_r 88.551 11,812,742

2.5.2 Cache Flush Overhead

As described in Section 2.3.5, cachelines must be explicitly evicted to guarantee data persistency
on NVMM. This section measures cache flush overheads and what factors affect the overheads.
Four applications having different characteristics are used. 508.namd_r has high data parallelism.
541.leela_r allocates a lot of small regions (20 Byte x 200,000). 557.xz_r is an in-memory application
using a few large regions. 519.lbm.r requires quite a high bandwidth. Cache flush instructions are
inserted into their computation kernels to make their main data structure durable. Table 2.7 shows

the overhead caused by the cache flush. The overheads of “zero” denotes the additional execution
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time caused by the cache flush operations with no additional latency. Similarly, the overheads of
“coarse” and “fine” are the additional execution time when additional latency is injected by using
their models. “Total Flushed Lines” is the number of total cachelines flushed by the inserted flush

instructions.

Table 2.7: Cache Flush Overhead and Flushed Lines [OK21]

Cache Flush Overhead [s]

Benchmark Zero coarse fine Total Flushed Lines
508.namd_r 0.31 0.33 0.27 922,288
541.1eela_r 0.30 0.35 0.28 248,525
557.xz_1 0.03 0.04 0.02 166,898
519.]bm_r 5.49 5.55 5.46 1,859,045

This table shows that “fine” is less than “coarse” and “coarse” is more than “zero”. The former
behavior is due to high data locality. Memory requests caused by cache flush operations often access
nearby addresses because of spatial locality on CPU caches. The cache flush overhead is reduced by
high access locality. The latter observation shows that overhead is affected by additional latency.

Regarding the amount of the overhead for each program, Table 2.7 indicates that the number
of total flushed lines affects the overhead. However, 508.namd_r flushes about four times more
lines than 541.leela_r and shows almost the same overhead. This behavior is due to the cache flush
operation frequency. 508.name_r specifies a large array at a time, therefore, most cachelines have
been already evicted from the cache by line replacement, resulting in the small number of NVMM
access. On the other hand, 541.leela_r specifies small nodes many times, thus, most cachelines
exist on CPU caches and are evicted by flush operation. These cases indicate that the overhead
caused by the explicit data eviction is affected by the cache flush granularity. However, it must
be noticed that data durability cannot be ensured until the end of a cache flush operation and the
following memory barrier operation. There is a tradeoff between cache flush operation frequency

and additional execution overheads.
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2.6 Conclusion

This chapter proposed the hardware DRAM/NVMM heterogeneous memory simulator on the Xil-
inx ZC706 board that has two parts: an ARM-based SoC and an FPGA module. The simulator
provides NVMM simulations based on three NVMM behavior models: Coarse-Grain, Fine-Grain,
and DCPMM. The coarse-grain one represents an NVMM without any on-module caches. The fine-
grain one represents an NVMM with a similar architecture to DRAM. Its memory cells consisting
of banks, rows, and columns are accessed via on-module write-back caches. The DCPMM behavior
model represents a real DCPMM. NVMM simulation was implemented on the FPGA module. The
proposed simulator provides the whole evaluation platform for the DRAM/NVMM heterogeneous
memory systems. Ubuntu runs on the ARM-based SoC. It has features for the DRAM/NVMM
heterogeneous memory systems: the modified Linux kernel for cacheable NVMM region, the kernel
module for user-space cache eviction, and the NVMM management library. The proposed sim-
ulator provides a fast, reliable, and useful way to explore optimizations of the DRAM/NVMM
heterogeneous memory systems.

All NVMM behavior models were validated against golden models: the existing NVMM hard-
ware simulator TUNA for the Coarse-Grain, the existing software simulators gem5+NVMain2 for
the Fine-Grain, and a real DCPMM for DCPMM. The validation showed that NVMM simulations
on the simulator work as expected. It also showed that only the fine-grain can capture the impact
of access locality and bank parallelism. Then, the experimental evaluation using SPEC CPU 2017
benchmarks revealed three essential factors in optimization for NVMM: memory access frequency,
access locality, and bank parallelism. The last two factors can alleviate the first factor’s impact;

however, frequent memory accesses spoil them and severely degrade system performance.
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Chapter 3

DRAM/NVMM Heterogeneous
Memory Simulator on Soft Processor
Systems *

*This chapter is based on the paper, “Open-Source RISC-V Linux-Compatible NVMM Emulator”, Sixth Workshop
on Computer Architecture Research with RISC-V (CARRV 2022), Jun. 2022.
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3.1 Preface

Soft processors on SoCs have become important in IoT and reconfigurable computing. The fully
open-source ISA, RISC-V also has accelerated the trend. Many RISC-V cores and SoCs have been
proposed since its first proposal in 2011. They are expected to encompass various requirements
on edge devices as an open-source, free, customizable ISA. DRAM/NVMM heterogeneous memory
systems may be used on RISC-V soft processor systems in the future. However, the fine-grain
behavior model (Section 2.2.3) presupposes that a CPU runs sufficiently faster than its memory
system. Soft processor systems do not always satisfy the assumption unlike ARM-based hard
processor systems.

This chapter proposes the DRAM/NVMM heterogeneous memory simulator employing RISC-
V soft processor systems on an FPGA. The existing NVMM behavior models are extended for
soft processor systems. The simulator also provides a Linux-based evaluation platform. The ex-
tended fine-grain behavior model is validated against the existing behavior models. Then, optimiza-
tion techniques for the heterogeneous memory system are explored using benchmark programs like
Chapter 3.

This chapter is organized as follows: Section 3.2 discusses the existing NVMM behavior models
on soft processor systems, then introduces “Extended Fine-Grain Behavior Model”. Section 3.3
describes the whole simulator implementation: NVMM performance simulations, logical memory
partitioning, and the modified RISC-V core for user-space cache evictions. Section 3.4 and Sec-
tion 3.5 validate the NVMM behavior models and show the effectiveness of the extended fine-grain

behavior model on soft processor systems. Section 3.6 concludes this chapter.

50



3.2 NVMM Behavior Model

This section describes the existing three NVMM behavior models (Coarse-Grain, Fine-Grain, and

DCPMM) on soft processor systems, then discusses and proposes the new NVMM behavior model.

3.2.1 Existing NVMM Behavior Models on Soft Processor Sys-
tems

Chapter 2 proposed two NVMM behavior models based on the traditional DRAM behavior and
architecture: Coarse-Grain and Fine-Grain. Only the coarse-grain based injection can be directly
applied to soft processor systems.

The coarse-grain behavior model injects additional latency into memory requests on a memory
bus. Memory requests are kept for specified clocks in the additional delay module. In this case, the
behavior of delay injections is not affected by the operating frequencies of CPUs and the memory
controller. Regardless of their frequency, CPUs always observe constant memory stalls for specified
additional clocks.

On the other hand, the fine-grain behavior model does not work as expected on slow, soft
processor systems. As described in Section 2.2.3, a high row-buffer hit ratio shows less ACTIVATE
and PRECHARGE. Row-buffers can be re-used only when two successive memory requests hit the
same, opened row-buffer. However, row-buffers on DRAM are implicitly closed and written back
to memory cells to strictly stabilize DRAM memory cells. The interval from row-buffer opening
to closing is small. Soft processors cannot issue multiple memory requests in the interval, then,
additional latency is injected into ALL memory requests. The behavior is the same as the coarse-
grain behavior model. Therefore, the existing fine-grain behavior model must be extended to explore
optimization techniques for the DRAM/NVMM heterogeneous memory system on soft processor

systems.

