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Chapter 1

Introduction

Core-collapse supernovae (CCSNe) are explosions in the final stage of massive star evo-
lutions. Since their peak luminosities reach as much as that of galaxy consisting of more
than 1010 stars (absolute magnitude M ∼ −19), many CCSNe have long been observed,
and its physical mechanism also has been studied for a long time. Comprehension of the
CCSNe mechanism is important not only for its own sake but also for understanding the
formation of neutron stars or black holes as well as the synthesis of heavy elements. Al-
though a remarkable progress has been made over the years, the mechanism has not yet
been fully understood.

The main cause of difficulties comes from most of the explosion energy of CCSN is
released in the form of neutrinos which interacts with matters only thorough weak inter-
actions. In fact, there was observation of supernova neutrino only from the supernova event
SN1987A in the Kamiokande-II Hirata et al. (1987), IMB Bionta et al. (1987) and BAK-
SAN Alexeyev et al. (1988). For example in Kamiokande-II, 11 neutrinos were detected
during ∼ 10 s. However, multi-messenger astronomy has been remarkably advanced in
recent years, and the development of neutrino detectors are also progressing. If a Galac-
tic CCSN occur in the near future, we will more than 105 neutrinos from the CCSN
over a minute at facilities that are currently or will be soon operational such as Super-
Kamiokande (Abe et al., 2016; Suwa et al., 2019) and Hyper-Kamiokande (Abe et al.,
2018) , IceCube (Abbasi et al., 2011), NOνa (Acero et al., 2020), DUNE (Abi et al., 2020)
and JUNO (An et al., 2016) (for other detectors, see Scholberg (2012)).

Since the neutrino interaction is weak, SN neutrino directly comes from the central
hot and dense region where we cannot observe by any frequency of electromagnetic waves.
Hence we can “see” the interior of the CCSN by the neutrino observation. Understanding
explosion mechanism of CCSNe and its neutrino signals are important not only for as-
tronomical interest but for understanding the particle physics and nuclear physics under
extreme condition of high temperature and density because the thermal evolution of CCSN
is controlled by weakly interacting particles and the core structure is strongly affected by
the equation of state (EoS) of the nuclear matter. Hence, CCSN is a unique laboratory of
natural science.

In this thesis, I tackle to reveal the multidimensional effects which leads the successful
CCSN explosion and the neutrino signature form the CCSN especially by improving the
neutrino weak reaction rates which are indispensable to treat the neutrino transport. This
chapter is organized as follows. First, I introduce briefly the evolution scenario of neutrino
driven CCSN and subsequent formation of proto-neutron stars (PNS). Multidimensional
effects which can be lead the successful explosion are summarized in the next section.
Understanding neutrino interactions in hot dense matter is indispensable not only to the

1
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investigation of the explosion mechanism of CCSNe but also to the quantitative prediction
of neutrino signals from newly born PNS. I briefly summarize the neutrino interaction in
the final section in this chapter.

1.1 Evolution form core-collapse to formation of neutron

star

Chemical evolution and fate of massive stars are different depending on its mass, MZAMS.
There are two types of progenitors that are supposed to produce CCSNe; they are called
”iron core collapse supernova (FeCCSN)” and ”electron capture supernova (ECSN)”. Ma-
jority of CCSNe are FeCCSN and their progenitor masses are 10M⊙

<
∼MZAMS

<
∼ 100M⊙.

These progenitors have the iron core and temperature of the core is increased due to
Si-shell burning. When the temperature Tc exceeds 1010K, photo-dissociations of iron
nuclei

56Fe → 134He + 4n, (1.1)
4He → 2p + 2n, (1.2)

are triggered to minimize the free energy. These endothermic reactions makes the core
unstable and induce the dynamical collapse of the core.

ECSNe occupy almost 5% of CCSNe (Doherty et al. (2017)) of which the progenitor
mass is 8M⊙

<
∼MZAMS

<
∼ 10M⊙. For these lighter progenitors, oxygen-neon-magnesium

(ONeMg) core is produced and its mass increases due to C-burning. If the central density
reaches the threshold for electron capture (EC) on 24Mg (ρc = 109.88 g/cm3), then the core
begins to contract due to the decreasing of the electron pressure through the EC. This
leads the O- and Ne-deflagration and results in core collapse. The resultant SN explosion
its explosion energy is supposed to be weaker with the explosion energy Lν ∼ 1050 erg than
FeCCSN ∼ 1051 erg (Kitaura et al. (2006)). For example, the Crab pulsar (or SN1054) is
considered as one of electron capture supernova.

In this section, I explain the evolutions of FeCCSN, which is main focus of this thesis,
from the core-collapse to the formation of neutron stars. Unless otherwise noted, CCSN
means the FeCCSN hereafter in this thesis.

Core-collapse and neutrino trapping

Collapse of the Fe core is the beginning of the CCSN. The central density is rapidly rapidly
rose by the collapse and the collapse suddenly stops when the density of the collapsing
core becomes close to the saturation density (ρs ∼ 2.3 × 1014 gcm-3) because it is stiffen
by the nuclear force. This is the core of the PNS.

Due to the compression of matter, electron becomes strongly degenerate and becomes
the high Fermi energy. Then the electron capture reaction, e− + p → n + νe, occur
easily and the number of neutron increases, called ”neutronization”. A copious number of
electron-type neutrino are also emitted by electron capture reaction. Typical cross section
of weak interaction is estimated from the reaction rate of neutrino capture as

σw ∼ G2
F ϵ

2
ν ∼ 10−42 cm2

( ϵν
10MeV

)2
, (1.3)

with the Fermi coupling constant GF = 1.164364× 10−11MeV−2 and the neutrino energy
ϵν . The mean free path of neutrino in the collapsed matter is roughly estimated from the
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above cross section as

lmfp ∼
1

nnσw
∼ 105 cm

(

ρ

1014 g/cm3

)−1
( σw
10−42 cm2

)−1
, (1.4)

where nn is the number density of neutron. Since lmfp is much smaller than the typical size
of PMS core (∼ 106 cm ), electron-type neutrino is trapped in the Fe core, called ”neutrino
trapping”. So, the PNS accumulate a large amount of neutrino from the moment it is born.
Also due to the neutrino trapping, chemical equilibrium of the electron capture (called
beta equilibrium) is realized and the chemical potentials satisfies

µe + µp = µn + µνe . (1.5)

Sudden stop of core collapse is called core bounce. Since the accreting matter has
supersonic velocity whereas the PNS core contracts in subsonic velocity, shock wave is
produced at the surface of the PNS core.

