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Abstract

Many fatal accidents are the result of a driver’s inattention or fatigue. Several studies

have been undertaken on driver gaze zone and drowsiness classifiers to solve this issue.

However, making this classification under unconstrained situations remains extremely

challenging. Examples include the driver’s face partially covered (e.g., masks, scarves,

eyeglass sticks), the driver’s face being in a profile pose, the environment having con-

siderable changes in light conditions, and the driver’s eyeglasses having reflections.

By merging computer vision techniques and several deep-learning models, the pro-

posed system intends to distinguish the driver’s gaze zone and drowsiness under highly

unconstrained conditions.

This study proposes a robust pipeline for analyzing drivers’ behavior. The first

step in the pipeline is to adjust the frame’s brightness using a technique called Con-

trast Limited Adaptive Histogram Equalization (CLAHE) on the frames’ Lab Color

Space lightness channel to mitigate the effects of strong lighting changes. Next, the

pipeline uses dense landmark detection, optical flow estimation, and constructs pose

flows by associating cross-frames poses to accurately identify the face, eyes, pupils,

and shoulder joints. These methods also allow the tracking of pupil and eyelid move-

ment even in situations where the face is partially occluded or in a profile pose. The

pipeline proposes two modules: Module 1 focuses on driver gaze detection, while

Module 2 focuses on driver drowsiness detection.

In Module 1, the driver’s gaze direction is detected by considering two different face

postures for the gaze classifier: frontal and profile. A separate DNN model is trained

for each face pose, and the feature vector parameters for these models are based on
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the relationships between pupil and eye landmarks in proportion to the driver’s facial

structure. This takes into account the fact that everyone’s facial structure is different.

The model will then retrieve a predefined standard driver’s gaze area based on the

direction of the eyes.

In Module 2, a GRU model is used with a novel input feature vector that considers

the driver’s eyelid closure, lower-face contour, and chest movement landmarks to

detect drowsiness. Unlike previous studies, mouth closure is not included in the

feature vector due to the possibility of the mouth being covered by a mask. One of the

key contributions of this approach is the inclusion of chest movement and lower face

contour as possible parameters of the feature vector, which helps to address the issue

of mask-wearing. Drowsiness is detected by looking for yawning and eyelid closure.

To recognize a yawning state, the lower facial contour and chest movement landmarks

are used, and the current location of these landmarks is subtracted from their original

position obtained in the first frame. Eyelid closure is measured by tracking the closure

of the eyes in each frame. The driver’s drowsiness is then determined by combining

these parameters and using them as the feature vector of a GRU-based model.

The proposed method has been shown to be more effective than existing methods

at detecting the driver’s gaze direction and drowsiness in challenging situations, as

demonstrated by the results obtained from a dataset featuring highly challenging

driving conditions. These results suggest that the method is able to accurately identify

the driver’s gaze zone and drowsiness in a variety of challenging circumstances.
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Chapter 1

Introduction

1.1 Motivation

There is strong evidence that driver inattention and drowsiness are major causes of

fatal and injury crashes. Advanced Driving Assistance Systems (ADAS) that can de-

tect these states in advance have the potential to improve safety by warning drivers

and even taking control of the situation in autonomous vehicles. Tracking the driver’s

head and eyes can provide an accurate assessment of their state. However, current

studies on this topic have mostly been conducted under ideal conditions and often use

expensive sensors or complex systems, leading to poor performance in unrestricted

conditions. This research aims to develop a high-performance driver gaze and drowsi-

ness classifier that can handle challenging situations such as mask-wearing faces, face

occlusions, eyeglasses reflections, strong light changes, profile face poses, and faces

and eyes facing different directions. By accurately identifying distractions with fewer

mistakes, this system has the potential to significantly reduce the number of automo-

bile accidents.

1.2 Contributions

This work aims to develop a single-camera, robust classifier for driver gaze zone and

drowsiness that can handle various challenging situations effectively.

These challenging situations may involve one or more of the following scenarios:
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Figure 1.1: Left: Driver with profile face, eyes facing the window, wearing white mask
in a daylight condition (top) and driver with frontal face with eyeglasses reflection,
pupil noise, wearing a black mask in a poor-light night environment (bottom). Right:
Driver with frontal face, eyes facing right window direction, wearing white mask in a
daylight condition (top) and driver with frontal face, eyes facing towards back-mirror,
wearing white mask, eyeglasses reflection, pupil noise, wearing a white mask in a night
environment (bottom).

• Mask-wearing faces

• Face partial occlusions

• Eyeglasses reflection

• Strong daylight variations

• Pupil noise

Some of the edge conditions considered in this study are shown in Figure 1.1.

By using a single camera, the system can be more cost-effective and easier to

implement. The goal is to create a classifier that can accurately detect driver gaze

2



zone and drowsiness in a wide range of challenging conditions, improving safety and

reducing the risk of accidents.

To achieve this goal, two modules have been implemented: Module 1, which recog-

nizes the driver’s gaze direction, and Module 2, which recognizes the driver’s drowsi-

ness. By addressing these two aspects of driver attention and alertness, the system

has the potential to improve safety and reduce the risk of accidents.

To reach a robust and portable system, the key seven steps that this study involves

are as follows:

1. Frames’ Lab’s color space manipulation: To address the strong light variation

issue, equalize the brightness of the frames by manipulating its Lab’s color

space’s luminance channel using a Contrast Constrained Adaptive Histogram

Equalization is one of the keys of this study.

2. Robust recognition of face, eyes, and body-joints landmarks: Combining an

anchor-based real-time face detector with a normalized dense alignment for

landmark identification that incorporates 3D eyelid and facial expression move-

ment tracking for face and eye landmarks detection makes the data less noisy.

In addition, an online optimization framework for the shoulder joints recogni-

tion is used. It builds an association of cross-frame poses and form pose flows

robust to unconstrained situations body pose. This gives robustness to strong

light condition variations and various facial occlusions such as masks, scarves,

eyeglasses reflections, eyeglass sticks, small eyes, partial occluded pupils, and

profile face poses.

3. DNN models structure and introduction of novel feature vectors parameters:

Module 1 of the framework consists of two main DNN models: the Face Frontal

model and the Face Profile model. The feature vector parameters used by

the models include information about the relative positions of different facial

landmarks, such as the pupils and eyes, in relation to the overall geometry
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of the face. Since the geometric facial structure varies from person to person,

these feature vectors allow the models to adapt to individual differences in facial

structure. Using just these relations helps to make the training dataset much

smaller, as the pattern is clear and specific. Each model classifies different

standard areas of the face that are known to be essential for drivers to check. It

also considers when the driver’s face and eyes are facing in different directions.

This classification is done on a per-frame basis.

4. GRU model structure, introduction of lower face contour and chest movement

landmarks: Module 2 of the framework involves using a Gated Recurrent Units

(GRU) model to classify driver drowsiness. In this module, the feature vector

parameters consider the landmark information about the eyes, lower face con-

tour, and chest movement. Unlike some previous studies, this model does not

include mouth closure as a feature vector parameter, as masks may cover this

area. Including chest movement and lower face contour as possible parameters

is a key contribution to address the issue of mask-wearing in the drowsiness

classifier. This classification is based on video, rather than individual frames.

Using the eyes landmarks, the system measures the closure of the eyes. To

measure the yawing state, was use the movement of the lower face contour and

chest. For these landmarks, the current position of each landmark is compared

to its original position in the first frame. Finally, the driver’s drowsiness is deter-

mined by combining spatiotemporal features based on the previously mentioned

subtractions, which are used as the feature vector for the GRU model.

5. High Normalization: The feature vectors are highly normalized, making the

patterns easy to discern. This helps the system to reduce the required dataset.

6. Portability and extensivity: One of the advantages of this system is its porta-

bility and extensiveness, as it requires only a single camera and a computer to

operate.
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7. Generalization: This system has good generalization capabilities, as it can clas-

sify correctly regardless of the subject being analyzed.

In addition, the performance of the proposed system was compared to the gen-

eral approach, and also was evaluated the importance of each stage of the proposed

pipeline. When tested on a dataset featuring highly unconstrained driving condi-

tions, the system outperformed the general approach in accurately classifying the

driver’s gaze zone and drowsiness in challenging situations. These results highlight

the effectiveness of the proposed system in handling a wide range of conditions.

1.3 Thesis Outline

The thesis is organized into seven chapters. In Chapter 1, the reader is introduced to

the main goals and motivation for implementing robust driver gaze and drowsiness

classifiers. Chapter 2 goes through the current literature and makes a rough analysis

of their robustness. Chapter 3 describes how to manipulate the Lab’s color space of

the frames to mitigate strong lighting variations. Chapter 4 introduces the robust

libraries for strong face, facial landmarks, pupil, and body posture detection. The

application of dense landmark detection and optical flow estimation methods for

accurately identifying the face, eyes, and pupils, as well as tracking pupil and eyelid

movement, are described. Also examines the performance of different face detectors

with and without masks to demonstrate the importance of conducting the research

under challenging conditions. Chapter 5 outlines the implementation of the Gaze

Classifier Module (Module 1). The module considers two face poses: frontal and

profile, and uses a separate DNN model for each pose, with the output being the

driver’s gaze zone. The feature vector parameters for these DNN models are based on

the relative positions of the pupil and eye landmarks in relation to the overall geometry

of the face. Chapter 6 covers the Drowsiness Classifier Module (Module 2). This

module explores using a combination of lower-face contour, eyes, and chest landmarks
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to compare the effectiveness of three different feature vectors and explains how to

integrate spatiotemporal features using a GRU model. The modules’ performance

is evaluated and compared to other methods in Chapters 5 and 6. Finally, Chapter

7 discusses the results obtained, the strengths and weaknesses of the system, and

potential areas for improvement in the future.
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Chapter 2

Background

2.1 Previous Research

During typical driving situations, tracking the driver’s face, eyes, and body position

can be an effective way to detect signs of distraction or drowsiness early on to prevent

car accidents. However, occlusions can occur in certain driving scenarios, such as when

the driver wears a mask or scarf when there are reflections on eyeglasses, or intense

light changes in RGB frames. These occlusions can pose a challenge for classifiers if

they are not robust enough to handle them.

To date, no available gaze and drowsiness classifiers have been evaluated using a

dataset with a wide range of highly unconstrained conditions. However, a long list of

classifiers has been implemented for more constrained conditions. This chapter will

review various gaze and drowsiness classifiers that use a single camera (or sensor)

to give some context to the reader and a preliminary assessment of these classifiers’

robustness.

2.1.1 Previous Research for Gaze Zone Classifiers

Recognizing the driver’s face and other facial landmarks is often the first step in most

gaze classifiers, as it provides the foundational data that will be used in subsequent

process steps. If this step is unsuccessful, the rest of the classification will also be

highly impacted due to poor performance. For this step, some studies, such as [1]–[7],
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rely on Cascade Classifiers operating on Haar Feature Descriptors, Histograms of

Oriented Gradients (HOG), or Linear Support Vector Machines (SVM). However, as

[8] notes, these methods can struggle to localize faces accurately or predict landmarks

under unconstrained conditions. Under unconstrained conditions, face detection also

tends to have lower recognition rates and slower processing times than other methods,

as discussed in Chapter 3.

One study that tries to develop a robust gaze classifier is [9]. They use Faceness

for face detection, but this method has the weakest Precision and Recall Curve per-

formance of all face detection models when tested on the Wider-Face dataset [10],

a benchmark for face detection. This may lead to misclassifications under uncon-

strained conditions. They use estimations derived from cascaded regression models

for landmark detection, as described in [11]. However, as pointed out by [12], this

type of regression can be ineffective in certain situations, such as when the face is in

a profile pose, as it can only regress visible spots on the face and cannot describe the

occluded parts.