3.2.2 Extended Fine-Grain Behavior Model

Fig. 3.1 depicts the DDR3 timing parameters. A memory controller issues an implicit PRECHARGE
after tRTP or tRP from the preceding READ or WRITE, and/or tRAS from the preceding ACTI-
VATE. Slow processors cannot issue successive memory requests within these timing parameters.
To capture the impact of row-buffer hit ratio, row-buffers must be kept open long enough. The
“Extended Fine-Grain Behavior Model” also adjusts these timing parameters to prevent an implicit
PRECHARGE. By setting tRAS enough longer than the CPU memory request frequency, they
can hit the same row-buffer. Fig. 3.2 depicts the comparison between the fine-grain delay behavior
model and the extended one. On the original fine-grain, the PRECHARGE for the read request-1
is issued before the read request-2, then ACTIVATE is required for request-2. In contrast, on the
extended fine-grain, the PRECHARGE is postponed, then ACTIVATE for the request-2 is omitted.
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The extended fine-grain behavior model adjusts three DDR timing parameters: tRAS, tRTP
and tWTP.
e PRECHARGE cannot be issued within tRAS from the preceding ACTIVATE.

¢ PRECHARGE cannot be issued within ¢tRTP and tWTP from the preceding READ and
WRITE, respectively.

Timing constraints of these three parameters must be satisfied before issuing PRECHARGE. Ad-
justment on only tRCD should work as expected, however, some memory controllers only check

tRTP and tWTP before issuing PRECHARGE. ACTIVATE is issued to load data on memory
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cells into row-buffers, then, at least one successive READ or WRITE is issued. In other words,
“tRCD + tRTP/tW P” always elapsed before issuing PRECHARGE. tRAS can be ignored if
“tRCD +tRTP/tWTP > tRAS” is always satisfied depending on memory controller implementa-
tion and/or frequency. Therefore, the extended fine-grain also adjusts tRTP and ¢tWTP in addition
to tRAS to strictly ensure timing constraints. tRTP and tRP are calculated as follows:

tRTP max{ tRT P(spec), tRAS(rest) }
tWTP = max{ tWTP(spec), tRAS(rest) }

“(spec)” is the value defined in the DDR3 protocol. “(rest)” is the rest of tRAS when READ or
WRITE is issued. These definitions force to satisfy both tRAS and tRTP/tWTP before issuing
PRECHARGE. These adjustments and the extended fine-grain behavior model do not violate the
DDRS3 protocol. Table 3.1 shows the DDR3 timing parameters defined in its specification. The
proposed simulator uses DDR3-1600. Maximum values are not defined except for tRAS in the
specification. tRAS is not set to such a big value when simulating NVMM performance since the

NVMM latency should be hundreds of nanoseconds.

Table 3.1: DDR3-1600 Timing Parameter Specifications [OK22b]

Timing Parameter Minimum [ns] Maximum [ns]

tRCD 13.75 undef.
tRP 13.75 undef.
tRAS 35 70,200
tRTP 7.5 undef.
tWTP (tWR) 15 undef.
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3.3 Details of Simulator Implementation

The proposed simulator is implemented on the SiFive Freedom U500 VC707 FPGA Dev Kit [SiF19].
It works on the Xilinx VC707 FPGA board. An overview of the simulator is listed in Table 3.2.
Fig. 3.3 depicts the simulator block diagram. Freedom SoC has RISC-V Rocket cores employing
RV64GC ISA, single issue 5-stage pipeline, in-order execution. It is fully open-source and compatible
with Keystone TEE. Linux kernel was built on the e448fa3 commit of the Keystone repository. It
is the extended Linux 5.6.0. The operating system is Debian RISC-V Ports.

This section describes the simulator implementation as follows:

1. Latency injection based on existing NVMM behavior models.

2. Latency injection based on the extended fine-grain behavior model.
3. Logically partitioned memory space.

4. Modification on RISC-V Rocket core for user-space cache flush.

Table 3.2: The Proposed NVMM Simulator Specifications [OK22b]

FPGA Xilinx Virtex-7 FPGA VC707
Device Virtex-7 XC7VX485T-2FFG1761
CPU Rocket Core x 4

Rocket Core ISA RV64GC (Unpriv 2.1, Priv 1.11)
L1 Cache I=16 KiB/core, D=16 KiB/Core
System RAM 1 GiB, DDR3-1600, SO-DIMM
Configurable NVMM 3 GiB, DDR3-1600, SO-DIMM
SoC Frequency 50 MHz

Memory System Frequency 200 MHz

Linux Kernel GNU/Linux riscv64 5.6.0-dirty
Operating System Debian GNU /Linux bullseye/sid
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Figure 3.3: Block Diagram of the Proposed NVMM Simulator [OK22b]

3.3.1 Existing Delay Injections

The simulator has the existing three delay injections: Coarse-Grain (Section 2.3.1), Fine-Grain
(Section 2.3.2), and DCPMM (Section 2.3.3). Their implementation is ported from the simulator
described in Chapter 2.

3.3.2 Extended Fine-Grain Delay Injection

The CPUs (50MHz) on the simulator are slower than the memory system (200MHz) (Table 3.2).
The extended fine-grain delay injection is based on the extended fine-grain behavior model (Sec-
tion 3.2.2). It is implemented by modifying the MIG behavior like the original fine-grain delay
injection. The modified MIG waits for additional tRAS after the original tRAS. This delay injec-
tion is an extension of the original one, thus, tRCD and tRP can be also specified to represent

NVMM cells’ latency. These three timing parameters (tRCD, tRP, and tRAS) can be specified
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independently.

3.3.3 Logically Partitioned Memory Space

The ZC706 board used in Chapter 2 has two DIMMs. One DIMM is used as system RAM, and
the other is used as NVMM. However, the VC707 board has only one DIMM. The one memory
space is logically divided to realize heterogeneous memory systems. The memory is divided into
two regions: system RAM, and user-controlled RAM as depicted in Fig. 3.3. The Linux kernel only
manages the former region. The latter region can be used as the NVMM region. The proposed
simulator has MMIO registers to configure the NVMM address range in the user-controlled RAM.

The delay injections are applied to only memory accesses to the NVMM region.

3.3.4 RISC-V Design Modification for User-Space Cache Flush

As described in Section 2.3.5, cache flush instructions are required to use NVMM. While the in-
structions are not standardized in RISC-V ISAs (Unprivileged 20191213, Privileged 20211203) as of
Nov 2022, Rocket cores on the proposed simulator have the custom cache management instructions
ported from the SiFive RISC-V cores. The instruction, CFLUSH.D.L1 flushes a cacheline using its
virtual address. However, user programs cannot call the privileged instruction. The kernel module
like Section 2.3.5 is not a solution to this case because the instruction is available only on firmware
privilege level (M-mode). A dedicated API to call it from a user-space program should cause large
overheads due to multiple context switches. The simulator’s Rocket cores are modified. On the
proposed simulator, user programs and kernel programs can directly call CFLUSH.D.L1 without
any context switch.