Shock stagnation and neutrino heating mechanism

After the core bounce the shock propagate outward by the thermal pressure of the shocked
matter. If the shock successfully break through the collapsing Fe outer core, the shock
easily propagate the outer envelope of the progenitor and become successful CCSN. It
is well known, however, that the shock is stagnated inside the core because of energy
losses via photodissociations of the nuclei. Simultaneously, when the shock front reaches
the neutrino sphere, where the neutrino moves freely outside of this radius, the trapped
νe released suddenly, resulted in the strong emission of neutrino, called ”neutronization
burst”. The thermal energy of the shocked matter is also subtracted by the neutrino
emission in the neutronization burst, hence stagnetion of the shock is reinforced.

Hence there must be some mechanisms to push the stalled shock wave outward again.
Energy source of CCSNe is gravitational energy of the contracting core and it is roughly
estimated as

∆W ∼

(

−G
M2

core

Ri

)

−

(

−G
M2

core

Rf

)

∼

(

−1051erg

(

Ri

108cm

)−1
)

−

(

−1053erg

(

Rf

106cm

)−1
)

∼ 1053erg, (1.6)

where Ri and Rf are the typical radius of PNS core before and after collapse, respectively
and we assume Mcore ∼ 1.4M⊙. The typical energy of kinetic energy of CCSNe estimated
from the optical observation is roughly 1051 erg, it is sufficient if 1% of ∆W is converted
to the kinetic energy.

The most promising scenario at present is the neutrino-heating mechanism, in which
matter passing the stalled shock wave acquires energy from neutrinos emitted from PNS
and the shock revival obtains as a result. This scenario is natural because 99% of gravita-
tional energy is released by radiation of neutrino. In fact, accreting matter heated mainly
via reaction between electron type neutrinos and nucleons (proton and neutron):

νe + n → p+ e−, (1.7)

ν̄e + p → n+ e+. (1.8)
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Heating rate of these reactions is approximately written as
(

dE

dt

)

abs

∼
σLν

4πr2

∼
1

4πr2
(

4πr2νσSBT
4
ν

) (

Aε2ν
)

∼ 9k2BσSBAT 6
ν

(rν
r

)2
, (1.9)

where we assume σ ≃ Aε2ν and εν ∼ 3kBTν . σSB and kB are Stefan-Boltzmann constant
and Boltzmann constant, respectively. Cooling also occurs due to inverse reactions of (1.7)
and (1.8) and cooling rate is written as

(

dE

dt

)

em

= −σve±ne±⟨εν⟩

∼ 36k2BσSBAT 6
m, (1.10)

where electron-positron dominance is assumed and also ne ∼ a/3kBT
3
m and ⟨εν⟩ ∼ 3kbTm.

As a result, net heating rate is approximately given by
(

dE

dt

)

net

=

(

dE

dt

)

abs

+

(

dE

dt

)

em

∼

(

dE

dt

)

abs

{

1−

(

2r

rν

)2(Tm

Tν

)

}

. (1.11)

In general, since T 6
m decreases more rapidly than r2 as radius gets larger, net heating of

the accreting matter becomes positive above a certain radius called gain radius. Region
between gain and shock radii is called gain region and there is a possibility to explode
successfully by this heating.

This “delayed explosion mechanism” was found first by Bethe and Wilson (1985) in
which the stalled shock moves outward again by the neutrino heating for sufficiently long
time in their spherically symmetric simulation (1D simulation). It is common agreement,
however, that crude estimation in their study exaggerated the heating and 1D simulation
does not reproduce the successful explosion even though including detail neutrino transport
and general relativistic effects.

Figure 1.1 shows the evolution of mass element in the core of 15M⊙ progenitors after
the core bounce Sumiyoshi et al. (2005)). The thick dashed line denotes the radius of
the shock wave. As can be seen, the shock propagation stops at the post bounce time
tpb ∼ 100ms and turned to shrink.

To overcome this stagnation of the shock, many researcher try to investigate multidi-
mensional SN explosion with numerical simulation. Recently, some successful simulation
have reported (for recent review see Müller (2020)) and the non-spherical motion of mat-
ter, such as convection and a standing accretion shock instability (SASI), extend the
timescale of matter fall to gain the neutrino heating. There are also alternative multi-D
effects supporting the successful explosionn such as acoustic mechanism, LESA and so on.
I introduce these multi-D effects in section 1.2.

1.1.1 PNS cooling

Let us focus on the evolution of remaining compact object after the successful CCSN, i.e.
PNS because most of the gravitational binding energy of PNS is released in the form of
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Deleptonization phase

After the accretion phase, the PNS is settled to a quasi-hydrostatic configuration and
its subsequent evolution is driven by diffusive neutrino emissions Burrows and Lattimer
(1986); Pons et al. (1999); Fischer et al. (2010); Hüdepohl et al. (2010); Roberts (2012);
Nakazato et al. (2013); Roberts and Reddy (2017b). This neutrino flux transfer the thermal
energy from the off-center region to the central of the PNS as well as the lepton number
(see the evolution from the yellow line to the blue line in Figure 1.2).

This phase is called the deleptonization phase or the cooling phase because the lepton
number in the PNS is carried away by the neutrino flux due to the positive flux of the
electron neutrino throughout the PNS. Deleptonization cooling phase occurs on the Kelvin-
Helmholtz (KH) timescale given as

τKH =
Eb

4πR2
νFν

∼ O(10) s, (1.12)

where Eb, Rν and Fν are the binding energy of PNS, the radius of neutrino sphere and
the neutrino energy flux, respectively (Nakazato and Suzuki (2020)). µνe/T decrease and
eventually the entire PNS the state with µνe/T ∼ 0.