Several studies, including [13], [14], and [15], use pre-trained CNN models for

their classifiers. However, these models may struggle to classify patterns accurately

that do not resemble those in the training dataset, leading to incorrect classifications

in unconstrained conditions, such as when the driver is wearing eyeglasses or other

occlusions like masks or scarves. A good advantage of [13]’s work is that is able to

run on low-capacity devices.

[16] proposes an interesting approach that observes the driver’s gaze zone and the

surrounding driving scenario environment to understand how the driver is processing

information from the outside world, referred to as a vision-in/vision-out strategy.

However, this method requires a head-eye tracker to measure the gaze direction,

which can be invasive to drivers in actual driving situations. Despite this limitation,

the approach has great potential, and mapping the objects with the driver’s gaze

could improve the accuracy of gaze classifiers. [17] also uses a head-eye tracker, while
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[18] uses a stand-alone eye tracking device. However, eyes trackers, as [18] states,

may not always be able to accurately capture the gaze due to the constant changing

light conditions that can cause reflections that will turn into noisy data taken from

the device.

Using an RGB-D camera, [19] implements a multi-zone Iterative Closest Point

(ICP)-based head location tracking and gaze estimation system based on appearance.

The Viola-Jones face detector is used for face recognition, but as noted in [9], this

detector may not be robust enough for challenging scenarios. [20] trains a random

forest classifier using head vectors and eye image features. The POSIT algorithm is

used to compute the head vector by combining facial landmark identification with a

3D face model. The SDM facial landmark detector is used to locate eye corner points

and other facial points. However, the SDM method relies on cascaded regression for

face alignment, which has limitations for large-head poses.

[21], [22], and [23] only use face pose information for their classification, which can

be problematic as it only estimates the head pose without considering the pupils. [21]

creates intervals based on continuous gaze angles and treats the grid of quantized gaze

angles as an image for dense prediction using a headband, which can be intrusive.

[22] builds on pre-existing CNN structures with minor adjustments and estimates the

pose using the POSIT algorithm with a 3D generic face and selected rigid landmarks.

While the landmark detection method is more robust than other research, it relies on

a method that may incorrectly classify occluded landmarks for profile faces. [23] uses

point clouds, which have the potential to be robust for large head poses.

[24] proposes an interesting approach that attempts to solve the problem of eyeglass

reflection in challenging driving situations. However, their dataset does not include

cases where one eye is covered, does not show results per gaze class, and does not

evaluate how well their method works with other types of face occlusions.

[25] uses Fine-Grained Head Pose Estimation Without Keypoints [26] to determine

the Euler angles for the head posture. This method estimates the intrinsic Euler
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angles directly from the intensities of the images using joint binned pose classification,

and regression [26]. However, regression methods are not suitable for scenarios with

occlusions as they are not robust enough to handle them.

After analyzing various gaze classifiers and considering the strengths and weak-

nesses of my previous work, this study proposes an improved pipeline that takes

another step toward an accurate classification in situations with unconstrained con-

ditions.

2.1.2 Previous Research for Drowsiness Classifiers

Drivers who are too exhausted to handle their vehicles safely and effectively are a

potential cause of serious accidents. Drowsiness causes a delay in reaction time, a

reduction in awareness, and impaired judgment. This increases the chances of an

accident. According to the research that has been done thus far, two key indica-

tors of tiredness are yawning and eyelids’ closure. It should not be difficult to spot

these behaviors in a constrained driving environment. Unfortunately, these drivers’

features are frequently threatened by occlusions in a typical driving situation. The

previously mentioned occlusions can be, for example, masks, eyeglass reflections, or

strong daylight changes, making it difficult to achieve the previously discussed recog-

nition. Same as for the gaze zone research, work done in the past has yet to fully

investigate and evaluate how tiredness while driving should be classified in an unre-

stricted environment. However, drowsiness classifiers for drivers have a long history

of use in restricted scenarios.

This subsection provides an overview of various drowsiness classifiers to provide

context for the reader and a preliminary assessment of their robustness.

In the same line as the gaze zone classifier, the goal is to develop a system that can

be applied in real-world settings using a single sensor that is not invasive to the user,

so the list of the studies that were reviewed involves these aspects. In light of this,

is not included in the analysis any work that consists of the use of invasive sensors
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such as electrocardiograms (EKG), electroencephalograms (EEG), head-eye trackers,

electro-dermal activity (EDA), or head-bands; similarly, is not considered any studies

that were carried out in simulated environments. The analysis is made on [27]’s lists

of the most recent research on drowsiness detection based on behavioral factors, in

addition to other more recent works that aren’t featured inside it.

Behavioral parameters are a way to detect drowsiness without using intrusive proce-

dures. These methods assess a driver’s level of fatigue based on observable behavioral

factors such as head position, the ratio of times their eyes are closed, facial expres-

sions, eyes blink’s frequency, and yawning. Cameras and computer vision techniques

are often used in behaviorally-based approaches to extract these behavioral features

[27].

To evaluate previous studies’ robustness, there are two important aspects to be

focused on: the reliability (robustness) of the libraries or approaches used to extract

features and the robustness of the characteristics used to assess whether or not the

driver is drowsy. Ensuring that the feature extraction methods and the characteristics

used to identify drowsy drivers are robust is essential to produce reliable results.

Analysis of the libraries’ robustness used to extract facial features

Firstly, the reliability (robustness) of the libraries or approaches used to extract

the key landmark features will be analyzed. Many previous studies have used face

and facial landmark identification as a first step in the process, as it provides the

foundation for subsequent processing and classification. Is important to note that if

this step does not succeed, the entire classification process will be unsuccessful.

Cascade Classifiers that are based on Histograms of Oriented Gradients (HOG),

Haar Feature Descriptors, Linear Support Vector Machines or Ada-Boost, are what

[28] - [34] use for this step. These approaches either fail to accurately locate the

faces or produce predictions of the landmarks that are not properly aligned when

attempting to identify face attributes under unconstrained conditions, as [8] explains

straightforwardly and concisely. [35] - [36] use Viola-Jones face detection. Neverthe-
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less, as [9] describes, the Viola-Jones face detection method does not provide sufficient

robust performance, particularly when the face is significantly rotated or occluded.

Therefore, it is important to carefully consider the robustness of the feature extraction

methods used in drowsy driver detection systems to ensure reliable results.

Near-infrared (NIR) cameras are used in [30] [32] [35] implementation. NIR cam-

eras are sensitive to wavelengths of light in the near-infrared range. These cameras

have several advantages, including capturing images in low-light conditions.

However, NIR cameras also have some drawbacks. One major drawback is the lack

of color. When sunglasses, masks, or other occlusions cover the face, the lack of color

makes it harder to recognize faces and landmarks. This is because the difference be-

tween the skin and surroundings’ color, plays a major role in detecting facial features

and other landmarks while wearing masks or sunglasses.

Another drawback of NIR cameras is the problem of specular reflections on eye-

glasses, which can cause a continual occlusion of the pupils and degrade the perfor-

mance of a face detector system. This is because the reflections from the eyeglasses

can create multiple light blobs in the image, which can confuse the tracking algorithm.

Some researchers have attempted to address this issue by developing algorithms specif-

ically designed to optimize tracking with eyeglasses, but these approaches have not

yet been widely adopted. As [30] also describes, when users wear glasses, the per-

formance of the tracker suffers because different light blobs appear in the image as a

result of the reflections caused by the NIR camera in the glasses. Additionally, they

have not used any specific algorithms to enhance the tracking with the glasses [30].

Moreover, the pattern used to detect faces and other landmarks is the same as [28].

Regarding the libraries used, [37]’s work utilizes the most robust libraries inside

the current research. Their work uses the same face detector used in this work,

which is called the Single Shot Scale-invariant Face Detector (S3FD) [38]. As for

the landmark detector, is used 3D-Facial Alignment Network (FAN) which is both

accurate and reliable.
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Analysis of the features considered to determine drowsiness

The second robustness analysis will be based on the features that different studies

employ. Two characteristics are crucial for determining whether or not a driver is

drowsy: eye closure and yawing frequency. The ratio of eye closure, or PERCLOS, can

be used to classify the eyes as open or closed and can indicate drowsiness or fatigue.

Similarly, detection systems based on yawning frequency can identify changes in the

geometric shape of the mouth, such as the size of the mouth opening or the placement

of the lips, as potential signs of drowsiness.

However, it is important to note that these features may not always be sufficient

for detecting drowsiness in all circumstances. For example, if a driver is wearing

sunglasses or a mask that occludes the eyes or mouth, these features may not be

visible or may be difficult to detect accurately. In these cases, other features or

methods may need to be used to detect drowsiness, or the system may need to be

designed to be more robust to these types of occlusions.

PERCLOS was the only feature used in [36], [39], [30], [29], [40], [32], [41], [42]

work. Eye closure can indeed be an important feature for detecting driver drowsiness.

Eye closure is often considered a strong indicator of fatigue and drowsiness, and many

studies have found that drivers that have a smaller eye closure are more likely to be

drowsy or fatigued. However, it is also important to note that relying on any single

feature, such as PERCLOS may not be sufficient for accurately detecting drowsiness

in all cases. Citing [37]’s explanation, yawning is a key parameter in a drowsiness

detection system. As a result, drowsiness detection systems need to consider yawning

frequency as a potential feature.

[31],[43],[44], [45], [34],[33],[28], [37] incorporates frame sections of the mouth or

other locations into their feature vector. Using features such as frame sections of

the mouth or other locations as part of the feature vector can be useful for detecting

drowsiness. Still, these features may not be reliable in all circumstances. For example,

if a driver wears a mask that covers the mouth, the mouth feature may become very
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noisy data for the model, as it is hidden and does not provide any useful information.

Similarly, using the full set of face landmarks as features without filtering or processing

them can also result in noisy data, as each person has their own facial configuration,

leading to unique landmark spaces for each person. This can make it challenging for

the model to identify a consistent pattern.

After reviewing the related work, it is clear that both classifiers lack robustness

to daily and basic conditions such as masks or eyeglass reflections. This lack of

robustness is a major concern, as it can lead to accidents due to the high risk of

misclassification. This study aims to address this issue by developing classifiers that

are more robust to these conditions.
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Chapter 3

Frame Environment Manipulation

3.1 Near-Infrared vs. RGB Cameras

Using Near-Infrared Cameras (NIR) is a common approach to address the issue of

strong light variations in a large number of studies. NIR cameras, however, come with

their own set of disadvantages. To begin, specular reflections can occur when using

active lighting to assist face imaging using NIR cameras. This results in inaccurate

localization, alignment, and recognition of the eyes [46]. Specular reflections on eye-

glasses can create big occlusions in the area where pupils are located. Besides this,

frames captured by NIR cameras lack color information, a crucial feature for land-

mark and face detection libraries to work accurately and efficiently during occlusions.

Color information is valuable for distinguishing between skin color and the surround-

ing environment, which helps the model understand the pattern and improves the

reliability and speed of processing time during occlusions. This explanation is not in-

tended to dissuade the reader from using NIR cameras; rather, it is intended to point

out the limitations of these cameras. Since RGB and NIR both have their benefits

and drawbacks, an interchangeable RGB and NIR camera system can be considered

to be implemented in future works. For this project, only an RGB camera frame was

utilized, and an algorithm-related approach was used to deal with the light variations.

In terms of the characteristics of the frame itself, it is important to note that size

and compression can have a significant impact on the performance of machine-learning
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models. First, larger image sizes will require more memory and computational re-

sources to process, which can slow down training and inference times. Additionally,

large images may contain more noise and less relevant information, which can neg-

atively impact model performance. Compression, on the other hand, can affect the

quality of the image and the information it contains. Lossy compression, in particu-

lar, can remove important details and features from the image, which can negatively

impact model performance. Lossless compression, on the other hand, preserves all of

the information in the image but still increases the image size, which affects the mem-

ory and computational resources. It is essential to strike a balance between image size

and compression to avoid a negative impact on the performance of machine-learning

models. The current project aims to develop models that can handle variations in

image size and compression by normalizing the feature vector parameter values.