Besides, the instruction only focuses on only L1DS$. It only evicts the specified line from L1D$
to the next level memory system. The instruction cannot guarantee data persistency on hierarchical
CPU caches like an L2 cache. Rocket cores are often used with SiFive L2 inclusive cache. This
chapter modifies the instruction behavior to completely evict the specified cacheline from CPU
caches.

A program can directly call the modified CFLUSH.D.L1 regardless of privilege level. The
specified cacheline is evicted to corresponding memory devices. An inline assembly of CFLUSH.D.L1
is shown below. The target virtual address is specified in reg. CFLUSH.D.L1 evicts the cacheline
that contains data for the reg. If the zero register is specified (reg is 0), all L1D$ lines will be

evicted.

(".insn i 0x73, 0, x0, %0, -0x340 :: "r"(reg));
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3.4 Validation of NVMM Behavior Models

This section confirms the effectiveness of the extended fine-grain behavior model by comparing
it with the existing NVMM behavior models. Besides, this section confirms the DCPMM delay
injection by comparing it with a real DCPMM.

3.4.1 Extended Fine-Grain Behavior Model

As described in Section 3.2.2, the extended fine-grain behavior model should be able to capture the
impact of row-buffer hit ratio (access locality). Algorithm 2 shows the pseudo code of the micro
benchmark. The access stride (STRIDE in Algorithm 2) is set to 4096 or 8192. The NVMM on the
simulator has 8192-Byte row-buffers. When STRIDFE is set to 4096, half of the memory requests
should hit row-buffers, then average latency is reduced by access locality. Additional latency is

injected using three delay injections as follows:
e Coarse-Grain: 1,000ns for both read and write requests
e Fine-Grain: 1,000ns for both tRCD and tRP
e Extended Fine-Grain: 7,000ns for tRAS, in addition to the Fine-Grain

Table 3.3a shows average read latency in nanoseconds measured by using the micro benchmark
(Algorithm 2). “(xN)” is the normalized latency against 8192. Only the extended fine-grain
behavior model can capture the impact of access locality. However, the latency reduction ratio
(0.67) is smaller than the expected ratio (0.50). If STRIDE is half of the row-buffer size, half
of the memory requests hit row-buffers, then average latency should decrease by 50%. It is due
to detailed behaviors of memory requests, a memory controller, and a memory module. Fig. 3.4

”

shows the details. In the figure, a CPU issues three memory read requests. “addr(X)” is a read
request to address X. “data(X)” is a data acknowledgement corresponding with the “addr(X)”. At
first, the row-buffer for address 0-8191 is activated for “addr(0)”. When the memory controller
accepts “addr(4096)”, it hits the row-buffer and “data(4096)” is returned without any memory cell
accesses. The latency is 1,200 ns when viewed from the CPU (from “addr(4096)” to “data”). The
next read request to address 8192 misses the row buffer. Although PRECHARGE and ACTIVATE
are required to activate a new row buffer, tRAS must be satisfied. The analysis on the proposed
simulator reveals that the request for 8192 takes about 6,000 ns (from “addr(8192)” to “data”).
When STRIDE is set to 4,096, two successive memory requests hit or miss row-buffers in turn.
Half of the memory requests takes 1,200ns, the others take 6,000ns due to tRAS. As a result, the
average latency when STRIDE is set to 4096 should be about (1,200 + 6,000)/2 = 3,600 ns. The

result in Table 3.3a follows the expected behavior.
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Table 3.3b shows average write latency in nanoseconds measured by using the micro benchmark
(Algorithm 2). Unlike Table 3.3a, the extended fine-grain shows the same behavior as the original
fine-grain. This behavior is due to CPU caches. The Rocket cores on the proposed simulator have
write-back caches. Even if physically sequential write requests are issued, they will be randomized
on the memory bus by cacheline replacement. Thus, access locality becomes lower than expected.
The additional measurement for row-buffer hit ratio reveals that less than 5% of memory requests
hit row-buffers when STRIDFE is set to 4096. The behavior is allowable for NVMM performance
simulation because such pure and heavy write accesses are not desirable for NVMM.

This section confirms that the extended fine-grain behavior model can capture the impact of
row-buffer hit ratio even on slow soft processor systems. The extended fine-grain behavior model
can explore optimization techniques for DRAM/NVMM heterogeneous memory systems focusing

on access locality, which was impossible on the original extended fine-grain behavior model.

Table 3.3: Average Latency while Changing STRIDE [OK22b]

(a) Read Latency

Average Latency [ns]

STRIDE Coarse-Grain Fine-Grain Extended Fine-Grain
4,096 2,702 (x0.94) 2,708 (x0.94) 4,081 (x0.67)
8,192 2,881 2,872 6,064

(b) Write Latency

Average Latency [ns]

STRIDE Coarse-Grain Fine-Grain Extended Fine-Grain
4,096 4,399 (x0.98) 4,879 (x0.91) 14,457 (x0.91)
8,192 4,479 5,334 15,913
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Figure 3.4: Detailed Timings of the Extended Fine-Grain Behavior Model [OK22b]

3.4.2 DCPMM Behavior Behavior Model

The DCPMM behavior model simulates the DCPMM behavior by relatively injecting additional
latency. This section confirms the DCPMM behavior model on the proposed simulator. Average
latency is measured using the same benchmark as Section 2.4.3 (Algorithm 1). The access stride,
STRIDE, is set from 64 to 1-MiB. Additional latency is configured as follows according to the
actual DCPMM behavior Fig. 2.3. Read latency increases to 1.84x/2.16x when crossing 256-
Byte/4,096-Byte boundaries, respectively. Write latency increases to 1.90x/3.32x when crossing
256-Byte/4,096-Byte boundaries, respectively.

Fig. 3.5a and Fig. 3.5b show the results. Average latency is normalized against latency when
STRIDE is set to 64. The blue lines plotted with circles and the green broken lines plotted with
squares show the normalized average latency of a real DCPMM, and the DCPMM behavior model
on the simulator, respectively. These two lines show almost the same behavior except for writes
above 4-KByte. This difference is allowable as described in Section 2.4.3.

This section confirms that the DCPMM behavior model can simulate the real DCPMM behavior

even on slow soft processor systems.
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3.5 Experimental Evaluation of Extended Fine-Grain
Behavior Model with SPEC CPU 2017 Benchmark

This section confirms the effectiveness of the extended fine-grain behavior model by comparing it
with the coarse-grain and the original fine-grain behavior models using SPEC CPU 2017 benchmarks
[Sta]. The coarse-grain behavior model is used on behalf of the DCPMM behavior model as described
in Section 2.5.1. Fourteen benchmarks are chosen from SPEC CPU 2017 rate benchmark programs.
They can be compiled and executed on the proposed simulator. All memory allocations in the
programs are replaced with the modified jemalloc [Eva06] to allocate heap objects on the NVMM

region. Additional latency is configured as follows:
e Coarse-Grain: 1,000ns for both read and write requests
e Fine-Grain: 1,000ns for both tRCD and tRP
e Extended Fine-Grain: 7,000ns for tRAS, in addition to the Fine-Grain

Fig. 3.6 shows the results. Bar graphs are normalized execution time. The bars filled with
dots (left), diagonal lines (middle), and crossed stripes (right) correspond to the coarse-grain, the
fine-grain, and the extended fine-grain, respectively. They are normalized against the execution
time on system RAM (without any additional latency). The line graph shows the memory access
frequency measured on the memory bus on the proposed simulator. The programs are sorted in
ascending order of normalized execution time of the extended fine-grain behavior model from left
to right. Naturally, with memory access frequency increasing, execution time should be heavily
affected by NVMM latency. Thus, with the crossed-stripe bar (the extended fine-grain behavior
model) increasing from left to right, the line graph should also increase from left to right. Most of
the benchmarks follow this expectation, however, a few of them marked with squares are contrary
to the expectation. Two factors cause this behavior.