Thermal cooling phase

Once µνe/T ∼ 0 throughout the star, the PNS slowly cooling as teh energy leaks from the
entire star through the thermal neutrino emission:

e− + e+ → ν + ν̄, (1.13)

N +N → N +N + ν + ν̄, (1.14)

where N denote the nucleon (i.e. neutron or proton). This phase is shown as the evolution
after the purple line and the PNS gradually decrease its temperature to become a cold
NS.

1.2 Multidimensional effects

It is now a consensus of the supernova society that multidimensional effects are crucial for
the success of the delayed neutrino-driven explosion scenario except for the low-mass end
of massive stars (Kitaura et al. (2006)).

Multidimensional effects are interesting in not only theoretical but also observational
point of view. Recently, LIGO (Aasi et al. (2015)) and VIRGO (Acernese et al. (2015))
group observed gravitational waves (GWs) from binary BHs and NSs (see e.g. Abbott et al.
(2016, 2017); The LIGO Scientific Collaboration et al. (2020)) and gravitational astronomy
is now evolving. Recent numerical simulations have revealed that there are violent non-
spherical motions of matter and vibration of core of proto-neutron star (PNS) in the
interior of CCSNe, and hence the GWs from CCSNe are the most promising candidates
of the next-generation GW observations such as KAGRA (Akutsu et al. (2021)). CCSNe
are now one of the hottest topic in the multi-messenger astronomy.

In this section, I summarize the multidimensional effects recently investigated as sup-
ports of neutrino-driven explosion.
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sure fluctuation. The deformed shock wave induces further amplification of the entropy
and vorticity perturbations (Foglizzo (2009)). For the PAC scenario, the standing pres-
sure wave propagates in the circumferential direction in the region between the spherical
accretion shock wave and PNS. When the postshock pres- sure is slightly higher than
unperturbed pressure, it pushes the shock wave outward. The outward displacement of
the shock wave leads to an increase of postshock pressure in the inner region, while the
postshock pressure immediately behind the shock wave decreases. Thus, the amplitude of
the pressure fluctuation increases further Blondin and Mezzacappa (2006).

The understanding of SASI is also important for analysis of neutrino and GW signals.
Since the source of neutrino radiation is the gravitational energy of the accreting matter,
the radiated neutrino luminosity depends on mass accretion rate of the PNS. As a natural
consequence, the fluctuations of accretion induced by SASI motion leads modulations of
the neutrino luminosity. This is really detectable by IceCube and Hyper-Kamiokande for a
galactic SN (Takiwaki and Kotake (2018)). Similarly, GW signals reflects the information
of mass motion in the post-shock layer. Violent mass motion due to SASI-activity resulted
in modulations of the mass-quadrupole moment and therefore GW radiation. It is believed
that this modulation can be detected by using next generation GW detection instruments
for galactic SN (Kawahara et al. (2018)).

1.2.2 Acoustic Mechanism

Multidimensional effects discussed nowadays are not only fluid instability. Acoustic mech-
anism are recently proposed by Burrows et al. (2006, 2007a,b). Basic scenario of this
is as follows: impulsive forces from anisotropic accretion downflows excite gravity-mode
(g-mode) oscillations of the PNS. And then, generated acoustic waves become steepened
as they propagate because of the negative gradient of the density, deposit energies to
postshock matter. Finally, the deformation of the shock front is induced in the same in-
isotropies. If we assume acoustic power is generated by periodic core oscillation due to hit
of a nonspherical, steady accretion stream, one can estimate the acoustic power:

Ėac ≃
πρ

2
(gPNSR0)

3/2H2
0

∼ 0.5× 1051erg/s

(

ρ

1011 g/cm3

)(

gPNS

1013 cm/s2

)3/2( R0

10 km

)3/2( H0

3 km

)

, (1.15)

where ρ, gPNS, R0, H0 are the average density at the surface of the PNS, the average
acceleration at the PNS surface, accretion stream radius and wave height, respectively
(Burrows et al. (2007b); Janka (2012) and Burrows et al. (2006)). Of course, there is a
large uncertainty in the value of H0, the depositing energy is compatible with the explosion
energy of CCSNe, assuming that the acoustic power injected for a long time >

∼ 1s.
One of the advantages of acoustic mechanism is that acoustic wave does not go through

the shock because of the supersonic accretion in the outer shock region and deposits all
energies inside the shock. Hence, the acoustic mechanism acts as high efficient trans-
ducer from gravitational energy to energy of postshock matter. Unfortunately, successful
explosion driven by acoustic power have not been reproduced by other numerical simu-
lation groups (e.g., Marek and Janka (2009)), however, acoustic mechanism is still hot
issue in CCSNe mechanism and have been tested, for example, in phenomenological way
(Yoshida et al. (2007); Harada et al. (2017)). Note that this mechanism is intrinsically
multidimensional since g-mode oscillation are no spherical motions.
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Since the neutrino heating is stronger in the side in which ν̄e flux is stronger as I mentioned,
neutrino heating occur strongly in the upper hemisphere and shock front is pushed also
in the same side. This deformation is the same side as initially considered, so this loop is
expected to sustained for a long time.

Tamborra et al. (2014a) also reported that a shock deformation is related with an
anisotropy in the number flux difference Fn

νe − Fn
ν̄e of the electron-type neutrinos. On the

other hand, Dolence et al. (2015) later reported that they found a dipolar asymmetry not
in the difference but in the sum of the two fluxes Fνe + Fν̄e (and also the sum of number
fluxes) is strongly correlated with the deformation of the shock front. In addition to this
apparent discrepancy, there have been doubts that LESA is a numerical artifact because
Ray-by-Ray+ code using in their neutrino transport calculation exaggerates directional
dependence of the fluctuations. Recent studies by other groups suggest that LESA is really
physical phenomena, but they observed various different characteristics with Tamborra
et al. (2014a) such as much smaller deformation (Glas et al. (2018)), different pattern of
deformation of the lepton number flux (Takiwaki and Kotake (2018)) and sustaining PNS
convection which generate the lepton number flux deformation (not correlated with the
shock deformation) (Powell and Müller (2019)). As stated above, there is no consensus
about characteristics and physical nature of LESA and the researches are currently in
progress.