As previously stated, in gray-scale images, time processing increases and decreases

performance and precision while detecting faces and landmarks inside highly challeng-

ing frames. As a result, it was necessary to alter the image Lab’s space to normalize

the brightness. The following section will detail how it is normalized in further depth.

3.2 Lab Color Space

The Lab* color space is a method for representing and manipulating colors using

three parameters or axes: L, a, and b. These axes calculate a numerical value for

each color, ensuring that no two hues have the same number.

The L axis represents lightness and ranges from 0 to 100. The a-axis represents

the red-to-green spectrum, with negative values representing green and positive values

representing red. The b-axis represents the yellow-to-blue spectrum, with negative

values representing blue and positive values representing yellow.

The Lab* color space is characterized by three color attributes: hue, saturation,

and brightness. Hue refers to the color itself and changes as it moves around the

Lab* diagram. Saturation refers to the vividness or dullness of a color, with more
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vivid colors located further from the center of the color wheel. Brightness refers to

the lightness or darkness of a color.

The a* and b* axes define a color’s hue and saturation by forming a Cartesian

plane, while the L axis represents the color’s brightness and is perpendicular to the

ab* axes.

There are several advantages on using the Lab* color space. First, it has a larger

color space than other color spaces, meaning it has a broader range of colors. Second,

it is an independent color space, making it a useful resource for color management

and conversions. Finally, it allows for the brightness of each pixel to be manipulated

without affecting the color value, making it particularly useful in this study.

3.3 CLAHE

Histogram equalization (HE) is a common technique for improving image contrast,

according to [47]. However, it can result in overexposed highlights, large contrast

differences, and unusual pixel distribution in the image. To address these issues, this

work used CLAHE, which operates on small sections of the image called tiles and

expands partial histograms to enhance pixels without causing large contrast differ-

ences. Bilinear interpolation is used to blend the surrounding tiles and remove false

boundaries. CLAHE can also adjust the histogram range to eliminate any artificiality

in the enhanced image [48].

While CLAHE is typically used on grayscale images, this work applied a different

approach to improve performance and precision in detecting faces and landmarks in

challenging frames, as explained previously. To adjust the image’s brightness, the

Lab color space was used, and the CLAHE algorithm was applied to the “L” channel

of the image in the Lab space.

In a standard HE process, the image’s contrast is enhanced by using a mapping

function that transforms the original intensity values into enhanced intensity values.

The slope of this function, which determines the amount of contrast enhancement, can
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be controlled by adjusting the height of the histogram at a particular gray level [49],

as shown in (1). To prevent the enhancement of pixel intensity transitions caused by

noise, the slope of the mapping function can be limited in the process. The contrast-

enhanced intensity Sk is directly proportional to the cumulative probability density,

and the transformation of the slope at any gray level is related to the histogram height

at that gray level. By clipping the height of the histogram to a threshold, the slope

of the mapping function can be restricted [49].

SK =
I − 1

M ×N

k
∑

j=0

nj k = 0, 1, 2, ..., I − 1 (1)

where:

• I − 1 is the highest intensity attainable level.

• M ×N corresponds to the pixels’ total number.

• nj corresponds to the occurrences number of the jth intensity.

The image is separated into non-overlapping contextual sections or tiles in CLAHE.

Each tile’s histogram is trimmed to a user-specified clip limit. The clip limit is a

multiple of the average height of the contextual region’s histogram. The histogram’s

average height is the ratio of the total number of pixels in the contextual area to the

number of gray levels. The local histogram is then computed. In this proposal, was

used the following clip limit and tile grid size:

• Module 1’s Face Frontal Model and Module 2: Tile grid size of 5x5 pixels and

clip limit of 100.0.

• Module 1’s Face Profile Model : Tile grid size of 1x1 pixels and clip limit of 50.0.

After CLAHE was applied to the image light (“L”) channel in the Lab color space,

the enhanced channel was combined with the “a” and “b” channels, and the frame was
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converted back to the RGB space. This process results in more evenly and uniformly

distributed intensity values, creating a more balanced luminance across the image

and making the details of the driver’s landmarks clearer. The use of CLAHE can be

seen in Figures 3.1 and 3.2.

Figure 3.1: Frames before and after applying CLAHE, landmark detection (red), and
pupil detection (green) for Frontal Face.

Figure 3.2: Frames before and after applying CLAHE, landmark detection (red), and
pupil detection (green) for Profile Face.
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Chapter 4

Robust Libraries for Data

Extraction

This chapter will introduce the libraries that were chosen to be utilized for extracting

the data that would serve as a base for making the different feature vectors for the

models that have been implemented and introduce the features that become useful

to the present work.

This appears to be a minor step, but it is the key difference between a model that

will outperform and one that will not. The reduction of noisy data is critical not only

for creating a better performance model but also for reducing on a great scale the

model’s training data.

4.1 Face Recognition

Face detection is the first and most important phase in many applications that deal

with faces in some way, including face alignment, face recognition, face tracking, and

many more.

This study requires robust face recognition as it aims to develop classifiers that can

accurately classify in difficult-to-recognize situations, such as when they are wearing

masks. [10] list the most robust face detection classifiers, all of which are based on

RGB images. From this list, the Single Shot Scale-invariant Face Detector (S3FD)

face classifier was selected for use in this study. S3FD is an anchor-based real-time
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face detector that detects several pre-set anchors created by tiling a series of boxes

with different sizes and aspect ratios on the image at regular intervals and classifying

and regressing them. These anchors are associated with one or more convolutional

layers, whose spatial size and stride size determine the position and interval of the

anchors, respectively. The anchor-associated layers are convolved to classify and

align the corresponding anchors. Anchor-based detection methods are more robust

in complex scenes, and their speed is invariant to the number of objects compared to

other methods.

One important feature of this classifier, which is very useful in this study, is its spe-

cial dedication to ease the outer faces’ miss-classification. They employ a technique

that they refer to as a anchor matching strategy. In anchor-based detection frame-

works, anchor scales are often discrete; nevertheless, the face scale is continuous. So,

those faces whose scales distribute in a direction different from the anchor scales are

unable to match sufficient anchors, which results in a low recall rate for those faces.

As an example, tiny and outer faces. Outer faces often occur when occlusions occur.

To solve this, they offer a scale compensating anchor matching approach with two

stages to increase the recall rate of these faces that were overlooked. The first step

uses the current anchor matching algorithm but modifies the threshold to make it

more flexible. Through scale compensation, the second stage ensures that each scale

of faces matches adequate anchors.

Since this research must be conducted in real-time, another crucial aspect of the

library that must be considered is speed processing. S3FD outperforms other bench-

mark face detectors by a large margin across the different face detection benchmark

datasets as Annotated Faces in the Wild (AFW), PASCAL face, Face Detection

Dataset, and Benchmark (FDDB), and WIDER FACE running at 36 FPS on an

Nvidia Titan X for VGA-resolution images [38], [10].
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4.1.1 Face Recognition Libraries Comparison

It was important to analyze the performance of various face detectors commonly used

in current literature, both under normal conditions and when faces are occluded. This

serves as the foundation for the rest of the data extraction process. This analysis

allows an understanding of how well the face detectors can recognize and detect

faces under different conditions. Furthermore, this analysis gives an insight into

how the performance of a classifier can greatly vary when tested under constrained

and unconstrained conditions. This information is essential for understanding the

limitations and potential of these face-detection methods and can aid in developing

more robust and reliable algorithms.

To better understand how to face detectors perform under different occlusions, was

conducted an analysis of various face detectors commonly used in current literature.

As a starting point, the detailed research conducted by Wilber [50] explains some

important details on this topic since makes a classification occluding various key

facial features such as eyes, ears, nose, and mouth. This research showed that face

recognition performance was lowest when the nose was covered, a common occlusion

when using masks or scarves. This is corroborated after experiments with different

face detectors used in current literature, concluding that they struggle to detect faces

when the nose is occluded by strong lights or masks/scarves. With this in mind, an

experiment was designed to explore this issue further.

Introduction

This experiment aims to demonstrate the significant difference in performance

between face detectors when dealing with scenarios with mask-wearing drivers and

those without. The ultimate goal is to show that while face detectors commonly used

in current literature perform well in scenarios with no mask-wearing drivers, they

perform poorly when faced with a dataset containing mask-wearing drivers.

To test this, are used five face detectors on two different datasets: one containing
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Table 4.1: Results of the Running Time (RT) in seconds, and Accuracy (Acc) in
percentage in decimal form of diverse Driver Face Detectors under No Mask-wearing
and Mask-wearing datasets.

Face Detector No Mask-wearing Drivers Mask-wearing Drivers

RT Acc RT Acc

Dlib HOG 0.29 0.83 0.031 0.01

Dlib CNN 3.03 0.81 0.024 0.48

Viola Jones 0.13 0.13 0.042 0.00

S3FD 0.07 1.00 0.049 0.99

Retina 0.03 1.00 0.050 0.98

no mask-wearing drivers and one containing mask-wearing drivers. These five face

detectors are Dlib HOG (HOG) for Frontal Faces, Dlib CNN (CNN), Viola Jones,

S3FD, and RetinaFace [51] (Retina). The first three face detectors are commonly

found in current literature, while the latter two are newly proposed for use in this

study.

Dataset

Different RGB camera frames of different videos taken in a real car with and

without movement were part of the dataset.

• No mask-wearing dataset: consists of 1138 image frames. Video frames con-

tained in this dataset are from 2 females and 8 males.

• Mask-wearing dataset: consists of 1120 image frames. Video frames contained

in this dataset are from 3 females and 7 males.

The images inside the testing dataset does not include no face showing and there

are few fully profile faces. Images can have noise on the pupil area as small eyes and

pupils partially occluded (e.g., reflections in the eyeglasses or eyeglass sticks). There

can be intense light enviroments.
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Figure 4.1: No Mask-wearing vs. Mask-wearing Drivers Frames Face Detection Cor-
rect Classification measured in percentage.

Metrics

The following metrics were used to evaluate the face detectors’ performance:

Accuracy : Model’s performance measurement based on how many instances it

correctly recognizes. It is calculated by dividing the number of true positives by the

total number of frames.

Average CPU Running Time: CPU processing time measured in seconds. As the

proposed system aims to run in real-time for use in advanced driver assistance systems

(ADAS) development, the CPU processing time of each experiment was evaluated.

Results for the Running Time (RT) and Accuracy (Acc) are shown in Table 4.1.

Figure 4.1 illustrates the accuracy of various face detectors when applied to datasets

of driver images with and without masks. Some possible conclusions that can be

drawn from this information:

• The performance of HOG, CNN, and Viola Jones varies significantly when de-
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tecting faces in datasets with and without occlusions (e.g., masks), while S3FD

and Retina have more stable performance.

• S3FD and Retina both have good performance in detecting the overall shape

of the face, with S3FD having particularly constant boundary (i.e., the boxes

around the detected faces are consistently sized) detection (Figure 4.2).

• S3FD has the highest correct classification rate in the dataset of drivers wearing

masks, at 99%.

• All the face detector models are already pre-trained models. The poor per-

formance of Viola-Jones may be due to the fact that the acquired pre-trained

model was not trained on a sufficient number of images. Viola Jones method

should have a similar performance to HOG. It uses an Integral Image and a

Haar-like feature with an AdaBoost process to create a cascade classifier, while

the HOG method uses a sliding window to extract HOG descriptors and apply

a classifier to each image at various scales. If the classifier detects an object

that looks like a face with sufficient probability, it records the bounding box of

the window and applies non-maximum suppression [52].

• Retina has slightly better performance than S3FD in detecting heavily occluded

key points (e.g., face partially profile plus both eyes with a great noise in the

pupils plus black shadow in part of the profile). Figure 4.3 shows an example

of this.

• CNN performs poorly in low light conditions (Figure 4.4) and when the driver’s

face is rotated away from a frontal position when wearing a mask.