First, the programs marked with rounded squares (511.povray_r, 523.xalancbmk_r, and 505.mcf_r)
have high access locality. Access locality is the row-buffer hit ratio, defined as the ratio of the num-
ber of memory requests without ACTIVATE to all memory requests issued from CPUs. While the
average access locality between 14 benchmarks is 0.18, the exceptions have 0.52, 0.50, and 0.48,
respectively. About half of memory requests hit row-buffers. This behavior is shown in only the
extended fine-grain behavior model. The extended fine-grain behavior model can exploit the im-
pact of access locality that is ignored by the existing coarse-grain and fine-grain behavior models.
It proves the discussion in Section 3.4.1.

Second, the programs marked with sharp squares (525.x264_r, 503.bwaves_r, and 508.namd_r)
have quite high read/write ratio. In this case, read/write ratio is defined as the ratio of read requests

on a memory bus to write requests on a memory bus. The exceptions show 13.22, 5.44, and 5.40,
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respectively. The (Extended) Fine-Grain Model has asymmetric read /write performance. The write
latency is longer than read latency as real NVMM cells. Even though the same number of memory
requests are issued to NVMM, read-intensive programs show smaller average latency. Thus, the
extended fine-grain behavior model can exploit the impact of programs’ read/write ratio.

This section confirms that the extended fine-grain behavior model can capture the impacts of
memory access characteristics that are ignored in the existing coarse-grain and fine-grain behavior
models. The factors are access locality and read/write ratio. These factors are important to reduce

the impact of NVMM latency on system performance.
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3.6 Conclusion

This chapter proposed the hardware DRAM/NVMM heterogeneous memory simulator on the Xil-
inx VC707 FPGA. The simulator provides the new NVMM simulation: Extended Fine-Grain. It is
the extension of the existing Fine-Grain to capture the impact of access locality even on soft pro-
cessor systems. Three existing NVMM simulations are also supported: Coarse-Grain, Fine-Grain,
and DCPMM. The proposed simulator provides the whole evaluation platform for DRAM/NVMM
heterogeneous memory systems. Debian runs on RISC-V CPUs. The RISC-V CPUs support cache
flush instructions available regardless of program privilege levels.

The extended fine-grain behavior model was validated against the existing NVMM behavior
models. The validation showed that the extended fine-grain behavior model works as expected.
Then, the experimental evaluation using SPEC CPU 2017 benchmarks revealed three essential
factors in optimization for NVMM: memory access frequency, access locality, and read /write ratio.
The last two factors can alleviate the first factor’s impact; however, frequent memory accesses spoil

them and severely degrade system performance.
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Chapter 4

Secure Edge Computing Simulator
Employing DRAM/NVMM

Heterogeneous Memory Systems *

*This chapter is based on the paper “Open-Source Hardware Memory Protection Engine Integrated With NVMM
Simulator”, IEEE Computer Architecture Letters, vol.21 , no.2, pp.77-80, Aug. 2022.
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4.1 Preface

As described in Section 1.4, edge devices have become important in smart IoT systems. A secure
computing framework must be utilized to protect confidential information (trained AT models) and
privacy information (input data) from software and hardware adversarial attackers. On IoT edge
devices, not only privileged software but also off-chip hardware modules are untrusted because they
may be tampered with by attackers. The expected framework, RISC-V Keystone TEE (Trusted
Execution Environment), has two significant issues with memory systems: auxiliary devices and off-
chip memory protection. These issues can be solved by NVMM-based non-volatile auxiliary devices
as described in Section 1.4, and the MPE (Memory Protection Engine) as described in Section 1.5.
Despite the demand, the combination of TEE, DRAM /NVMM heterogeneous memory systems, and
MPE cannot be explored on existing platforms (Section 1.6).

This chapter proposes a secure edge computing simulator employing the combination. The sim-
ulator is based on the hardware DRAM/NVMM heterogeneous simulator proposed in Chapter 3. It
has Keystone-compatible RISC-V CPUs. This chapter newly implements MPE based on SGX-style
Integrity Tree, then integrated it into the simulator. It is designed to cover large memory regions
with limited hardware resources. The MPE on the simulator is validated by micro benchmarks.
Besides, this chapter discusses the proposed simulator’s role in secure computing research.

This chapter is organized as follows: Section 4.2 discusses the threat model of the simulator. It
represents the scope of predicted attacks and defenses. Section 4.3 introduces SGX-style Integrity
Tree (SIT). Section 4.4 describes the MPE architecture based on SIT. Section 4.5 describes the
whole simulator implementation. Section 4.6 measures MPE overheads on memory latency and
validates the MPE implementation, then discusses the simulator’s role by comparing it with the

existing simulators. Section 4.7 concludes this chapter.
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4.2 Threat Model

In secure computing systems, the threat model must be discussed. It represents the scope of
predicted attacks and defense techniques for them; what attacks are defended by techniques, and
what attacks are out-of-scope. Adversarial attackers are categorized into two groups: software
attackers and hardware attackers [LKS™20].

Software attackers are capable of accessing a system running on the device with user level priv-
ilege at least. They can collect unprotected information about the system: kernel and OS versions,
hardware modules, running processes, installed packages, users, and so on. This information may
be used to crack/invade the whole system. In the worst case, attackers can control the whole system
and modify the system behavior as they prefer, such as injecting loggers into system calls. Hardware
attackers are capable of physically accessing a device. They can steal the device, connect arbitrary
peripheral devices, replace existing modules, and tap signals on off-chip buses. In comparison to
software attackers, hardware attackers can do almost anything. They can analyze the whole sys-
tem quite easier than software attackers. All data on memory devices may be tampered with, not
only off-chip DRAM but also on-chip flash devices. Even if memory devices are tamper-resistant,
attackers can steal data on devices. Hardware attackers can also obtain memory information by
tapping memory buses without any modification on system behaviors.

This dissertation focuses on edge devices. The devices are exposed to software attackers like
traditional servers due to their internet connections. The devices are also severely exposed to
hardware attackers. They are located near endpoints to gather data and/or near users to increase
user experiences. Adversarial attackers can access the devices quite easier than servers securely
located in data centers. Additional security modules are less effective because attackers can also
touch them. Portable edge devices may be stolen. Therefore, to realize secure computing on edge
devices, both software and hardware attackers must be considered.