1.3 Neutrino interaction in hot dense matter

Neutrino interaction with the supernova matter and its reaction rates play a fundamental
role for understanding the CCSN physics. The major processes are the charged current
absorption of νe and ν̄e absorption on nucleons, neutral-current scattering off the nu-
cleons, neutrino-electron/positron scattering, neutrino-neutrino scattering and neutrino-
antineutrino absorption. Reaction rate of the pure leptonic reaction such neutrino-electron
scattering can be calculated in the framework of Weinberg-Salam theory in perturbative
way.

However, neutrino nucleon interaction includes many uncertainty because of our ig-
norance of exact form of strong field. So numerical simulation of these neutrino nucleon
interaction often employ the analytic expressions which are based on very crude approx-
imation. For the precise prediction of the neutrino signals from CCSN and subsequent
PNS cooling, we must improve these reactions carefully. In the next section I summarize
the several corrections which have been added to the original analytic expression.

Recently, the muon existence in the early phase of CCSN . This open the new interac-
tion channel through the weak interaction which is one of the main topic in chapter 3, so
I briefly review.

1.3.1 Neutrino-nucleon interaction

The analytical expression of neutrino-nucleon reaction is often based on Bruenn (1985) in
which the only dominant order in the matrix element squared of the invariant scattering
amplitude and the momentum transfer of the lepton to the nucleon is neglected i.e. elastic
limit (hereafter I call this limit as Bruenn limit). Several corrections have to be included
in this simple rate.
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Recoil of the nucleon

The elastic approximation have been justified because the mean energy of neutrino is at
most the several tens MeV which is much smaller than the rest mass of nucleon. The recoil
correction is important especially for heavy neutrinos (i.e. µ and τ type (anti-)neutrino)
because the neutrino scattering on neutrino is the dominant opacity for them. The en-
ergy transfer from neutrino to nucleon modifies the neutrino spectra and if we take into
account recoil for the scattering of neutrino, the difference of the average energy becomes
smaller (Raffelt (2001)). These spectral modification is important also for comparison with
theoretical prediction of neutrino signal of CCSN and future SN neutrino observation.

Weak magnetism of nucleon

Weak magnetism is a higher oder correction for the vector current of nucleon current which
is originated from the anomalous magnetic moment in the electro magnetic interaction.
This correction is proportional to q/MN where the q is the magnitude of the momentum
transfer to the nucleon and MN is the mass of nucleon. Horowitz (2002) studied the
correction for the Bruenn limit in the rest frame of the nucleon. They revealed that
this correction reduces the opacity for neutrino and increases for anti-neutrino for both
charged-current and neutral current reaction. The luminosity of νe enhances due to the
opacity reduction and then enhances the neutrino heating in the gain region whereas the
opposite happens for anti-neutrino. In fact, the magnitude of correction is higher for the
neutrino than the anti-neutrino and it imply that the net neutrino heating can be enhanced
the explodability.

Although this Horowitz correction factors can not apply directly to the numerical
simulation of CCSNe which is usually done in the laboratory frame, not the rest frame,
this correction is often applied crudely. In chapter 3, I show the correction of the weak
magnetism correction including the full thermal distribution of nucleons.

Effect of mean field of nucleon

The dispersion relation of the nucleon is modified in hot dense matter encountered in
CCSN. The charged-current reaction are sensitive the modifications because the they
shift the thresholds in the reactions. For example in the electron capture on neutrino,
νe + n → e− + p, the capture is often suppressed due to the Fermi blocking of the highly
degenerated electron which have large Fermi energy in dense region. Since the difference
of the effective potential between neutron and proton satisfies Un − Up > 0, the outgoing
electron gains the energy by this difference and the Fermi blocking can overcome easily.
This results in the enhancement of the opacity of neutrino.

In this work, we take them into account at the mean-field level. Although it is well
known that the vertex corrections need to be considered simultaneously at the level of the
random phase approximation Burrows and Sawyer (1998); Reddy et al. (1999); Yamada
and Toki (1999); Oertel et al. (2020), we will defer it to a later paper as it is a major
undertaking and we think it is still meaningful to make comparisons with other works
that also neglected the corrections Guo et al. (2020).

1.3.2 Muon-related neutrino interaction

In the past, only electrons and positrons were incorporated as the charged-lepton con-
stituents in most of the quantitative simulations of both CCSN and PNS cooling. That
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fact, the non-negligible population of muon in the neutron star has been known from the
studies of nuclear EoS over the years Douchin and Haensel (2001); Shen (2002); Zhang
and Li (2020). It is hence obvious that the muon existence is more important at later
times in the PNS cooling, affecting the neutrino transport and, as a result, the cooling.
Hence the neutrino interaction related with muon is expected to make an important role
in the cooling phase of the PNS and this is main topic in chapter 3.



Chapter 2

Linear analysis of the shock
dynamics

I already outlined several multidimensional effects that can be contribute to reviving
the shock revival in the Introduction. It is true that normally these multidimensional
instabilities become fully nonlinear and the induced motions are very complex, which are
investigated mostly by simulations, but the linear stability analysis is still very useful: we
can confirm that there are indeed unstable modes; the analysis of these modes and the
corresponding growth rates and frequencies (if they are oscillatory) helps us unravel the
mechanism of the instabilities (Guilet and Foglizzo (2012)).

The turbulence may be described as couplings of these modes. As a matter of fact,
previous studies conducted such linear analysis based on the Fourier (Yamasaki and Ya-
mada (2007)) or Laplace (Takahashi et al. (2016)) transform for the steady and spherically
symmetric post-shock accretion flows, imposing the inner and outer boundary conditions
at the neutrino sphere and the standing shock wave, respectively. Although these insta-
bilities are intrinsic, i.e., they grow from an initial perturbation on their own without any
further external supports, possible interactions with external perturbations are attracting
much interest these days.