• When wearing mask CNN can understand that there is a face when the eyes

are seeing frontal. However, if the eyes are seeing in another direction it fails

the face detection (Figure 4.5). This does not happen when there is a situation

when the nose and mouth is not occluded.
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• Mask color may impact the performance of Retina, with brighter colors leading

to better performance due to a closer match to skin color (Figure 4.6).

• S3FD and Retina has a better performance of the geometrical face shape. We

can see that S3FD and Retina makes a more rectangle shape that shows better

the boundaries of the actual face. Both S3FD and Retina are very precise,

however until the frames that have been analyzed until now S3FD has a very

meticulous precision of the limits of the face (Figure 4.7).

• S3FD seems to be more robust when there are masks and the driver is closing

the eyes.

• Even though CNN correctly detects the face in different cases, when the driver

closes the eyes cuts half the bounding box of the face detection which can lead

to a mistake for the next steps as face landmark detection (Figure 4.8).

• All the face detectors performed better on average under the dataset while

drivers are not using masks (Figure 4.9).

• HOG, Viola-Jones, and CNN can have a significant change in performance when

it comes to detecting faces under difficult situations, such as those with occlu-

sions. This is because it can be more challenging for the models to identify the

face pattern under these conditions. On the other hand, S3FD and Retina tend

to be more stable and consistent in their performance regardless of the context

in which the face is being detected. This suggests that these detectors may be

better suited for handling difficult or unconstrained conditions.

Figure 4.10 shows the running time performance of the different face detectors’ per-

formance under no mask-wearing and mask-wearing drivers frames datasets. Different

statements can be concluded:

• Dlib CNN face detector is the slowest face detector while Retina is the fastest

one.
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Figure 4.2: In datasets with occlusions, S3FD has a better bounding box stability
(i.e., the boxes around the detected faces are consistently sized) than Retina. White
numbers are the correspondent frame number.

Figure 4.3: Retina has slightly better performance than S3FD in detecting heavily
occluded keypoints (e.g., partially occluded eyes and nose).

• HOG and CNN time performance change greatly when come to detecting faces

under difficult situations. This is because searching the face pattern under
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Figure 4.4: CNN performs poorly in very low light conditions.

Figure 4.5: CNN while detecting under a dataset of mask-wearing drivers may turn
into misdetection if the eyes are seeing in another direction. This does not happen
when there is a situation where the nose and mouth are not occluded.

Figure 4.6: Mask color may impact the performance of Retina, with brighter colors
leading to better performance due to a closer match to skin color.

occluded faces is much harder for the models. Viola-Jones, S3FD, and Retina

are quite stable regardless of the context in which the face is being detected.

• Even though Retina is the fastest, S3FD’s processing time is nearly the same
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Figure 4.7: Both S3FD and Retina are very precise, however until the frames that
have been analyzed until now S3FD has a very meticulous precision of the limits of
the face.

as Retina.

As a general resume, to have a fair comparison it is important to evaluate these

models on datasets that include a diverse range of images, such as those with occlu-

sions, light differences, and other highly unconstrained situations. These situations

can greatly affect the performance of a model, and therefore should be considered

when comparing the effectiveness of different face detection models.
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Figure 4.8: Even though CNN correctly detects the face in different cases, when the
driver closes the eyes cuts half the bounding box of the face detection, which can lead
to a mistake for the next steps as face landmark detection.

Figure 4.9: Face detectors performance in a dataset that is not under a mask-wearing
situation.
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Figure 4.10: No Mask-wearing vs. Mask-wearing Drivers Frames Face Recognition
Running Time Measured in seconds.

4.2 Face Landmark Recognition and Pupil Extrac-

tion

It is essential to have a robust and reliable system for detecting landmarks and pupils

as serves as the foundation of many eye gaze tracking systems. [53] presents a real-

time, accurate method for 3D eye gaze capture that overcomes the limitations of using

random forest classifiers for this purpose. To achieve this, they propose using deep

convolutional neural networks (DCNNs) to automatically extract iris and pupil pixels

from input frames. These DCNNs are constructed using the capabilities of Unet and

Squeezenet, and are used for pixel classification.

The process begins by automatically identifying relevant 2D facial features and

optical flow constraints for each frame. These features and constraints are then used

to recreate 3D head positions and large-scale facial deformations through the use of

multilinear expression deformation models. The fast optical flow estimate approach is

applied to the surrounding frames of the input video within the face region to extract
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the motion flow, which is a crucial element in this reconstruction. The landmarks are

aligned with facial expressions in this case, indicating that it is a dynamic recognition

system that adapts to the circumstances. This is particularly useful for tracking the

movement of eyelids or the lower-face contour, for example. The facial landmark

detectors that are currently utilized in academic literature lack this specific feature,

and in general, this feature is considered to be quite uncommon among facial landmark

detectors.

Other studies have often approached the problem of pupil detection as a regression

problem in the context of iris and pupil recognition. However, eye movement can be

complex, with features such as fixation, saccades, and smooth pursuit. A temporal

tracking approach may be prone to error accumulation when an eye saccade occurs.

To address this issue, [53]’s approach employs a DCNN-based segmentation method

to extract iris and pupil pixels on a per-frame basis and tracks the eye gaze to update

the eye state. This distinguishes their approach from other state-of-the-art methods,

which may not consider the complexity of eye movement.

4.3 Body Posture

The pose tracker used to obtain the shoulder joints was implemented by [54][55][56][57]

in their work on AlphaPose. They have developed an online optimization framework

called PF-Builder (pose flow builder) that associates cross-frame poses and constructs

pose flows, which represent a sequence of poses of the same person instance in different

frames. Pose flow is a valuable feature for future research in this field. To improve

the robustness of the pose flow, [54] also proposes a novel pose flow non-maximum

suppression (PF-NMS) method to reduce redundant pose flows and re-link temporal

disjoint ones.

PF-Builder iteratively constructs pose flows from pose proposals within a short

video clip selected using a temporal sliding window. Instead of using a greedy match-

ing approach, it uses an efficient objective function to find the pose flow with the
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highest overall confidence among the feasible flows. This optimization strategy helps

to stabilize the pose flows and associate discontinuous ones (due to missing detec-

tions). On the other hand, PF-NMS uses pose flow as the unit of processing in the

non-maximum suppression (NMS) process, rather than using NMS at the frame level

like traditional techniques. As a result, temporal information is fully considered in the

NMS process, leading to improved stability. These features significantly contribute

to the robustness of the categorization in this study.

33



Chapter 5

Module 1: Gaze Classifier

5.1 Overview

Driver’s inattention and distraction are major contributing factors in fatal, and injury

crashes [58]. Gaze zone classifiers in ADAS have been key research for distraction

detection support [59]. If an ADAS can detect a driver’s inattention, the car’s system

can warn the driver or, in the near future, take control of the situation, reducing the

number of fatal accidents. There are vast implementations of driver’s gaze classifiers;

however, these studies employ methodologies that may highly fail when challenging

situations occur. Some of these challenging situations are face occlusions, eyeglasses

reflection, strong daylight variations, profile face poses, and face and eyes facing

different directions, as shown in Figure 5.1. Moreover, many use expensive sensors,

equipment sensitive to light, or complex systems.

Furthermore, no former research explicitly does experiments with highly uncon-

strained datasets. These edge conditions recurrently appear in driving scenarios, the

reason why driver’s gaze classifiers urge a more robust implementation. To overcome

part of this problem, this module presents a single-camera driver’s gaze zone classi-

fier approach that can robustly make a correct classification during various before-

mentioned complex situations.

This study involves three key steps to achieve a robust system:

1. Frames’ Lab’s color space manipulation: To address the strong light variation
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Figure 5.1: Left: Driver’s face with a mask, eyeglass reflection, and low brightness
environment. Right: Driver profile face with glasses, eyes, and face facing different
directions.

issue, the brightness of the frames are equalized by manipulating its Lab’s color

space’s luminance channel using a CLAHE. This process was covered in Chapter

3.

2. Usage of robust libraries for face, facial landmarks, pupil, and eyelid movement

detection: After having frames with balanced lighting, robust recognition of

the face, eyes, and pupil landmarks is achieved by combining an anchor-based

real-time face detector with a dense landmark alignment that includes optical

flow estimation methods for pupil and eyelid movement tracking. This process

was covered in Chapter 4.

3. DNN models structure and feature vectors parameters: This framework involves

two main models, Face Frontal and Face Profile DNN models. Since the geo-

metric facial structure varies per person, the feature vector parameters consist of

different relations between pupil and eye landmarks in proportion to the driver’s

geometrical face configuration. Each model’s possible output is summarized in

Table 5.1. Face and eyes facing different directions are considered. Face Profile

Model can discriminate between the right and left sides. The occlusions caused

by profile faces may be harmful data for the model, so Face Frontal and Face
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Table 5.1: Gaze Group Labels evaluated in the DNN models: Face Front DNN Model
and Face Profile (Window Direction) DNN Model. Face Profile DNN Model fits for
both sides, right and left window.

Face Front Model Face Profile Model

Face Direction Eyes Direction Label Face Direction Eyes Direction Label

Front Front FF Profile (Window) Window PW

Right Window FRW Front PF

Back Mirrow FBM

Speed Meter FS

Navigator FN

Profile models were separated. This chapter will go into extensive detail on the

steps involved in this procedure.

A flowchart of the system is shown in Figure 5.2.

The main contribution of this module is a gaze classifier that includes:

1. Robustness to strong light condition variations and various facial occlusions as

could be: masks, scarves, eyeglasses reflections, eyeglasses sticks, small eyes,

partial occluded pupils, and profile face poses.

2. Portability and extensivity, as it needs only one camera and a computer.

3. Generalization, as it can classify correctly regardless of the subject.

Moreover, this study will compare the performance of the proposed system in con-

trast to the general approach and show the importance of each stage of the proposed

pipeline to achieve good results over a dataset involving highly unconstrained driving

conditions.
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Figure 5.2: System’s Diagram. The system is built on a single frame. The system’s
inputs a frame, detects the face and use CLAHE to equalize its brightness. Then a
facial landmark and pupil are detected. After extracting this data, are calculated the
parameters, which will be passed to either the frontal or profile face model depending
on the face position. There are five possible outputs for the frontal model and a
binary output for the profile face.

5.2 Feature Vector

The quality of the input data is a crucial factor in the success of a DNN model,

particularly when the model must handle data with strong variations. Many studies

underestimate the importance of data quality. Focusing on improving the quality
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Figure 5.3: Different key landmarks and parameters used in the proposed feature
vector.

of the input data can lead to better performance from a fixed model, including the

reduction of the training data. With this in mind, great effort was put into ensuring

that the input data was as clean as possible. Since the face is symmetrical, only one

side of the face landmarks was used, with the system deciding which side to use. The

center of the left and right eye pupils are referred to as PcL and PcR, respectively.

If the pupil detector fails to fully recognize a pupil, its radius becomes smaller. The

system compares the radii of both pupils and analyzes the landmarks of the side with

the larger pupil radius. The input feature vector has eleven parameters. The different

key landmarks and parameters used in the proposed method can be seen in Figure

5.3. The details of each parameter are:

Right Side Face Landmarks Case:

1. Pc R radius length: Length of the radius r r. Depending on the head rotation

and proximity to the camera, the pupil radius varies.

2. Pc R distance to the right eye external corner proportional with the total hor-

izontal distance of the right eye:

ecp r =
Distance Pc R to External Corner R

Total Horizontal Eye Length R

3. Pc R distance to the right eye inner corner proportional with the total horizon-

tal distance of the right eye:
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icp r =
Distance Pc R to Inner Corner R

Total Horizontal Eye Length R

4. Pc R distance to the highest point of the fixed eyelid proportional with the

total fixed vertical distance of the right eye:

ucp r =
Distance Pc R to Upper Corner R

Total V ertical Eye Length R

Note that the word fixed is used. As an eyelid movement tracker was used, the

eye’s total vertical size is always in movement. So was framed an approximation

of the vertical size of the eye using its relation with the nose landmarks that

are permanently fixed. This step is crucial because all faces are different. Using

data relative to the face (proportions) reduces the data noise that causes having

different faces with different measures and transforms the data as equally as

possible.