Keystone TEE and MPE have different roles in secure computing. Keystone TEE mainly pre-
vents software attacks by CPU-enforced memory isolation. Its strict memory isolation is always
applied to all programs regardless of their privileged levels, except for system firmware. The iso-
lated memory region (Enclave) is protected from adversarial programs during Keystone running. In
contrast, MPE mainly prevents hardware attacks by memory encryption and tamper detection. All
cachelines are encrypted by using securely stored keys and unique nonces before they leave secure
on-chip modules. All cachelines are verified using integrity trees before they are loaded into on-chip
modules. The complementary combination of TEE and MPE can prevent various attacks. The
trusted computing base (T'CB) of the combination should be also discussed. TCB is the “trusted”
hardware/software modules. Hardware TCB contains only on-chip modules. On-chip modules al-
ways work as expected. Attackers cannot tamper with the modules [LKS™20]. All off-chip modules

are untrusted. Software TCB contains the Keystone framework including the system firmware, TEE
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runtime, and the program binary itself. They are tamper-resistant. In other words, even if they are
tampered with, Keystone can detect the tampering by the attestation flow. All other modules are
untrusted such as an OS, a kernel, other user processes, and other enclaves. The threat model in
this dissertation is the extension of these TCBs with MPE.

From the hardware view, all on-chip modules are trusted. All securely stored data are allowed
for specific on-chip modules. Malicious attackers cannot steal and/or tampered with description/en-
cryption keys, hash keys, and integrity tree roots even if they have the same privilege as system
softwares (OS, kernel). Off-chip memory is partially trusted. In other words, only the region cov-
ered by MPE is trusted because the region is protected by encryption and tamper detection. All
other off-chip modules are untrusted. All data passed to them may be stolen and/or tampered with.
When TEE uses them, data must be always encrypted and/or verified.

From the software view, only the Keystone TEE framework is trusted. The system firmware,
TEE runtime, and the initialized enclave are trusted only after attestation. From the trusted on-
chip root of trust, they are hierarchically proven to be trusted. All other software modules are
untrusted. An adversarial attacker can pollute the whole system, launch adversarial enclaves, and
modify data on unprotected memory regions.

Other typical attacks are assumed as follows. Cache and timing side-channel attacks are out
of scope as the same as existing TEEs [LKS"20, CD16]. Controlled channel attack is difficult
since Keystone TEE does not share any state with a host by a complete context switch [LKS™20].

Denial-of-Service by OS and memory tampering is out of scope as same as [LKS™20].
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4.3 Overview of SGX-style Integrity Tree

The proposed MPE is based on SGX-style Integrity Tree. SGX-style Integrity Tree (SIT) is a kind
of hashed octree (8-ary tree) [Guel6]. Fig. 4.1 shows the overview of a 4-level SIT. Each SIT node
has one MAC (Message Authentication Code) and eight counters except for PD_Tag nodes. Each
counter dominates one subtree and represents the number of updates on the subtree. The MAC
is computed over its own eight counters and the corresponding counter in the parent node. The
protected memory region is split into “CL”s by cacheline size. PD_Tag nodes store MACs of CLs.
Thus, N-level SIT having R roots can cover R x 8 CLs.

Each CL is protected by encryption and verification using two tweaks and on-chip keys. Two
tweaks are used to prevent replay attacks: node/CL physical address and counters in SIT nodes.
The physical address is a spatial unique tweak. Even if the same data is written into multiple lines,
the hashed/encrypted results differ from each other. The counter is a temporal unique tweak. It is
incremented whenever the CL is updated. Even if the same data is written into the same CL, the
hashed/encrypted results differ every time. Therefore, replay attacks using a pair of known plain
and cipher/hash is difficult for SIT.

The encryption scheme is AES-128 counter mode encryption [Nat01] using on-chip key Kp and
tweaks. The verification scheme is hash comparison using MACs stored on SIT nodes computed by
CWMAC [WC81] with on-chip two keys: Kp K7, and tweaks. The keys Kg, Kp, and K)s are
securely stored on trusted on-chip memory. They are configured by user defined values or randomly
generated at the system boot.

When a memory controller accepts a memory read request to the protected region, the request
is passed to MPE. MPE traverses SIT and fetches all corresponding nodes with the target CL.
Then, MPE computes MACs for all fetched nodes using counters on them. If a SIT node is not
tampered with, the computed MAC matches the stored MAC on the fetched node. If any pair of
the MACs does not match, the read request is rejected and an error is thrown. Otherwise, SIT
decrypts the fetched CL and returns it. When a memory controller accepts a write memory request
to the protected region, the request is passed to MPE. First, MPE verifies the current CL as the
same as read requests to prevent writing data to the region controlled by attackers. Any tampering
on the protected region indicates that an attacker can control data on the region. If the verification
succeeds, MPE encrypts the given data, increments SIT node counters, and re-computes MACs.
Then, they will be written back to memory.

SIT-based memory protection requires securely stored tweaks. In other words, SIT nodes must
be tamper-resistant. If an attacker can tamper with tweaks easily, all nodes also can be modified
easily keeping the tree integrity. It is not realistic to store all SIT nodes on trusted on-chip memory.
One 4-level SIT can protect a 256-KiB region using 68.5-KiB SIT nodes (64-Byte aligned 1096
nodes). As a result, 274-KiB on-chip memory is required per 1-MiB protected region. SIT utilizes
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dependency between nodes described above to reduce on-chip area overhead. Only roots are stored
on trusted on-chip memory, and other nodes are stored on untrusted off-chip memory. Even if
ALL SIT nodes on off-chip memory are tampered with, SIT verification works as expected unless
roots are stolen and/or tampered with. On-chip memory size can be reduced to 28-Byte per 1-MiB

protected region.

L3 (root) ! parent counter } : : l root

: e Counters | ; Trusted (On-Chip)

L, e 1 Untrusted (Off-Chip) ||
L2 | CWMAC l—H MAC | verO | ver1l | ver2 | ver3 | ver4 | vers | veré | ver7 ]

PD_Tag [ | Tag0 | Tag? | Tag2 | Tag3 | Tag4 | Tag5 | Tagé | Tag7 |] &b

Explanatory Notes

----- "A" dominates "B"

Figure 4.1: Overview of the SGX-style Integrity Tree
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4.4 Overview of Memory Protection Engine

The proposed MPE uses 4-level SIT with 384 roots. Thus, the MPE can protect a 96-MiB memory
region with a 32-MiB metadata region. Its configuration is the same as Intel SGX1. Fig. 4.2
depicts the MPE architecture. In Fig. 4.2, “trusted” modules are on-chip modules. A malicious
attacker cannot observe their behaviors and steal and/or tampered with “trusted” data. The MPE

is implemented as a module between the LLC and the MIG. It mainly consists of three modules:
Frontend, Tree, and Backend.
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4.4.1 Frontend

The Frontend module is an arbiter for memory requests between the LLC and the Tree/Backend
modules. It accepts a memory request from the LLC, then decides the appropriate destination
module depending on the request address. If the address is a part of the protected region, the
request is passed to Tree modules (Section 4.4.2). Otherwise, it is passed to the Backend module
(Section 4.4.3). When the Tree/Backend modules become ready to return some acknowledgments,
the Frontend module picks and returns it to the LLC. The Frontend module allows out-of-order
memory request processing to reduce memory and SIT latency. It does not affect the behavior of
the LLC and CPUs because randomly ordered return values are correctly re-ordered by them.
The Frontend module is also responsible for managing tree roots (“Tree Roots” in Fig. 4.2). In
ideal, each root is statically assigned to one Tree module. However, 384 Tree modules for 384 roots
require infeasible on-chip hardware resources. The proposed MPE dynamically assigns a tree root
along with a memory request. Section 4.4.4 describes the detailed implementation. Tree roots are
stored on trusted on-chip non-volatile registers and never leave on-chip registers. Thus, SIT can

verify the protected NVMM region across power failure.