From the point of view of the linear analysis mentioned above, this may correspond to
imposing time-dependent outer boundary condition. Using the Laplace transform in time,
Takahashi et al. (2016) investigated the generation of various modes, particularly unstable
ones, by the temporal fluctuations given at the outer boundary by the turbulent accreting
matter. They demonstrated that some modes are induced more strongly than others. In
this previous study, the inner boundary condition was left unchanged although we know
that it should be also oscillatory. In fact as we mentioned, the PNS is not completely
static but oscillating and wobbling owing to the exertion of impulsive forces by the matter
accreting turbulently onto PNS and generates acoustic waves.

Even if the amplitudes of the acoustic waves are not so large as to produce secondary
shock waves, they may still play an important role at the linear level. As a matter of
fact, the inner boundary condition becomes time-dependent as already mentioned and,
as a result, the linearly unstable modes are expected to be affected by their presence.
This effect is what we study in this chapter in the context of linear stability analysis. We
employ the inner boundary condition that varies sinusoidally in time. We investigate how
the oscillation frequencies and growth rates of various unstable modes are changed by this
modification of the inner boundary condition.

In this study, we take also into account perturbations of the neutrino luminosity, which
should be expected if PNS is wobbling. In so doing we consider a possible correlation be-

15
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tween the perturbations at the outer boundary, i.e., on the shock wave and those at the
inner boundary, or on the PNS surface. Such correlations are indeed posited as a possible
cause of LESA. Although the LESA is likely to be a phenomenon that manifests itself
at nonlinear levels, it is still interesting to see what influence, if any, the correlations be-
tween the perturbations at the inner and outer boundaries may have on time-independent,
linearly unstable modes.

This chapter is organized as follows. We give basic equations and explain the methods
and models in the next section. In section 2.2 we present the results and discussions of
linear analysis. We also show the results of steady solution of perturbation equations in
section 2.3. We summarize our investigation in section 2.4.

2.1 Basic formalism

In this section, we describe concisely the method we employ in this thesis for linear anal-
ysis, which is based on the Laplace transform in time of the linearized hydrodynamical
equations. The background flows are assumed to be steady and spherically symmetric.
Spherical harmonics expansion is also utilized for perturbations.

2.1.1 Basic equations

The basic hydrodynamics equations employed to describe accretion flows in the supernovae
core are given as follows:

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

∂

∂t
(ρv) +∇ · (ρvv + PI) = −ρ

GMPNS

r2
r

r
, (2.2)

dε

dt
+ P

d

dt

(

1

ρ

)

= q, (2.3)

∂

∂t
(nYe) +∇ · (nYev) = λ, (2.4)

in addition to the EoS, for which we adopt Shen EoS (Shen et al. (2011)). In the above
equations, ρ, P , n, Ye, ε and v are the density, pressure, number density of baryon, electron
fraction, specific internal energy and velocity, respectively; MPNS is the mass of PNS, which
is assumed to be constant, and G is the gravitational constant; the self-gravity of accreting
matter is neglected; we incorporate only the reactions of the electron-type neutrinos and
anti-neutrinos, which are symbolically denoted by q and λ and are given by Bruenn (1985)
(concrete expressions are given in section 2.1.4).

The neutrino transfer calculation is replaced with the light-bulb approximation (Ohnishi
et al. (2006); Scheck et al. (2006)): the luminosity is then constant in radius and is ap-
proximated as

Lνe =
7

16
4πr2νeσT

4
νe , (2.5)

where σ is the Stefan-Boltzmann constant and rνe and Tνe are the radius and temperature
of the neutrino sphere for νe; Lν̄e is treated in the same way. These neutrino luminosities
(Lνe and Lν̄e) and temperatures (Tνe and Tν̄e) are model parameters. The radii of the
neutrino sphere are determined from these parameters.
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The unperturbed background flows are given as spherically symmetric steady solutions
for appropriate boundary conditions. They satisfy the following equations:

1

r2
d

dr

(

ρ0vr0r
2
)

= 0, (2.6)

vr0
dvr0
dr

+
1

ρ0

dP0

dr
= −ρ0

GMPNS

r2
, (2.7)

vr0
dε0
dr

−
P0vr0
ρ02

dρ0
dr

= q0, (2.8)

ρ0vr0
dYe0
dr

= λ0mb, (2.9)

where mb is nucleonic mass and the subscript 0 means unperturbed quantities. At the
shock front, which is assumed to be at rest in the background flow, the Rankine-Hugoniot
relations should be satisfied:

ρ
(u)
0 v

(u)
0 = ρ

(d)
0 v

(d)
0 , (2.10)

ρ
(u)
0 v

(u)
0

2
+ P

(u)
0 v

(u)
0 = ρ

(d)
0 v

(d)
0

2
+ P

(d)
0 v

(d)
0 , (2.11)

ϵ
(u)
0 +

1

2
v
(u)
0

2
+

P
(u)
0

ρ
(u)
0

= ϵ
(d)
0 +

1

2
v
(d)
0

2
+

P
(d)
0

ρ
(d)
0

, (2.12)

where the superscripts (u) and (d) mean variables in the upstream and downstream of the
shock, respectively. We assume further that matter is freely falling with the radial velocity
vr =

√

2GMPNS/mbr outside the shock wave with the pressure being negligible. Once the
mass accretion rate, another model parameter, is specified, the density is obtained as
a function of radius. By solving these equations, radius of the stationary shock wave
rsh,0 is determined by imposing the inner boundary condition that the density should be
1011 g/cm3 at rνe , an approximation to the real condition that the optical depth to rνe
from infinity should be 2/3.