5. Pc R distance to the lowest point of the fixed eyelid proportional with the total

fixed vertical distance of the right eye:

bcp r =
Distance Pc R to Bottom Corner R

Total V ertical Eye Length R

6. Closure of the upperlid with respect bottomlid (3 parameters): By analyzing

the data, was noticed that the eyelid closure gives a better clue to the algorithm

to understand eyes’ up/down movement than the pupil’s position. The upperlid

landmarks U Ri are extracted, 3 for each eye. Consequentially, is measured the

distance between the upperlid landmark and its proximal vertical equivalent

bottomlid landmark B Ri. The following equation represents the distance d :

d =

√

(x2 − x1)
2 + (y2 − y1)

2 (2)

Then was calculated the absolute value for each distancei, and was divided

by the vertical eye distance. With each landmark li r was made a Closure

Parameter respect the bottomlid cbi r following the formula:
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cbi r =
Distance U Ri to B Ri

Total V ertical Eye Length R

with i = 0, 1, 2

7. Closure of the upperlid with respect to the pupil (3 parameters): It is similar

to the closure of the upperlid to the bottomlid calculation with the discrepancy

that was measured the distance between the upperlid landmarks and the pupil

position instead of the bottomlid. Equation (2) was used to make the distance

calculation and is not used the absolute value of the difference for making the

calculation. Having each landmark li, a Closure Parameter is made with respect

to the pupil cpi following this formula:

cpi r =
Distance U Ri to Pc R

Total V ertical Eye Length R

with i = 0, 1, 2

Finally for the feature vectors for each model are:

• Frontal Face Model: The Frontal Face model’s feature vector is annotated as

ff fv.

Right Side Face Landmarks Case:

ff fv = {r r, ecp r, icp r, ucp r, bcp r, cb0 r, cb1 r, cb2 r, cp0 r, cp1 r, cp2 r}

Left Side Face Landmarks Case:

Since face landmarks are symmetric, the feature vector when using the land-

marks of the left side of the face will be almost the same. The difference is that

the results of positions two and three of the feature vector will be swapped, so

the relations are kept the same (inner and external corners for right and left
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eyes are opposites). Therefore, the representation of the left side of the face

landmarks is:

ff fv = {r l, icp l, ecp l, ucp l, bcp l, cb0 l, cb1 l, cb2 l, cp0 l, cp1 l, cp2 l}

• Profile Face Model:

The Profile Face model’s feature vector is annotated as pf fv and consists in

the exact same parameters as the Frontal Face Model.

Right Side Face Landmarks Case:

pf fv = {r r, ecp r, icp r, ucp r, bcp r, cb0 r, cb1 r, cb2 r, cp0 r, cp1 r, cp2 r}

Left Side Face Landmarks Case:

pf fv = {r l, icp l, ecp l, ucp l, bcp l, cb0 l, cb1 l, cb2 l, cp0 l, cp1 l, cp2 l}

5.3 DNN Models

5.3.1 Frontal Face

The model can have five outputs: eyes are facing front, eyes are facing right window,

eyes facing speed meter, eyes facing back-mirror, and eyes facing navigator. The

input is a feature vector whose parameters are relations between pupil and eyelid

landmarks in proportion to the driver’s geometrical face configuration. The details

of the model are:

• Input: The input is one of the feature vectors fv described in Section 5.2.

• Network Topography and Hyperparameters: The topography and hyperparam-

eters are illustrated in Figure 5.4 (a).

• Output: Probabilistic prediction of the direction of the eyes that can be front,

right window, back-mirror, speed-meter, and navigator.
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Figure 5.4: Proposed DNN Topographies and Hyperparameters. Left: Frontal Face
DNN Model. Right: Profile Face DNN Model.

5.3.2 Profile Face

The model has a binary output: eyes are facing front, eyes facing window. The

inputted feature vector parameters are different relations between the pupil and the

eye landmarks in proportion to the driver’s geometrical face configuration of the side

that is not occluded. The data landmarks that was use to evaluate an instance are

from the fully visible profile side of the driver. The system can decide which side is

visible by checking the pupil radius size. The pupil radius size gets smaller when it

gets more occluded or less visible. So, if the radius of the right eye pupil r R < r L,

the driver sees at the right side, so was used the left side face landmarks to make the

process and vice versa. The details are as follows:

• Input: The input is one of the feature vectors fv described in Section 5.2.
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• Network Topography and Hyperparameters: The topography and hyperparam-

eters are illustrated in Figure 5.4 (b).

• Output: Probabilistic prediction of the direction of the eyes (binary output)

that can be Window or Front.

5.4 Experimental Evaluation and Results

5.4.1 Overview

This study aims to show the positive effect of each step of the proposed algorithm

to correctly classify the driver’s gaze zone under challenging settings, as can be

partial sun reflection, face occlusions, eyeglasses reflection, and drastically daylight

variations. For this, the system was evaluated in a challenging dataset with the

before-mentioned conditions. The experimental evaluation is divided into two parts

to demonstrate two key points: first, how the conventional methods fail in uncon-

strained situations, and second, how each feature of the suggested system contributes

to the system’s robustness.

Experiment 1 The goal of this experiment is to highlight the weaknesses of

existing approaches in unconstrained scenarios. To demonstrate this, two different

model structures of a widely used approach are tested, as there is no current state-of-

the-art approach. Experiment 1 is divided into two sub-experiments for this purpose:

Experiment 1.a: A similar 2D CNN model architecture proposed in [60] where the

input of the model will be the frame’s face and eyes image data was used, with the

difference that the section where each occluded pixel data is replaced with a same

8-bit integer value 255 (white) was not implemented as this step is not covered in the

conventional method. This approach is one of the most often utilized in the literature.

The testing dataset was evaluated without applying the frame luminance equalization

step.

Experiment 1.b: An open-source code done by [61] that contains a Class Activa-
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tion Map (CAM) to visualize how the model learns the patterns used to make the

classification is used. Since is a broadly used model, different from the one already

proposed, this model was chosen. Also since we can visualize the pattern the model

observes, is very useful. The input is the full face of the driver image data. It was

assessed without the frame luminance equalization step.

Experiment 2 The goal of this experiment is to highlight the significance of each

proposed feature in the proposed methodology. Experiment 2 is divided into three

sub-experiments to demonstrate this:

Experiment 2.a: Testing dataset was assessed without using CLAHE.

Experiment 2.b: Testing dataset was assessed without the parameters relative to

the face proportion with the following adjustments:

• ecp r = Distance Pc R to External Corner R

• icp r = Distance Pc R to Inner Corner R

• ucp r = Distance Pc R to Upper Corner R

• bcp r = Distance Pc R to Bottom Corner R

• cbi r = Distance U Ri to B Ri with i = 0, 1, 2

• cpi r = Distance U Ri to Pc R with i = 0, 1, 2

For the case when is used the right side of the face landmarks. The same

modifications are made when is used the left side.

Experiment 2.c: Testing dataset was assessed using the full procedures proposed

in this work.

5.4.2 Dataset

A single RGB camera frame of different videos taken in a real car with and without

movement was part of the dataset. Twenty distinct participants - 5 females, 15 males
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- participate in the experiments. For the training dataset, 3 females and 9 males

data were used and for the testing dataset, 2 females and 6 males data was used. The

training dataset contains around 700 images for each class but does not include images

taken under challenging conditions. The training dataset was supplied by using [62]’s

dataset to add extra data. As for the testing dataset, the subjects are different from

the training dataset, each class containing around 100 images all of them from the

taken own dataset. The majority of the images in the testing dataset have been taken

under at least one of the following conditions: occlusions (such as masks or scarfs),

reflections from eyeglasses, or intense lighting environments (excluding extremely dark

or bright conditions where the face is not visible).

The images inside the testing dataset do not have strong variations of the driver’s

distance to the camera, nor strong variations in the pitch, roll, yaw of the driver’s

face, except for the profile face. Images can have noise on the pupil area as small eyes

and pupils partially occluded (e.g., reflections in the eyeglasses or eyeglass sticks).

Eyes’ direction was recognized with profile faces as well.

5.4.3 Metrics

Predicted Results Confusion Matrix: In statistical classification, a Confusion Matrix

is a layout that displays the performance of a model by showing how many instances

were correctly classified by the model compared to the actual class labels. It helps

to identify which specific instances were misclassified and how. The columns of the

matrix represent the predicted labels, while the rows represent the ground truth

labels.

Macro-average and Micro-average Accuracy: In general, accuracy is the percent-

age of correct predictions made by a model. A macro-average computes the metric

individually for each class and then takes the average, therefore all classes equally

contribute to the final averaged metric. Micro-average aggregates all classes’ contri-

butions to compute the average metric, therefore, all samples equally contribute to
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Table 5.2: Results of Running Time (RT) in seconds, Macro-Average Accuracy (Mac-
Avg) and Micro-Average Accuracy (Mic-Avg) in percentage in decimal form, for each
Experiment (Exp) for Face Front Model and Face Profile Model.

Exp Face Front Model Face Profile Model

RT Mac-Avg Mic-Avg RT Mac-Avg Mic-Avg

1.a 0.033 0.75 0.76 0.031 0.54 0.52

1.b 0.024 0.18 0.18 0.024 0.46 0.48

2.a 0.043 0.56 0.57 0.042 0.33 0.34

2.b 0.051 0.77 0.77 0.049 0.37 0.38

2.c 0.051 0.95 0.95 0.050 0.91 0.92

the final averaged metric.

The following equations correspond to micro-average and macro-average:

Macro-average accuracy =
1

N

N
∑

j=1

(True positive)j
(Total Population)j

(3)

Micro-average accuracy =

∑N

j=1
(True positive)j

∑N

j=1
(Total Population)j

(4)

with N = Classes’ number

Average CPU Running Time: The proposed system aims to run in real-time to

be useful for on-current development ADAS, so the CPU processing time of each

experiment was evaluated. It is measured in seconds.

5.4.4 Results

The running time, macro-average accuracy, and micro-average accuracy of each ex-

periment are shown in Table 5.2.

Experiment 1:
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Figure 5.5: First row: Predicted Results Confusion Matrix for each experiment for
the Frontal Face on Experiment 1. Second row: Predicted Results Confusion Matrix
for each experiment for the Profile Face Model. From left to right: Experiment 1.a
and Experiment 1.b.

Experiment 1.a: Figure 5.5 (a.1) shows that Frontal Face Model can distinguish

correctly between classes. However, for the Profile Face Model, it still does not make

a full correct classification.

Experiment 1.b: Figure 5.5 (b.1) and Figure 5.5 (b.2), show that for this model

is hard to properly learn the underlying patterns in this challenging dataset. One

probable explanation is that the only small nuance between each image is the eyes’

direction. Also, some images have pupils partially occluded, adding difficulty in

understanding the pattern. Only the face of the driver is used as an input. However,
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Figure 5.6: Example of CAM’s performance. As can be observed, the network has
not learned the underlying patterns in the unconstrained dataset effectively.

this model has the best timing comparing the rest because there is almost no pre-

processing. Results of this model’s CAM performance can be seen in Figure 5.6. This

model performed worst among all models in terms of Macro-average accuracy and

Micro-average accuracy for Frontal Faces, as shown in Table 5.2.