4.4.2 Tree

The Tree module processes a given memory request using 4-level SIT. When a pair of (memory
request, root) is assigned from the Frontend module, at first, the Tree module traverses SIT to
verify the target CL (Section 4.3). For a read request, the MPE returns a decrypted CL. For a
write request, the MPE encrypts the given CL, and updates SIT nodes. If any MAC mismatch is
found during the verification, the request is rejected and the MPE returns an error to the LLC (Sec-
tion 4.4.5). Write requests with verification errors do not update the protected and SIT metadata
region (Section 4.3).

The Tree module has three submodules: AES, CWMAC, and MEM. AES encrypts and decrypts
CLs using AES128. CWMAC computes SIT node MACs using Carter-Wegman MAC [WC81]. They
access the protected or SIT region via the MEM module. These three modules cooperatively work
to minimize SIT overhead as much as possible. Fig. 4.3 is a gantt chart on a verilog simulation.
One cell in the graph corresponds to one clock cycle. “Comp” represents the computed and the
fetched MAC comparison. “Inc¢” represents a counter increment. All corresponding counters are
incremented at a time in one cycle. “®” represents AES XOR operations. The AES one-time pad
(OTP) is speculatively computed over fetched “Meta node”. For a read request, OTP uses the
current (fetched) counter. For a write request, OTP uses the incremented counter. @ in Decryption
decrypts the fetched CL using the OTP, and @ in Encryption encrypts the given CL using the
OTP. All speculative data are discarded if a verification error occurs. According to Fig. 4.3, the

verification finishes in 109 cycles, and update finishes in 73 cycles. A response to a read memory
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request will be returned after @ in the verification pipeline. On the other hand, a response to write
memory request will be returned after & in the update pipeline. Thus, SIT takes 109 cycles per
read requests, and 182 cycles per write requests. Memory requests without SIT can be returned in
18 read cycles (“Load CL”) or 12 write cycles (“Store CL”). As a result, SIT overhead on a read

request is 91 cycles, and that on a write request is 170 cycles
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4.4.3 Backend

The Backend module is an N-to-1 arbiter for memory requests between the Frontend/Tree modules
and the MIG. The arbitration scheme is a round-robin FCFS (First-Come First-Served). One
memory request can be issued to the MIG at a time. The Backend module does not support
asynchronous or out-of-order execution to guarantee expected behaviors. Therefore, when multiple

modules issue memory requests in parallel, they are pending and processed in-turn.

4.4.4 Efficient Large Memory Protection

As described in Section 4.4.1, static tree root assignment incurs infeasible hardware resources.
The Frontend module manages tree roots (“Tree Roots” in Fig. 4.2) and dynamically assigns a
corresponding root to a Tree module.

When the MPE accepts a memory request to the protected region, the Frontend module looks up
a corresponding root, then tries to acquire a lock on the root. If it fails, the module stalls until the
lock is released. Then, the Frontend module tries to assign the pair of (memory request, root) to an
idle Tree module. If there is no idle Tree module, the Frontend module stalls until at least one Tree
module is idle. When Tree modules become ready to return some acknowledgments, the Frontend
module returns it to the LLC and releases the lock on the assigned root. The lock is used to prevent
tree inconsistency due to simultaneous updates on tree nodes. This lock does not decrease Tree
parallelism that can be exploited in static assignment. If successive requests are covered by different
roots, they can be assigned to different Tree modules in parallel. More specifically, if a request is
256 KiB distant from the previous one, these two requests can be parallelized in the MPE.

Without the above tree root management, each root corresponds to one Tree module one-by-
one (Cy — Treey, -+, Crp — Treer). In that case, 384 roots require 384 Tree modules which
require infeasible hardware resources. The proposed MPE can cover 384 roots by only eight Tree
modules by the dynamic tree root assignment. One Tree module consumes 11,717 LUTs on average
(Table 4.2). On static assignment, 384 Tree modules consume 4,499,328 LUTs (1,482% of available
LUTSs on the VC707 board). In contrast, the MPE only consumes 93,734 LUTS to cover 384 roots
(98% of resources are saved). The Tree modules can be instantiated as much as hardware resources
allow. The MPE design itself does not restrict the number of Tree modules. To maximize the MPE
performance, tree modules should be instantiated as much as possible. More Tree parallelism can
be exploited by more Tree modules. Insufficient Tree modules cause stalls from module thrashing

and affect system performance seriously.

4.4.5 Integrity Error Notification

The SIT verification error must be immediately notified to prevent more malicious attacks. The
original SIT uses the drop-and-lock policy [Guel6]. When the SIT finds a tampered node, the
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whole memory system is completely locked. System reboot and key regeneration are required to
unlock the memory system. This strict fail-secure behavior is quite fragile for memory bit errors.
The memory system is locked even if ONLY ONE bit error is found in the protected region. A
rowhammer-based attack can flip a bit of the region without bypassing hardware-enforced memory
isolation. An adversarial attacker can halt the system by only launching a TEE process at user
privilege level. When the attacker crashes the allocated TEE memory region, the whole system is
locked. SGX-Bomb [JLLK17] demonstrates that a normal user can halt an SGX-enabled system
through an ssh connection.

The proposed MPE uses an interrupt for notification instead of the drop-and-lock policy. A
verification result bit (corrupt bit) is always returned to the LLC along with acknowledgments.
The LLC raises an interrupt when the bit is high. The interrupt is passed to the system firmware
(machine-mode SM), then delegated to other components following RISC-V and Keystone frame-
works. Users can handle the error as they prefer by catching the interrupt. For example, a device
sends an error report, or halts immediately. The MPE provides a way for flexible and efficient

device management.

7



4.5 Simulator Implementation

The proposed simulator is based on the hardware DRAM/NVMM heterogeneous simulator (Chap-
ter 3). Rocket cores on the simulator are compatible with Keystone TEE. Table 4.1 shows the
proposed simulator specification. Its NVMM performance simulation is implemented the same as
Chapter 3. All Coarse-Grain, Fine-Grain, Extended Fine-Grain, and DCPMM behavior models are
implemented.

The MPE is integrated into the simulator to work transparently at the memory bus as depicted
in Fig. 4.2. It is 4-level, 384 roots SIT, the same as SGX1. The MPE has one Frontend module,
eight Tree modules, and one Backend module (Fig. 4.2). Resource utilization overview is listed in
Table 4.2. The simulator has 4-GiB DRAM in total. 1 GiB is used as system RAM managed by the
OS, the remaining region can be treated as the NVMM region. 128 MiB of the NVMM region is
reserved by MPE (data 96 MiB + metadata 32 MiB). The NVMM region is excluded from system
RAM to prevent unintentional allocation by the OS as the same as Section 2.3.4. The Linux kernel
is not modified for the region cacheability because memory cacheability on RISC-V is determined
by hardware implementation, not by the Linux OS. NVMM performance simulation can be applied
to the whole NVMM region. Target regions and additional latency can be dynamically configured
via MMIO registers.

The MPE was carefully implemented and tested. The AES module was tested using test vectors.
While other modules including CWMAC and Tree itself were not verified due to the lack of reference
testcases, they are tested by verilog simulation and benchmarks on Linux on the FPGA. The

encryption, hash computation, and tree traversal work as expected.