Following Lai and Goldreich (2000) and Takahashi et al. (2016), perturbed quantities
are expanded as

¶X(r, t) =
∑

l,m

¶X(l,m)(r, t)Yl,m(θ, ϕ), (2.13)

where X denotes scalar variables and Yl,m(θ, ϕ) is the spherical harmonics with the polar
and azimuth indices l and m. The velocity perturbation, on the other hand, is expanded
with the vector spherical harmonics as follows:

¶v(r, t) =
∑

l,m

¶v(l,m)
r (r, t)Yl,m(θ, ϕ)r̂

+¶v
(l,m)
⊥

(r, t)

[

θ̂
∂Ylm

∂θ
+

φ̂

sin θ

∂Ylm

∂ϕ

]

+¶v
(l,m)
rot (r, t)

[

−φ̂
∂Ylm

∂θ
+

θ̂

sin θ

∂Ylm

∂ϕ

]

, (2.14)

in which the unit vectors in the spherical coordinates are denoted by r̂, θ̂, and φ̂. The
linearized equations of the hydrodynamics equations (Eqs. (2.1)-(2.4)) with different (l,m)
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are decoupled from each other, since the background flow is assumed to be spherically
symmetric, and are written symbolically as

∂y(l,m)

∂r
(r, t) = A(r)

∂y(l,m)

∂t
(r, t) +B(l)(r)y(l,m)(r, t), (2.15)

where y(l,m)(r, t) denotes the vector consisting of the (l,m) component of the perturbed
quantities given as

y(r, t) =

(

¶ρ

ρ0
,
¶vr
vr0

,
¶v⊥
vr0

,
¶ε

ε0
,
¶Ye

Ye0
,
¶vrot
vr0

)T

, (2.16)

where (· · · )T means transposition. Note that we take ρ, ε, Ye as independent thermody-
namic variables. The coefficient matrices, A(r) and B(l)(r), are made of the unperturbed
quantities alone (I will show these later) and are independent of m because of the spher-
ical symmetry of the background. I solved the linearized equations (2.15) in the region
between the standing shock (r = rsh,0) and the PNS surface (r = rνe) in the unperturbed
state. Hereafter the subscripts 0 and (l,m) are omitted for notational simplicity.

The coefficient matrices, A(r) and B(l)(r), are written as follows: the matrices in the
basic equations in the form of

M
∂y

∂t
+A′∂y

∂r
+B′(l)y = 0, (2.17)

are given as

M(r) =



















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−
p

ρv2r
0 0

ε

v2r
0 0

0 0 0 0 1 0
0 0 0 0 0 1



















, (2.18)

A′(r) =























vr vr 0 0 0 0
1

vr

∂p

∂ρ
vr 0

ε

ρvr

∂p

∂ε

Ye
ρvr

∂p

∂Ye
0

0 0 vr 0 0 0

−
p

ρvr
0 0

ε

vr
0 0

0 0 0 0 vr 0
0 0 0 0 0 vr























, (2.19)

B′(l)(r) =





































0 0 −vr
l(l + 1)

r
0 0 0

B′
11 2

dvr
dr

0
1

ρvr

d

dr

(

ε
∂p

∂ε

)

1

ρvr

d

dr

(

Ye
∂p

∂Ye

)

0

1

rvr

∂p

∂ρ
0

vr
r

+
dvr
dr

ε

rρvr

∂p

∂ε

Ye

rρvr

∂p

∂Ye

0

B′
41

1

vr

(

dε

dr
−

p

ρ2
dρ

dr

)

0 B′
44 B′

45 0

vr
Ye

dYe

dr
−

mb

Ye

∂λ

∂ρ

vr
Ye

dYe

dr
0 −

mbε

ρYe

∂λ

∂ε

vr
Ye

dYe

dr
−

mb

ρ

∂λ

∂Ye

0

0 0 0 0 0
vr
r

+
dvr
dr





































,

(2.20)
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with

B′
11 =

1

ρvr

d

dr

(

ρ
∂p

∂ρ

)

−
1

ρvr

dp

dr
, (2.21)

B′
41 =

1

vr

(

p

ρ2
dρ

dr
−

1

ρ

dρ

dr

∂p

∂ρ
−

ρ

vr

∂q

∂ρ

)

, (2.22)

B′
44 =

1

vr

(

dε

dr
−

ε

ρ2
dρ

dr

∂p

∂ε
−

ε

vr

∂q

∂ε

)

, (2.23)

B′
45 = −

1

vr

(

Ye
ρ2

dρ

dr

∂p

∂Ye
+

Ye
vr

∂q

∂Ye

)

. (2.24)

Note that in the above expression, the fixed variables in the partial derivatives are omitted
for notational simplicity. The Eq. (2.15) is obtained by multiplying equation (2.17) by
A−1 from the left and defining A := − (A′)−1M and B(l) := − (A′)−1B′(l).

2.1.2 Outer and inner boundary conditions and an initial condition

Outer boundary condition: Rankine-Hugoniot relations

The outer boundary condition imposed at the shock radius is given by the linearized
Rankine-Hugoniot relation (RH relation).

Usual RH relation is derived as follows. In general, continuous equation with source
term is expressed as

∂U

∂t
+∇ · F = S, (2.25)

where U , F and S are conservative quantity, its flux and source, respectively. We consider
volume integration over the cylindrical region V that enclose the shock front dσ and
furthermore the bottom surfaces and the shock front move with the velocity q:

d

dt

∫

V
UdV =

∫

∂V
(Uq − F ) · dS +

∫

V
SdV. (2.26)

By approaching both bottom surfaces to the shock front infinitesimally, the rests are
surface integral on bottom surfaces and we obtain

[(Uq − F ) · n] = 0, (2.27)

where n is the normal vector the spherical shock surface and the bracketed symbol,
[X] := X(d) −X(u), is a jump of a quantity X across the shock.. This is called RH relation
and Eqs (2.10), (2.11) and (2.12) are in fact given by applying Eq. 2.27 to hydrodynamics
equations (2.1), (2.2) and (2.3), respectively, assuming the spherical symmetry and steady
state. Note in passing that RH relation for equation (2.4) gives

[Ye] = 0. (2.28)

Let us consider a linearized equation for

[f0]r0 = 0, (2.29)

where r0 is the position of the shock and f0 is a arbitrary function of physical variables.
If we add perturbations to the shock position and the variables, i.e.,

f(r) = f0(r) + ¶f(r), r = r0 + ¶r, (2.30)
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then we get

[f0 + ¶f ]
r0+δr = [f0]r0 + [¶f ]

r0
+ [∇f ]

r0
· ¶r. (2.31)

Combining with [f0]r0 = 0 and [f0 + ¶f ]
r0+δr = 0, we obtain

[¶f ]
r0

+ [∇f ]
r0

· ¶r = 0. (2.32)