Experiment 2:

Experiment 2.a: Figure 5.7 (a.1), shows that the model has the lowest performance

for the Frontal Face Model among the experiments made in Experiment 2. Figure 5.7

(a.2) shows poor performance when having flipped results. The landmark recognition

accuracy was low because for the model is very hard to understand the pattern when

having extreme intensities in one frame. So the pupil center context may fall into the

wrong place. For Example, in FF, the pupil is typically just in the center. However,

if the eye landmarks are slightly shifted to the left, the inner corner of the right eye

will be in the ground truth position of the center eye of the right eye, and the model

will make a miss-classification with FBM or FN. Figure 5.10 illustrates one example

of this. The same pattern is observed across different classes. This result shows the

importance of manipulating the luminance of the images. During driving scenarios, we

have highly drastic light changes that should be filtered. This model performed worst
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Figure 5.7: Experiment 2.a. First row: Predicted Results Confusion Matrix for the
Frontal Face DNNModel. Second row: Predicted Results Confusion Matrix for Profile
Face DNN Model.

among all models in terms of Macro-average accuracy and Micro-average accuracy

for Profile Faces as shown in Table 5.2.

Experiment 2.b: In Figure 5.8 (b.1), we can observe that the model reached a much

better performance than the previous experiment. However, Figure 5.8 (b.2) shows

flipped results. Each person’s face has differences, so the data is unequal when the
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Figure 5.8: Experiment 2.b. First row: Predicted Results Confusion Matrix for the
Frontal Face DNNModel. Second row: Predicted Results Confusion Matrix for Profile
Face DNN Model.

face proportion relation is not considered. The model has difficulty understanding

the data pattern because it does not have a generalization of the data. This can also

be reflected since the unconstrained training dataset is small, so if the model’s data

is not general enough, the model will fall into miss-classifications. Figure 5.11 shows
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Figure 5.9: Experiment 2.c. First row: Predicted Results Confusion Matrix for the
Frontal Face DNNModel. Second row: Predicted Results Confusion Matrix for Profile
Face DNN Model.

some of the photos that were miss-classified in Experiment 2.b but correctly classified

in Experiment 2.c.

Experiment 2.c: From all models, this has a significant out-performance. For

Figure 5.9 (c.1), the minimum correct classification percentage was 92%. For Figure

5.9 (c.2), the minimum correct classification percentage was 88%. Also, there is a
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clear improvement compared to the best performance on conventional approaches

shown in Figure 5.5 (a.1). This is considered as a great achievement considering the

highly challenging testing dataset. From images with much noise, the system could

transform and deliver the data as equally as possible so the model can understand

what is happening regardless of the noise. For Figure 5.9 (c.2), the images under

PF label were hard to classify when the driver had a thick black eyeglass stick. The

thick black eyeglass stick and pupil are both around the same color, so it is hard for

the system to detect accurately and precisely. Also, itself the landmark alignment

on profile face frames is hard and less accurate, especially when there are occlusions.

Figure 5.12 shows an example of this. Future works should consider either making a

semantic segmentation of the eyeglass to make a distinction or incorporating context

(video recognition) to track the pupil better. However, not all of the frames with these

characteristics were misclassified. In terms of time, even though it is double expensive

as the general approach, the difference in accuracy is very significant. Future works

may explore other techniques for reducing time processing. In terms of accuracy,

this model outperformed all models in terms of macro-average accuracy and micro-

average accuracy for both, frontal and profile faces, as shown in Table 5.2. The

resulting running time in all the experiments represents a significant achievement for

us, considering that one goal is a system that runs in real time.

Some overall comments on the performance of the system are:

1. The experiments using CLAHE had a higher processing time as shown in Fig-

ure 5.13, although they were still running in real-time. Reducing the image size

could potentially improve performance, but the impact on the overall perfor-

mance of the results should be carefully evaluated.

2. The profile face model performed poorly overall. This is because profile faces

are generally difficult to classify, even with robust landmark detectors, due to

the number of occluded regions on the face.
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Figure 5.10: Comparison between a frame without applying CLAHE (left) and with
CLAHE (right). We can observe that the left image has a slight shift in eye landmark
recognition. This will lead to misclassification. Instead, on the right frame, the
landmark detection is very clean, which helps the model make a correct classification.

Figure 5.11: Drivers can have different distances to the camera and different face
configurations, e.g., eyes size. The values of the parameters might substantially fluc-
tuate, so the model may not comprehend the pattern, especially with a small dataset.
Thus, these discrepancies can be harmless information to the system. These images
are examples where Experiment 2.b failed (Left: FN, Right: FS), and Experiment 2.c
succeed (both FF). Using relations proportional to the face position and configuration
helps the system normalize the data and deal with the fluctuation.

3. To improve the performance, it is necessary to explore and consider additional

information, such as context, to increase robustness.

Figure 5.13, 5.14, and 5.15, shows visually the results of Table 5.2.

53



Figure 5.12: Example of miss-classification on Experiment 2.c with profile faces. The
pupil tracker may fail when the driver has very thick eyeglasses frames.

Figure 5.13: Comparative Graph of the Running Time.
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Figure 5.14: Comparative Graph of the Micro-Average Accuracy.

Figure 5.15: Comparative Graph of the Macro-Average Accuracy.
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Chapter 6

Module 2: Drowsiness Classifier

6.1 Overview

According to different studies on driver monitoring, detecting yawning and eye closure

is essential for identifying driver drowsiness, which is a major contributor to traffic

accidents according to various sources [63].

However, in situations with challenging driving conditions, such as the use of masks

by drivers, reflections on eyeglasses, or significant changes in lighting, current research

tends to rely on unstable techniques as it can be difficult for computers to recognize

patterns under these circumstances and the current research has not made an effort

to work under this kind of conditions. Additionally, many of these systems rely on

expensive sensors that may be sensitive to light or intrusive to the driver. Figure 6.1

shows frame samples from this study’s dataset that represents the aforementioned dif-

ficult scenarios. To address the limitations of existing drowsiness detection systems, a

novel single-camera approach was developed that is able to accurately classify drowsy

drivers, even when they are wearing masks, experiencing eyeglass reflections, or un-

dergoing significant changes in daylight conditions. It entails a pipeline with three

novel steps:

1. To solve the issue of strong light variance, the frames’ brightness were equalized

by modifying their Lab’s color space using CLAHE. This process was covered

in Chapter 3.
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2. The face, eye, and body joint landmark recognition in this system is robust. The

face and eye landmark detection use a combination of an anchor-based real-time

face detector with a normalized dense alignment that considers 3D eyelid and

facial expression movement tracking. For shoulder joint recognition, an online

optimization framework is used. It links cross-frame poses and generates pose

flows that are robust to unconstrained body pose in different situations. This

process was covered in Chapter 4.

3. This framework uses three key landmarks: lower-face contour, eyes, and chest

movement to classify drowsiness. Unlike other studies, mouth closure is not

included in the feature vector because masks may cover it. Instead, the inclu-

sion of the lower-face contour and chest movement as potential parameters in

the feature vector is a key contribution of this paper in addressing the issue

of mask-wearing. This classification is video-based. The closure of the eyes

is measured in each frame. For the lower-face contour and chest movement,

the current position of each landmark is subtracted from its position in the

first frame (original). The driver’s drowsiness is then determined by combin-

ing spatio-temporal features based on these subtractions, which are used as the

feature vector in a GRU-based model. This chapter will provide a detailed

step-description of this process.

The system’s flowchart is shown in Figure 6.2.

The method outperforms in correctly classifying driver drowsiness in challenging

situations, as evidenced by the performance evaluation results with a dataset con-

taining intense light differences, eyeglasses reflection, and mask-wearing situations.
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Figure 6.1: Examples of frames from the dataset in which the drivers are wearing
masks. Left-top: Driver yawning with a black mask. Left-bottom: Driver not yawning
with eyeglass reflections and a white mask. Right-top: Driver yawning with a white
mask. Right-bottom: Driver yawning with low brightness and a white mask.
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Figure 6.2: System’s Diagram. The input is a video frame-sequence. For each frame
inside the video, first, it detects the face, and then CLAHE is applied to equalize
its brightness. Then eyes, shoulder-joint, and lower-face contour landmarks detection
are applied. After extracting this data, the parameters are calculated, and then the
feature vector will be constructed and after processing all the frames will be passed
to the GRU model. There are two possible outputs: Drowsy or No Drowsy.

6.2 Feature Vector

Three proposed feature vectors are one of the key novelties of this work. To de-

termine which parameters produce the best results, different combinations of these

parameters are compared. The quality of the data that is input into a model is one
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of the most important factors in determining how successful the model will be, and

this is especially true when the model requires dealing with data that contains large

differences. In general, many studies overlook the importance of data quality. If

more attention is paid to the quality of the input data, it is possible to achieve the

best performance from a static model while also reducing the training data amount

required. With this in mind, this study focuses on providing the input data to the

model in the clearest form possible. Each frame of data, denoted by the letter F ,

is a two-dimensional array of pixel values denoted by F (x, y), where the first index

(row) represents the x-coordinate and the second index (column) represents the y-

coordinate. A pixel within the frame F with the following structure is considered to

be an extracted landmark L in the frame F being evaluated.

L = F (xL, yL)

xL represents the x coordinate and yL the y coordinate of landmark L within the

two-dimensional pixels array that compose the frame data F .

To construct the feature vectors, three key area landmarks are used: the eyes, the

contour of the lower face, and the shoulder landmarks. There were made different

relations between these landmarks and carried out pre-processing on these parameters

to cut down on noise and obtain distinct patterns for the model. The following is a

description of the pre-processing steps of each parameter:

1. Eye closure (3 parameters): The eyelid closure distance over the pupil over

time is the result of measuring the vertical distance between the eye center and

each upper lid landmark. Since the face has a symmetrical structure, the eye

landmarks on only one side of the face were used, and the system automatically

decides which side to use. The eye pupil center landmark is named Pc L for

the left eye and Pc R for the right eye. If the pupil detector is unable to detect

60



Figure 6.3: Left: Proposed Network Architecture for GRU’s Model. Right: Proposed
Network Architecture for 3D CNN model.

a pupil accurately, the size of the pupil is reduced. The system then compares

the sizes of the pupils in both eyes and uses the landmarks of the eye with the

larger pupil size (referred to as Pc) to filter out noise in the data. The upperlid

landmarks Uj, with j = 0, 1, 2 was extracted. The vertical distance from the

eye center landmark Ec was then measured (y-coordinate). It is important

to note that the eye center is not the same as the pupil, identified through

segmentation. The eye center is determined based on the positions of the eyelid

landmarks. The eye closure e cj is represented by:

e cj = yUj
− yEc with j = 0, 1, 2

2. Lower-Face Contour (15 parameters): Another important metric used to detect
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drowsiness is the distance of each lower-face contour landmark from its initial

position to its position over time. This distance is significantly larger when

drivers are yawning than when they are in a normal or talking state. There are

15 lower face contour landmarks, denoted by n fc . To determine the size of this

difference is stored each lower face contour landmark as o fcj in the first frame.

Then, in each subsequent frame, the following equation is used to determine

the vertical difference between each current lower-face contour landmark c fcj

with o fcj:

f dj = yc fcj − yo fcj with j = 0, ..., (n fc− 1)

3. Shoulder Joint (1 parameter): Yawning involves a deep intake and outlet of air

[64]. Therefore, the movement of the shoulders as we inhale and exhale was

included as a criterion in this study. To measure the difference in position, the

original position of the shoulder joint landmark was saved in the first frame,

and the vertical difference between the current shoulder joint landmark and the

original position was calculated in each frame. This difference was used as a

feature in the classification model to distinguish between normal and yawning

states. Only the left shoulder joint landmark was used to reduce noise in the

data, as shoulder joints are symmetrical, and the position of the left shoulder

joint can be used to represent the position of both shoulders. The first shoulder

joint in the first frame was saved as osc, and the vertical difference between each

current shoulder joint landmark csc and osc was calculated in each frame using

the following equation:

s d = yc sc − yo sc

However, an extra step was required. For face landmarks, the recognition zone
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is small enough to achieve a high level of precision. However, for shoulder joints,

the joint point may be valid over a wider range of motion. As a result, to validate

that the origin possesses the joint point with the lowest elevation, the value of

the current shoulder joint landmark is first determined, then compared to the

value of the origin shoulder joint landmark, and finally, the current shoulder

joint landmark is updated if its value is lower than the value of the origin

shoulder joint landmark. This step reduces noise in the data by ensuring that

the origin shoulder joint is located at the lowest point.