Table 4.1: The Proposed Hardware Simulator Specification [OK22a]

FPGA

Device

CPU Core
RISC-V ISA

L1 Cache

L2 Cache

DRAM

SoC Frequency
Memory System Frequency
Linux Kernel
Operating System

Xilinx Virtex-7 FPGA VC707
Virtex-7 XC7VX485T-2FFG1761
Rocket-Core x4

RV64GC (Unpriv 2.1 / Priv 2.1)
I=16 KiB/core, D=32 KiB/core
16-way 512 KiB/SoC

4 GiB, DDR3-1600, SO-DIMM
50 MHz

200 MHz

Linux 5.7.0-dirty / Debian bullseye
Debian GNU/Linux bullseye/sid

MPE Modules
Integrity Tree
Protected Memory Size

Frontend x 1, Tree x 8, Backend x 1
SGX-style Integrity Tree
128-MiB (96-MiB data + 32-MiB SIT nodes)
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Table 4.2: FPGA Resource Utilization [OK22a]

LUT BRAM

Whole SoC 257,265 762
Rocket Tile x4 106,244 168
MPE 99,327 37
Frontend 2,008 1
Tree x8 93,734 36
Backend 3,585 0

Total Available (Used %)

303,600 (84.7%)

1,030 (74.0%)
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4.6 Experimental Evaluation

This section measures MPE overheads on memory latency, and validates the MPE implementation
by comparing the behavior on an FPGA with that on the verilog simulator (Section 4.4.2). In
addition, this section discusses the proposed simulator’s role in comparison to the existing cycle-

accurate simulator.

4.6.1 MPE Overhead on Memory Latency

Table 4.3 shows the results. Algorithm 2 shows the pseudo code of the micro benchmark. The
“DRAM” rows show the results on DRAM (no additional latency). The “NVMM” rows show the
results on the simulated DCPMM. DCPMM delay injection is configured the same as Section 3.4.2.
“w/o MPE” shows memory latency on the unprotected region. “w/ MPE” shows memory latency
on the protected region by the MPE. “w/ MPE” is normalized against the corresponding “w/o
MPE”. For instance, “DRAM w/ MPE Read” is normalized against “DRAM w/o MPE Read”
(168/66 = 2.55). The results are measured under the following conditions.

e All cachelines are invalidated in advance.
e All results are the average of ten times.

e Access strides are 64-Bytes (cacheline size). All memory requests miss CPU caches and use

different SIT nodes.

The “DRAM” rows indicate that the MPE increases DRAM read latency 2.55x, and DRAM
write latency 4.16x, respectively. The MPE overheads are 102 read cycles, and 253 write cycles.
Section 4.4.2 shows that the Tree module itself causes 91/170 cycles for read /write requests, respec-
tively. The results on Table 4.3 were measured on the CPU with caches, thus, “Read” requires one
Tree’s read, and “Write” requires both Tree’s read and write. Tree’s overhead should be 91 cycles
for “Read”, and 261 cycles for “Write”. While there are slight differences between the result and
the expectation (+11 read cycles, -8 write cycles), they are acceptable. The overhead described in
Section 4.4.2 includes only Tree module overheads. From a CPU view, memory latency includes
other modules’ overheads: the MPE (Frontend, Tree, Backend), the memory bus, and CPU caches.
CPU memory requests are passed to the next modules after a handshake between modules. Some
overheads are introduced to CPU’s read requests due to these handshakes. They also cause over-
heads on write requests, however, CPU caches often alleviate them. The errors caused by these
factors are acceptable. The result and discussion above indicate that the MPE on the simulator
works as expected.

The “NVMM” rows indicate that the MPE increases NVMM read latency 3.05x, and NVMM
write latency 5.40x, respectively. Focusing on the gantt chart (Fig. 4.3), the MPE throughput is
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dominated by memory accesses. The gantt chart was measured on DRAM (no additional latency).
NVMM longer latency should cause more stall cycles on the AES and the CWMAC modules. To

reduce stall cycles, some proposed techniques are required, such as node caches.

Table 4.3: MPE’s Performance Impact on Memory Latency [OK22a]

Memory Latency Normalized Performance

[cpu cycles]

w/o MPE \l;eid gg )

DRAM e -
Read 168 2.55%

w/ MPE (e 333 4.16x

w/o MPE \?Veid gg i

NVMM e -
Read 244 3.05%

w/ MPE e 529 5.40 %

4.6.2 Evaluation Time Comparison to Cycle Accurate Simulator

Software simulators, gemb [BBB " 11], for secure computing have been proposed [HLC 21, AAPLP21].
They are useful for detailed architecture research, however, the papers also show that simulators
take a long evaluation time. This section discusses the proposed simulator’s role in secure computing
research on edge devices focused on evaluation time.

In general, the proposed simulator can evaluate a program using TEE tens to hundreds of times
faster than gem5. The average execution time in ten times of the simple Keystone ocall example !
on the proposed simulator is 29 seconds, while that on the full-system gemb is 1,750 seconds. The
gemb 21.1 was configured to simulate the proposed simulator (Table 4.1). Specifically, it has one
in-order (minor) CPU, 16K L1I$, 32K L1D$, 512K L2$, and non-protected 1-GiB DRAM. Even
the simple benchmark causes a 60x performance gap. It increases on large, complex, and detailed
TEE applications, and/or hardware modules. For example, the gem5 used in the measurement has
only 1 core. Exploring multi-threaded TEE should require quite a long time.

The above discussion uses the result on the unprotected DRAM region. The NVMM region and
the MPE incur more overheads. TEE on the protected NVMM cannot be evaluated on the existing
Keystone because its memory space must be built on system RAM. The below discussion estimates
the impact of the protected NVMM. An example is a context switch between TEE and a host OS. It
is one of the inevitable NVMM intensive tasks when using TEE on the protected NVMM. Keystone
evicts the whole private caches including L1D$ on every context switch, not only voluntary switches

but also implicit switches (timer interrupts etc.). If a TEE uses the protected NVMM, most of the

https://github.com /keystone-enclave /keystone-sdk/tree/master /examples/hello-native
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dirty cachelines are fetched from the region and evicted to the region. The above ocall example on
the proposed simulator takes 7,910 cycles on average for context switches with 225 dirty L1DS$ lines
(43.9% L1D$). Cache eviction to the protected NVMM takes 285 cycles per cachelines according
to Table 4.3. On the table, “Read” contains one cacheline load, and “Write” contains one cacheline
load and eviction. Thus, pure cacheline eviction should take 285 cycles on the protected NVMM. As
a result, if 90% of dirty lines are written back to the protected NVMM, the context switch with the
protected NVMM is estimated to take 7,910+ 285 x (225 x 0.9) = 65,623 cycles. This is 8.3x larger
than that without cache eviction. The protected NVMM latency also affects other memory accesses
in the whole program execution. Software simulators may be affected by the protected NVMM,
then hundreds to thousands of times slower than the proposed hardware simulator. Therefore, the
proposed simulator has an important role in exploring the combination of TEE, MPE, and NVMM.