We apply (2.32) to the case with f = (Uq − F ) · n. If we express the radius of the
shock front as rsh := h(θ, ϕ, t) and define a new function È(rsh, θ, ϕ, t) = rsh − h(θ, ϕ, t)),
then the components of n and q in the spherical coordinate are expressed as

n =
∇È

|∇È|
=

1

|∇È|

(

1,−
1

rsh

∂h

∂θ
,−

1

rsh sin θ

∂h

∂ϕ

)T

, (2.33)

q =
∂rsh
∂t

=

(

∂h

∂t
, 0, 0

)T

. (2.34)

Inner products q · n and v · n are expressed as

q · n =
1

|∇È|

∂h

∂t
, (2.35)

v · n =
1

|∇È|

(

vr −
vθ
rsh

∂h

∂θ
−

vϕ
rsh sin θ

∂h

∂ϕ

)

, (2.36)

and Eq. (2.27) is reduced to
[

U
∂h

∂t
− F · n

]

r

= 0. (2.37)

By using Eqs. (2.37), (2.32) and hydrodynamics equations (2.1), (2.2), (2.3) and (2.4)
the linearized Rankine-Hugoniot relations with the perturbation to spherically symmetric
steady background are schematically given by

P (d)y(rsh, t) = P (u)z(t) +
∂

∂t

¶rsh
rsh

c′ +
¶rsh
rsh

d′, (2.38)

where ¶rsh(t) is the time-dependent perturbation to the shock radius; P is a matrix and c

and d are vectors, which depend only on the background quantities and they are written
as

P =

























1 1 0 0 0 0

vr +
1

vr

∂p

∂ρ
2vr 0

ε

j

∂p

∂ε

Ye
j

∂p

∂Ye
0

0 0 vr 0 0 0
E

ρ
+

∂p

∂ρ

E + p+ ρv2r
ρ

0 ε+
ε

ρ

∂p

∂ε

Ye
ρ

∂p

∂Ye
0

1 1 0 0 1 0
0 0 0 0 0 vr

























,

(2.39)

c′ =

(

rsh [ρ]

j
, 0, 0,

rsh [E]

j
,
rsh [ρ]

j
, 0

)T

, (2.40)

d′ =

(

0, 2 [vr] +
GM [ρ]

rshj
,
[p]

j
, −

rsh [ρq]

j
, −

rshmb [λ]

jYe
, 0

)T

. (2.41)
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In the above expression, j := ρ
(u)
0 v

(u)
r0 = ρ

(d)
0 v

(d)
r0 is the mass flux. z is the perturbation

in the upstream flow which is originated from turbulence in the outer envelope and is
approximately written as (Takahashi et al. (2016))

¶ρ

ρ0
= sin(Éupt+ φ), (2.42)

¶vr
vr0

= −0.5 sin(Éupt+ φ), (2.43)

¶ε

ε0
= sin(Éupt+ φ). (2.44)

The oscillation frequency Éup is another free parameter and we set Éup = 100Hz.

As a result, by multiplying Eq. 2.38 by
(

P (d)
)−1

from the left and defining

R :=
(

P (d)
)−1

P (u), c :=
(

P (d)
)−1

c′ and d :=
(

P (d)
)−1

d′, the outer boundary condition
at the shock is written as

y(rsh, t) = Rz(t) +
∂

∂t

¶rsh(t)

rsh
c+

¶rsh(t)

rsh
d. (2.45)

Inner boundary condition and initial condition

The inner boundary is set at the PNS surface. Since the perturbation of the shock radius
is the only variable remaining after imposing the outer boundary condition, we can give
only one condition at the inner boundary. It is symbolically written as

f(y(rνe , t), t) = 0. (2.46)

Detailed forms of the function f are depend on the model and shown later in sections 2.2
and 2.3 (see equations (2.106) and (2.121))

In principle, we can set any initial condition to the perturbation:

y(r, t = 0) = y0(r) (rνe < r < rsh). (2.47)

In this thesis, however, we set y0(r) = 0 for simplicity. We are hence concerned only with
the perturbations generated at the boundaries.

To summarize this subsection, the problem is now reduced to solving equations (2.15),
(2.45), (2.46) and (2.47) to obtain the time evolution of the perturbation of the shock
radius, ¶rsh/rsh(t), as an initial-boundary-value problem.

2.1.3 Laplace transformation of linearized system

To solve this initial-boundary-value problem, we use the Laplace transform with respect
to time defined as

f∗(s) :=

∫ ∞

0
f(t)e−stdt, (2.48)

where s is a complex variable. Hereafter, the superscript ”∗” means Laplace-transformed
functions, which are complex in general. Eqs. (2.15), (2.45) and (2.46) are Laplace-
transformed into the following forms:

dy∗

dr
(r, s) = (sA+B)y∗(r, s)−Ay0(r), (2.49)

y∗(rsh, s) = (sc+ d)
¶r∗sh(s)

rsh
+Rz∗(s), (2.50)

f∗(y∗(rνe , s), s) = 0. (2.51)
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In linear analysis, the inner boundary condition is generally written as

f∗(y∗(rνe , s), s) = a∗(s) · y∗(rνe , s) + b∗(s) = 0, (2.52)

where a∗ and b∗ are some functions of s. Eq. (2.49) is a system of ordinary differential
equations and can be easily integrated. Combined with Eqs. (2.50) and (2.51), they
determine ¶r∗sh/rsh(s).

Following the common practice, we assume that ¶rsh/rsh(t) is written as a superposition
of eigenmodes as

¶rsh
rsh

(t) =
∑

j

aje
Ωjtei(ωjt+ϕj), (2.53)

where Ωj and Éj are the growth or damping rate and the oscillation frequency of the j-th
mode (j = 1, 2, 3, · · · ), respectively, and aj is the amplitude of the same mode, which is
assumed to be independent of t. We can assume Éj ≥ 0 and −π/2 ≤ ϕj < π/2 for all j
without loss of generality. Then the Laplace transformation of ¶rsh/rsh(t) is written as

¶r∗sh
rsh

(s) =
∑

j

aj
eiϕj

(s− Ωj)− iÉj
, (2.54)

which has poles at Ωj + iÉj (j = 1, 2, 3, · · · ). The stability or instability of the standing
shock can be judged from the sign of Ωj .