After describing the different parameters, will be introduced three feature vectors

fv, and conduct a comparative analysis of them in the next Section 6.4.4. Each

feature vector is composed of the following combination of parameters:

• Eyes Closure ∪ Shoulder-Joint

• Eyes Closure ∪ Lower-Face Contour

• Eyes Closure ∪ Shoulder-Joint ∪ Lower-Face Contour

6.3 GRU model

Given that space-temporal features are important for detecting a drowsiness state, a

GRU-based model would fit to this study. Figure 6.3 represents the model’s topog-

raphy and hyperparameters.

Model:

In Recurrent Neural Networks (RNNs), connections between nodes can create a

cycle, allowing the output of some nodes to influence subsequent input to the same

nodes, enabling the system to exhibit temporally dynamic behavior. Variants of

RNNs include GRUs (Gated Recurrent Units) and LSTMs (Long Short-Term Memory

Networks). A GRU model was adopted because it has a simpler structure and fewer
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Figure 6.4: Comparison of the detection of the key landmarks used in this module
under a day-light environment.

matrix multiplications, making it more efficient, especially when the dataset is small

compared to LSTM, as shown in the literature [65]. The details are as follows:

Input: One of the feature vectors fv described in Section 6.2.

Network Topography and Hyperparameters: GRU’s model topography and hyper-

parameters are shown in Figure 6.3 (a).

Output: Prediction probability between the binary output, No Drowsy or Drowsy.

It is important to understand how detecting these key landmarks can vary based

on different conditions, such as lighting conditions. Figure 6.4 compares the detection

of key landmarks in a day-light environment, while Figure 6.5 compares the detection

of key landmarks in a night-light environment. Additionally, the performance of

key landmark detection may also be affected by using CLAHE, which is the method

explained in 3.3. Therefore, it is useful to compare the detection of key landmarks

with and without the use of CLAHE to understand how it may impact the accuracy

and reliability of the results.

6.4 Experimental Evaluation and Results

6.4.1 Overview

This study’s purpose is to show that the different feature vectors proposed are capa-

ble of accurately detecting driver drowsiness in challenging situations such as mask-
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Figure 6.5: Comparison of the detection of the key landmarks used in this module
under a night-light environment.

wearing, sun reflection, eyeglass reflections, and changes in lighting. To do this,

experiments were conducted using a challenging dataset with the aforementioned

conditions. The experimental evaluation was divided into two parts to illustrate two

important points: first, how the general methodology fails when applied to unre-

stricted situations, and second, compare each proposed feature vector’s performance.

Experiment 1:

The goal of Experiment 1 is to demonstrate where the current frameworks presented

in the literature have their flaws in unconstrained settings. No approach is considered

to be state-of-the-art, so the two selected methods are the ones utilized the most

frequently in the literature. For this demonstration, Experiment 1 was divided into

two separate sub-experiments:

• Experiment 1.1: The evaluation of the testing dataset is made without the

luminance equalization step. The model’s architecture is the same as what is

described in Section 6.3 model, with the difference that the face detector that is

used will be dlib’s face detector and that the model’s input will be the complete

output of dlib’s face landmark detection.

• Experiment 1.2: The evaluation of the testing dataset is made without the

luminance equalization. The eyes and mouth image data from the video will
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Figure 6.6: Results obtained for Experiment 1. From left to right: Experiment 1.1 (a)
and Experiment 1.2 (b). Top: Each experiment Confusion Matrix. Second Bottom:
Each experiment Precision-Recall curve.

be used as the model’s input. The model’s architecture is a three-dimensional

convolutional neural network, represented in Figure 6.3 (b).

Experiment 2:

Experiment 2 compares each proposed feature vector’s performance explained in

Section 6.2. For this demonstration, Experiment 2 was broken down into the following

four sub-experiments:

• Experiment 2.1: The evaluation of the testing dataset was done with the pro-
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posed GRU model using as an input Eyes Closure ∪ Shoulder-Joint ’s feature

vector. The frame luminance equalization step (CLAHE) is applied.

• Experiment 2.2: The evaluation of the testing dataset was done with the pro-

posed GRU model using as an input Eyes Closure ∪ Lower-Face Contour’s

feature vector. The frame luminance equalization step (CLAHE) is applied.

• Experiment 2.3: The evaluation of the testing dataset was done with the pro-

posed GRU model using as an input Eyes Closure ∪ Shoulder-Joint ∪ Lower-

Face Contour’s feature vector. The frame luminance equalization step (CLAHE)

is applied.

• Experiment 2.4: The evaluation of the testing dataset was done with the pro-

posed GRU model using as an input the feature vector that got overall better

results among Experiments 2.1, 2.2, and 2.3 with the difference that in this

experiment was not applied the frame luminance equalization step (CLAHE).

6.4.2 Dataset

The training dataset consists of videos from [66] and contains around 400 videos

that do not include challenging conditions. Data augmentation was applied, and the

dataset was divided into two classes: No Drowsy and Drowsy.

As for the testing dataset, all the videos were taken especially for conducting this

study’s experiments, and there are 283 videos. These videos were captured in a real

car, sometimes when the car was moving and when it was not. Experiments were

carried out with a total of thirteen participants, four of whom were female, and nine

of whom were male. The ages of those involved range from 19 to 30 years old. Only

frontal faces are considered in the testing dataset. There are no faces that are strongly

rotated within the same video, faces that are too close to the camera, or no faces at

all. All the drivers wore a mask and the videos were also subjected to at least one of

the following conditions: environments with intense light (excluding completely dark
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Figure 6.7: In Experiment 1.1, the method demonstrated poor performance in face
detection, and in the few cases where it was able to recognize the face, it also struggled
to identify landmarks.

or bright videos where the face could not be seen even after applying CLAHE) or

eyeglass reflections. Each video contains 150 frames and was recorded in a variety of

daylight conditions, including nighttime. The dataset includes as well same videos

but with data augmentation to create darker or brighter versions to demonstrate that

the classifier is robust to variations in lighting conditions.

6.4.3 Metrics

• Predicted Results Confusion Matrix: In statistical classification, it is the presen-

tation of the performance of the model by illustrating the number of instances

that are correctly classified. The rows contain the ground truth labels, while

the columns contain the predicted labels.

• Precision-Recall Curve (PRC): In statistics, this diagram illustrates how the

balance between recall and precision changes at various thresholds.

– A precision-recall curve is a graph that plots the precision (along the y-

axis) and the recall (along the x-axis) for various thresholds. High recall

and high precision are both represented by a large area under the curve,

while a point on the curve denotes a perfect skill model (1,1).
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– Precision is a measure of a model’s accuracy in predicting the positive

class. It is calculated by dividing the number of true positives by the

total number of true and false positives. Precision is also referred to as

specificity, which refers to the ability of a model to predict the presence of

the positive class accurately.

– Recall is a measure of a model’s ability to correctly identify positive in-

stances and is calculated as the number of true positives divided by the

total number of true positives and false negatives. Sensitivity is another

term used to refer to the ability of a model to correctly make predictions

and is often used synonymously with recall.

6.4.4 Results

Experiment 1:

Experiment 1.1: Seeing this results, the general approach, using Dlib’s face recog-

nition and landmark recognition, has a poor performance. In Figure 6.6 (a.1) is

reflected that the model is not capable of making an accurate distinction between

Drowsy and No Drowsy. The poor performance can be seen in Figure 6.6 (a.2). The

curve area does not have the expected shape and the precision value is less than 0.6.

The fact that it was unable to recognize landmarks on multiple occasions even the few

times that could make a correct facial recognition was clearly reflected in the results,

as can be seen in Figure 6.7. The results of this experiment suggest that the model is

unable to understand the pattern formed by the features used for the classification.

Experiment 1.2: The results of this experiment were not significantly improved

compared to those of Experiment 1.1. The model cannot detect changes in the mouth

because this feature is covered. It is clear by seeing Figure 6.6 (b.1) that the model

is unable to differentiate accurately between the two states denoted by the labels

No Drowsy and Drowsy. Compared to Figure 6.6 (a.2), Figure 6.6 (b.2) shows a

better PRC result. However, even though a slight regular PRC shape is visible, the
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Figure 6.8: Results obtained for Experiment 2. Odd rows: Each experiment Confusion
Matrix. Even rows: Each experiment Precision-Recall curve.
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performance is still considered a failure because the precision drops significantly at

low recall thresholds. Figure 6.6 (a.2) displays a worse PRC result. This is likely due

to the model’s difficulty in interpreting the data pattern because the methodology

does not provide a generalization. If the data is not refined, the model will try to

search for a pattern under various conditions, such as the influence of mask wearing,

changes in the environment, and eyeglass reflections, which is a very challenging task.

Experiment 2:

Experiment 2.1: Figure 6.8 (a.1) illustrates that the model is unable to correctly

differentiate between the No Drowsy and Drowsy state. This is reflected in the Drowsy

class that contains approximately half of the tested videos. Poor performance can be

seen in Figure 6.8 (a.2) because the precision is less than 0.8. According to the findings

of this study, only the pure shoulder joint feature may not be effective in predicting

driver drowsiness. There are several potential reasons for this, including the fact that

the marker for the shoulder joint is not in the same exact location in each frame. The

potential correct landmark area for the shoulder joint is larger, which means that the

landmark may appear in each frame with a varied position within a region. This is in

contrast to face landmark detection, where each landmark has a nearly precise and

consistent location. Even though the shoulder joint is roughly in the same place as

the previous frame, it may still have an error because the location does not remain

constant from frame to frame. In the future, the development will implement a

neighborhood-repositioning capability, which will allow for the enhancement of the

benefits offered by this feature.

Classification Percentage Drowsy Class: 55.55% No Drowsy Class: 74.69%.

Experiment 2.2: In terms of overall performance, this model was superior to all

others. Both classes can be recognized without any problems, as can be seen in Figure

6.8 (b.1). According to Figure 6.8 (b.2), this experiment has the highest area under

the curve among the four experiments; indicating that it is the model with higher

accuracy. This has a significant meaning: from noisy frame data, the relevant features
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were provided in an even and consistent manner so that the model could recognize

the pattern within the frame. The use of robust landmark detection libraries, as well

as comparing the landmark position in each frame to its initial position, are critical

steps inside the pipeline in achieving these results. However, can be seen that the

curve contains a spike in the middle of it. The fact that it was difficult to identify

landmarks in some of the frames is one possible explanation.

Classification Percentage Drowsy Class: 85.47% No Drowsy Class: 86.14%.

Experiment 2.3: This model came in second place compared to others in terms

of its overall performance. Figure 6.8 (c.1) shows that the model did a better job

of classifying the No Drowsy category than the model used in Experiment 2.2. This

result shows that the shoulder-joint characteristic, combined with other features, can

provide the model crucial information to comprehend the pattern. In addition, the

model’s balance and smoothness can be seen in Figure 6.8 (c.2), which displays a fairly

large area under the curve. As the shoulder-joint potential correct landmark area is

bigger, for the same reason as Experiment 2.1, Experiment 2.3 did not perform bet-

ter than Experiment 2.2. Therefore, if a previous frame neighborhood-repositioning

capability for shoulder joint landmark detection can be included if the shoulder joint

landmark position of the current frame is significantly different from the previous

one, then it is possible that this model may perform better than the model used in

Experiment 2.2.

Classification Percentage Drowsy Class: 76.06% No Drowsy Class: 92.18%.