The above discussions clarify the importance of the proposed simulator in system-wide explo-
ration for secure computing on edge devices. However, software simulators also have important
roles. The proposed simulator can evaluate system-wide applications in a realistic time. On the
other hand, cycle-level software simulators are suitable for microarchitecture level optimizations
with strictly reproducible behavior and detailed statistics. As the evolution from SGX1 to SGX2,
micro architecture also should be optimized. The proposed simulator and the software simulators

complement each other.
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4.7 Conclusion

This chapter proposed the secure computing simulator on a Xilinx VC707 FPGA. The simulator
solved two significant issues of Keystone TEE: auxiliary devices and off-chip memory protection,
by integrating NVMM simulation and Memory Protection Engine (MPE) into a RISC-V SoC. The
MPE is based on SGX-style Integrity Tree. The simulator provides a way to explore the combination
of RISC-V Keystone TEE, DRAM/NVMM heterogeneous memory systems, and MPE.

The MPE was validated using verilog simulation and micro benchmarks. Experimental eval-
uation using the micro benchmark showed that the MPE increases DRAM read/write latency by
2.55%/4.16%, and simulated DCPMM read/write latency by 3.05x/5.40%, respectively. These
overheads should prolong the existing software simulators. The proposed simulator can run secure

programs with these overheads in a realistic time.
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Chapter 5

Conclusion

84



5.1 Summary of Works

This dissertation proposed hardware simulators for DRAM /NVMM heterogeneous memory systems,
and secure computing employing the memory systems. The simulators provide ways to explore
system-wide optimization techniques for them, which were challenging on existing works.

This dissertation is summarized as follows:

ARM-based Hardware DRAM/NVMM Heterogeneous Memory Simulator (Chap-
ter 2). Heterogeneous memory systems consisting of DRAM and NVMM are expected as efficient
memory systems on [oT edge devices. To fully exploit the memory system advantages, the whole
system must be optimized including hardware modules, system software, and user software. Exist-
ing works cannot satisfy the demand due to the tradeoffs between evaluation speed, and accuracy
of evaluation stats. In addition, existing works do not provide DCPMM simulations. The proposed
simulator provides the evaluation platform for DRAM/NVMM heterogeneous memory systems on
the ARM-based hard SoC. Three NVMM architectures can be simulated: Coarse-Grain, Fine-Grain,
and DCPMM. The Coarse-Grain and Fine-Grain can simulate NVMM behaviors with DRAM-like
internal architecture. The DCPMM behavior can simulate the actual DCPMM behavior. These val-
idated NVMM simulations can be flexibly configured to represent various NVMM cell latency. The
simulator provides a fast and reliable way to explore system-wide optimization techniques focusing

on program characteristics: memory access frequency, access locality, and bank parallelism.

RISC-V-based Hardware DRAM/NVMM Heterogeneous Memory Simulator (Chap-
ter 3). DRAM/NVMM heterogeneous memory systems are expected to be used with soft pro-
cessor systems in the future. The existing NVMM simulations are not suitable for soft processor
systems because they presuppose that a CPU runs sufficiently faster than its memory system. Soft
processors are sometimes slower than memory systems. New NVMM simulation techniques are re-
quired for soft processor systems. Thus, the proposed simulator provides the evaluation platform for
DRAM/NVMM heterogeneous memory systems on the RISC-V-based soft SoC. The new Extended
Fine-Grain NVMM simulation technique is introduced. It can capture program characteristics that
are ignored in existing NVMM simulations, even on soft processor systems. The simulator pro-
vides a fast and reliable way to explore system-wide optimization techniques focusing on program

characteristics: memory access frequency, access locality, and read/write ratio.

Secure Computing Simulator Employing DRAM/NVMM Heterogeneous Memory
Systems (Chapter 4). With growing smart IoT systems, security on edge devices has been
increasingly important to protect confidential information (trained AI models) and privacy infor-
mation (input data). The devices are always exposed to not only software attackers but also

hardware attackers. RISC-V Keystone TEE is the expected secure computing framework on IoT
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edge devices. However, Keystone has two significant issues of memory systems: auxiliary devices
and off-chip memory protection. They can be solved by NVMM-based devices and MPE (Mem-
ory Protection Engine). Despite the demand, there are no existing evaluation platforms that fully
support the combination of TEE, DRAM/NVMM heterogeneous memory systems, and MPE. The
proposed simulator provides the evaluation platform for the combination. The simulator has all
of RISC-V Keystone TEE, DRAM/NVMM heterogeneous memory systems, and SGX-style In-
tegrity Tree based MPE. The MPE can efficiently protect a large memory region with limited
hardware resources. Experimental evaluation using the micro benchmark showed that the MPE
increases DRAM read/write latency to 2.55x/4.16x, and simulated DCPMM read/write latency
to 3.05x/5.40x, respectively. The simulator provides a fast and reliable way to explore system-
wide optimization techniques for the combination of TEE, DRAM/NVMM heterogeneous memory
systems, and MPE.
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5.2 Future Works

Some works can be explored using the proposed evaluation platforms:

Exploration of Real Program Optimization for DRAM/NVMM Heterogeneous Mem-
ory Systems. Chapter 2 and Chapter 3 proposed the evaluation platforms for DRAM/NVMM
heterogeneous memory systems on edge devices. The platforms realized well-validated NVMM sim-
ulations even when lacking real NVMM modules. This dissertation revealed the essential factors for
DRAM/NVMM heterogeneous memory systems using SPEC CPU 2017 benchmarks. System-wide
optimization for the heterogeneous memory systems can be explored on the platforms. The Linux
DAX driver, file systems, and user programs are examples. Their NVMM-friendly data structures
can be explored on the proposed platforms focusing on memory access frequency, access locality,

bank parallelism, and read/write ratio.

Fully Verifiable Secure Computing Platforms. This dissertation proposed the fully open-
source MPE using SGX-style Integrity Tree. All modules on TEEs should be formally verified. They
are expected to be bug-free and work as “expected” for any case [LKS'20]. Its behavior cannot
be confirmed on closed implementations. The proposed MPE with Keystone TEE can realize fully-
verifiable and trustable secure computing platforms. Users can verify whole components on trusted

computing as they prefer.

Advanced Tree Module Design. Chapter 4 proposed the basic hardware MPE design using
SGX-style Integrity Tree. The MPE increases DRAM read/write latency to 2.55x /4.16x, and sim-
ulated DCPMM read /write latency to 3.05x/5.40x, respectively. These overheads are applied to all
memory requests to the protected region. Various techniques have been proposed to improve MPE
throughput such as tree node caches. Node caches can improve MPE throughput at the sacrifice
of on-chip hardware resources, design complexity, and timing constraints. Besides, node caches for
covered NVMM regions must be also crash-consistent and recoverable across power failures. Such
node caches require more complex designs, performance overheads, and on/off-chip memory spaces.
These tradeoffs must be considered in more advanced MPE designs: Osiris [YHA18], Anubis [ZA19],
PSIT [LWF"20], CacheTree [CZX21], STAR [HH21], Triad-NVM [AYS"19], Morphable Counters
[SNR*18], and Phoenix [AZMA22]. The proposed MPE and evaluation platforms can be the basic

hardware design for the exploration.

Keystone on the DRAM/NVMM Heterogeneous Memory Systems. As described in
Section 4.6.2; the current Keystone does not support heterogeneous memory systems. Its memory
space must be physically sequential, and built on system RAM. The whole Keystone framework
must be extended to support DRAM/NVMM heterogeneous memory systems. It consists of security
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monitors (firmware), eyrie runtimes, kernel drivers, and user programs. Their extensions must be
optimized for heterogeneous memory systems through evaluations. The proposed secure computing

simulator provides a way for its exploration.
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