Experiment 2.4: Experiment 2.2 yielded the best results overall, so this experiment

was based on it. The difference is that was not applied CLAHE. It is clear from

looking at Figure 6.8 (d.1) that the model is unable to differentiate clearly between

the two states denoted by the labels Drowsy and No Drowsy. For a medium recall

threshold, the precision was lower than 0.8 and Figure 6.8 (d.2) displays unsatisfactory

performance. The importance of adjusting the brightness of the frames is emphasized

by the results of this experiment. Significant shifts in the lighting conditions occur
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while driving, and these should be filtered. Due to variations in lighting, the model

may struggle to distinguish between different faces or misidentify landmarks if the

brightness is not balanced. On the other hand, CLAHE can be of great assistance

when operating in low-light conditions. Since the face features are being significantly

emphasized in CLAHE, yawning detection can achieve a higher level of precision.

Classification Percentage Drowsy Class: 57.65% No Drowsy Class: 84.33%.
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Chapter 7

Conclusions & Future Works

7.1 Conclusions

This study presented a novel driver’s gaze zone and drowsiness identification pipeline

using a single camera robust to highly challenging situations as could be:

• Mask-wearing faces

• Face partial occlusions

• Eyeglasses reflection

• Strong daylight variations

• Pupil noise

The robustness of the driver’s gaze zone and drowsiness identification pipeline was

achieved through the following key points:

1. Equalizing the brightness of the frames through the use of Contrast Constrained

Adaptive Histogram Equalization on the luminance channel of the Lab color

space. This helps to improve the visibility of features in the frames, making it

easier for the algorithm to accurately identify key landmarks such as the eyes,

face, and body joints.
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2. Recognizing the key landmarks as face, eyes, pupils, and body-joints with li-

braries that are highly robust under unconstrained situations. This reduces on

a great scale the possible noise that the data may have thanks to various facial

occlusions as could be masks, scarves, eyeglasses reflections, eyeglasses sticks,

small eyes, partially occluded pupils, and profile face poses.

3. The construction of DNN models using novel feature vector parameters for

the Gaze Zone Classifier was introduced. Since the geometric facial structure

varies per person, the feature vector parameters consist on different relations

between pupil and eye landmarks in proportion to the driver’s geometrical face

configuration. It considers when the driver’s face and eyes are facing different

directions. This is a per-frame classification. Related works general approaches

got a best Micro-Average and Macro-Average Accuracy for the Frontal Model of

76% and 75%, respectively, while the proposed method got 95% and 95%. As for

the Profile Face Model, the related works approaches got a best Micro-Average

and Macro-Average Accuracy of 52% and 54%, respectively, while the proposed

method got 92% and 91%. In both models, the proposed method outperformed

the related works approaches. However, the related works method had the best

processing time of 0.024 seconds, whereas the proposed method had a processing

time of 0.051 seconds.

4. The introduction of a GRU model structure, where the input feature vector

considers eyes closure, lower-face contour and chest movement landmarks for

the Drowsiness Classifier. In contrast to prior studies, mouth closure was not

considered as part of the feature vector because mouth occlusions like masks

could cover it. One of the most significant contributions to addressing the

mask-wearing situation issue for the drowsiness classifier is the addition of chest

movement and the lower-face contour as possible feature vector parameters to

detect a yawing state. For the face contour and chest motion, each current
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landmark location is subtracted from its original position. Also, it is measured

the eye closure in each frame. Finally, this information is the feature vector

of a GRU-based model that, based on spatial-temporal features, derives the

driver’s drowsiness state. This is a video-based classification. Both related

works’ methodologies got very unbalanced models. Inside the proposed feature

vectors, the feature vector that uses Eyes Closure ∪ Lower-Face Contour as

parameters got the best classification results with a classification percentage in

the Drowsy Class of 85.47% and for the No Drowsy Class of 86.14%.

Inside the study, both classifiers were compared with the general approach. More-

over, was also demonstrated the significance of each step in the suggested pipeline.

After evaluating the current implementation from a dataset with highly unconstrained

driving conditions, was observed that this approach can correctly handle the classifi-

cation of the driver’s gaze zone and drowsiness in a wide variety of difficult situations.

Finally, the current work and its extensions have the potential to serve as a base

for establishing more stable and robust ADAS systems towards challenging scenarios.

7.2 Contribution to Intelligent Transportation Sys-

tems

According to findings from different studies [67], tiredness and distracted driving

are two of the primary contributors to automobile accidents. If Advanced Driving

Assistance Systems (ADAS) can detect drowsy or distracted drivers, this can greatly

improve traffic safety. These systems will not only alert the driver but also take control

of the vehicle in semi-autonomous cars, preventing severe accidents and promoting

safe driving.

Classifiers for driver gaze and drowsiness identification are crucial in determining

if the driver is alert and aware of their surroundings, allowing an ADAS (Advanced

Driver Assistance System) to make a warning or, if it is inside an autonomous car,
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to take control of the vehicle if necessary. When combined, tracking a driver’s head,

eyes, and body features can provide a reasonably accurate estimate of where the driver

is looking or the driver’s alertness. However, the studies in the prior research were

carried out under ideal circumstances. It is highly challenging to make this categoriza-

tion under unconstrained settings, which is why the performance of the most recent

investigations may lead to very poor performance under these difficult conditions.

The development of a high-performance driver gaze and drowsiness classifier that can

operate in unconstrained environments using a single camera is the primary focus of

this study. When operating in unrestricted conditions, having a high-performance

system means recognizing distractions and alertness with fewer mistakes, leading to

a considerable reduction in automotive accidents.

7.3 Future Work

Making a robust classifier requires concentrating efforts on very specific details. So

to improve the performance of the current gaze zone and drowsiness detection, future

works should explore and extend the proposed method in the following topics:

1. Combining both modules (gaze zone and drowsiness detection) into one system

to operate simultaneously.

2. Extending Module 1 to consider spatial and temporal information to provide a

more refined result based on context.

3. Proposing a system that utilizes both RGB and NIR cameras to handle totally

dark frames.

4. Implementing an autonomous parameter tuning algorithm for CLAHE (Con-

trast Limited Adaptive Histogram Equalization) that is able to detect the

frame’s luminance and choose the optimal settings for equalization.
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5. Exploring how the algorithm performs when the driver is at different distances

from the camera and has significant differences in pitch, yaw, and roll.

6. Mapping the driver’s gaze to the object they are looking at, to provide more

information to the system.

7. Extending the implementation to consider the case of multiple passengers in

the vehicle.

8. Incorporating a module to detect daydreaming as a component in a driver as-

sistance or autonomous vehicle system can aid in identifying when the driver’s

attention is not fully on the road, and they may be concentrated on their own

thoughts.

9. Implementing a continuous zone classification system for determining where a

driver is looking, instead of a discrete zone classification system, could pro-

vide more accurate information to the system. This is because a continuous

zone classification system allows for a more precise representation of the eye’s

direction rather than being limited to a set of predetermined regions.

78



Bibliography

[1] L. Fridman, P. Langhans, J. Lee, and B. Reimer, “Driver gaze region estimation
without use of eye movement,” in IEEE Intell. Sys., vo. 31, no. 3, pp.49–56, 2016.

[2] L. Fridman, J. Lee, B. Reimer, and T. Victor, “‘Owl’and ‘Lizard’: Patterns of
head pose and eye pose in driver gaze classification,” IET Computer Vision, vo.
10, no. 4, pp. 308–314, 2016.

[3] L. Fridman, H. Toyoda, S. Seaman, B. Seppelt, L. Angell, J. Lee, B. Mehler,
and B. Reimer, “What can be predicted from six seconds of driver glances?,” in
Proc. Conf. on Human Factors in Computing Sys., pp. 2805–2813, 2017.

[4] M.C. Chuang, R. Bala, E.A. Bernal, P. Paul, and A. Burry, “Estimating gaze
direction of vehicle drivers using a smartphone camera,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis., pp. 165–170, 2014.

[5] O. Déniz, G. Bueno, J. Salido, and F. De la Torre, “Face recognition us-
ing histograms of oriented gradients,” Pattern Recognit. Lett., vo. 32, no. 12,
pp.1598–1603, 2011.

[6] A. Naqvi, M. Arsalan, G. Batchuluun, S. Yoon, and R. Park, “Deep Learning-
Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sen-
sor,” Sensors, vo. 18, no. 2, 2018.

[7] L. Fridman, J. Lee , B. Reimer, and B. Mehler, “A framework for robust driver
gaze classification,” SAE Technical Paper, 2016.

[8] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the
wild,” in Proc. IEEE Int. Conf. Comput. Vis., pp. 3730–3738, 2009.

[9] S. C. Martin, “Vision based, Multi-cue Driver Models for Intelligent Vehicles,”
PhD diss., 2016.

[10] S. Minaee, P. Luo, Z. Lin and K. Bowyer, “Going Deeper Into Face Detection:
A Survey,” arXiv preprint arXiv:2103.14983, 2021

[11] X. Burgos-Artizzu, P. Perona, and P. Doll´ar, “Robust face landmark estimation
under occlusion,” in IEEE Intl. Conf. Comput. Vis., 2013.

[12] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face reconstruction
and dense alignment with position map regression network,” in Proc. Europ.
Conf. Comput. Vis., pp. 534–551, 2018.

[13] I.R. Tayibnapis, M.K. Choi, and S. Kwon, “Driver’s gaze zone estimation by
transfer learning,” in IEEE Int. Conf.Consumer Electronics, pp. 1–5, 2018.

79



[14] X. Shan et al., “Driver Gaze Region Estimation Based on Computer Vision,”
in Int. Conf. Measuring Technology and Mechatronics Automation (ICMTMA),
pp. 357-360, 2020.

[15] S. Vora et al., “Driver gaze zone estimation using convolutional neural networks:
A general framework and ablative analysis,” in IEEE Trans. Intell. Transp., vol.
3, no. 3, pp. 254–265, 2018.

[16] J. Schwehr and V. Willert, “Driver’s gaze prediction in dynamic automotive
scenes,” in Proc. IEEE Int. Conf. Intell. Transp, pp. 1-8, 2017.

[17] A. Tawari et al., “Where is the driver looking: analysis of head, eye and iris
for robust gaze zone estimation,” in Proc. IEEE Int. Conf. Intell. Transp, pp.
988–994, 2014.

[18] S. Guasconi, M. Porta, C. Resta and C. Rottenbacher, “A low-cost implementa-
tion of an eye tracking system for driver’s gaze analysis,” in Int. Conf. Human
System Interactions, pp. 264-269, 2017.

[19] Y. Wang, G. Yuan, Z. Mi, J. Peng, X. Ding, Z. Liang and X. Fu,“Continuous
driver’s gaze zone estimation using rgb-d camera,” Sensors, vol. 19, no. 6, p.1287,
2019.

[20] Y. Wang, T. Zhao, X. Ding, J. Bian and X. Fu, “Head pose-free eye gaze pre-
diction for driver attention study,” in IEEE Int. Conf. Big Data and Smart
Computing, pp. 42-46, 2017.

[21] S. Jha and C. Busso, “Probabilistic Estimation of the Gaze Region of the Driver
using Dense Classification,” in IEEE Int. Conf. Intell. Transp, pp. 697-702, 2018.

[22] K. Yuen, S. Martin and M. M. Trivedi, “Looking at faces in a vehicle: A deep
CNN based approach and evaluation,” in IEEE Int. Conf. Intell. Transp, pp.
649-654, 2016.

[23] T. Hu, S. Jha and C. Busso, “Robust Driver Head Pose Estimation in Naturalistic
Conditions from Point-Cloud Data,” in Proc. IEEE Intell. Veh. Symp., pp. 1176-
1182, 2020.

[24] A. Rangesh, B. Zhang and M. Trivedi, “Driver Gaze Estimation in the Real
World: Overcoming the Eyeglass Challenge,” in Proc. IEEE Intell. Veh. Symp.,
pp. 1054-1059, 2020.
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