2.1.4 Model parameters and the treatment of neutrino heating and cool-
ing in the unperturbed flows

We assume Lν := Lνe = Lν̄e for simplicity and change its value as a free parameter.
The values of the other parameters that specify the unperturbed background flow are set
as follows: the mass of PNS is MPNS = 1.4M⊙; the mass accretion rate and neutrino
temperatures are fixed to Ṁ = 0.6 M⊙ s−1 and Tνe = Tν̄e = 4.5 MeV, respectively;
the entropy and Ye just ahead of the shock wave are set as S = 3kB and Ye = 0.5,
respectively, where kB is the Boltzmann constant; matter is assumed to free-fall from
infinity onto the shock. We employ Shen EoS (Shen et al. (2011)), which takes into account
the contributions from nucleons, nuclei, ³ particles, photons, electrons and positrons.

The neutrino heating and cooling functions, q and λ, are evaluated under the light
bulb approximation as follows:

q = −
∑

α

1

ρ

4πc

(2πℏc)3

∫ ∞

0
dϵ ϵ3 [jα(ϵ)− (jα(ϵ) + κα(ϵ)) fα(x, ϵ)] , (2.55)

λ = −
∑

α

iα
mb

ρ

4πc

(2πℏc)3

∫ ∞

0
dϵ ϵ2 [jα(ϵ)− (jα(ϵ) + κα(ϵ)) fα(x, ϵ)] , (2.56)

where ³ specifies the neutrino species and iα is defined as

iα =

{

1 for νe

−1 for ν̄e.
(2.57)

ϵ denotes the neutrino energy and κα and jα are the absorptivity and emissivity of each
neutrino species, for which we employed the Bruenn’s rates (Bruenn (1985)). The distribu-
tion function of neutrinos is denoted by fα and is approximated by the scaled Fermi-Dirac
distribution with a vanishing chemical potential:

fα(x, ϵ) =
1

1 + exp(ϵ/kBTα)
g(r), (2.58)
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Table 2.1: Background flow models considered. rν , Éacc, Épac, rgain and É̄BV are the neutrino
sphere radius, the frequency of the advective-acoustic cycle, the frequency of purely
acoustic cycle, the gain radius and the Brunt-Väisälä frequency, respectively. Ç pa-
rameter is defined in the text (see Eq. (2.62)).

Model Lν rsh rν Éaac Épac rgain É̄BV Ç
[1052 erg s−1] [106 cm] [106 cm] [ms−1] [ms−1] [106 cm] [ms−1]

M06L20 2.0 4.75 2.94 1.56 5.90 4.75 - 0
M06L25 2.5 5.79 3.28 0.973 3.99 5.79 - 0
M06L30 3.0 6.93 3.60 0.644 2.84 6.45 0.270 0.143
M06L35 3.5 8.22 3.89 0.444 2.07 6.80 0.320 0.603
M06L40 4.0 9.78 4.15 0.313 1.52 7.18 0.340 1.41
M06L45 4.5 11.8 4.41 0.221 1.10 7.73 0.332 2.56
M06L50 5.0 14.6 4.64 0.152 0.754 8.44 0.302 4.31
M06L55 5.5 19.3 4.87 0.0974 0.470 9.42 0.238 6.77
M06L60 6.0 29.5 5.09 0.0510 0.232 10.8 0.153 11.1

where g(r) is the so-called geometrical factor defined as

g(r) =
1−

√

1− (rν/r)
2

2
, (2.59)

as a function of r = |x| in which the solid angle of the PNS from the point x is taken into
account (see Ohnishi et al. (2006) for more details).

The models of unperturbed flow employed in this thesis are shown in Table 2.1. The
radius of neutrino sphere, the characteristic frequencies of advective-acoustic and purely
acoustic cycles and the gain radius for these background models are listed in it. Advective-
acoustic cycle and purely acoustic cycle, Éaac and Épac respectively, are given as

Éaac = 2π

[∫ rsh

rν

(

1

|vr|
+

1

cs − |vr|

)

dr

]−1

, (2.60)

Épac = 2π

[∫ rsh

rν

(

1

cs + |vr|
+

1

cs − |vr|

)

dr

]−1

, (2.61)

where cs is the sound speed. They are the cycles of perturbations between the shock
front and PNS surface which are related to the frequencies of SASI (Foglizzo (2009)).
Ç-parameter is defined as

Ç =

∫ rsh

rgain

∣

∣

∣

∣

ÉBW

vr

∣

∣

∣

∣

dr, (2.62)

where rgain is the gain radius, i.e., the bottom boundary of the region with negative entropy
gradients and ÉBW is the Brunt-Väisälä frequency:

ÉBV =

√

GM

r2

∣

∣

∣

∣

1

Γ1p

dp

dr
−

1

ρ

dρ

dr

∣

∣

∣

∣

, (2.63)

with

Γ1 :=

(

∂ ln p

∂ ln ρ

)

S,Ye

. (2.64)
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ÉBV represents the maximum growth rate of the convective instability and then the Ç-
parameter means the ratio between the growth rate and the timescale which the accretion
matter dwells in the convectively unstable region. According to Foglizzo et al. (2006), Ç >

∼ 3
is the empirical condition for the flow being convectively unstable. I also list the mean
Brunt-Väisälä frequency for models with a non-vanishing gain region, which is defined by

É̄BV =
1

rsh − rgain

∫ rsh

rgain

ÉBV dr. (2.65)

2.1.5 Fluctuations of neutrino luminosity

To model the perturbation of neutrino luminosity, I introduce a new degree of freedom,
i.e. the fluctuation of neutrino temperature ¶Tα, and expand it as usual:

¶Tα =
∑

l,m

¶T (l,m)
α (t)Ylm(θ, ϕ), (2.66)

which is consistent with the black body approximation employed for the neutrino luminos-
ity (see Eq. (2.5)). We determine ¶Tα by an additional inner boundary condition generally
written as

(

¶Tα

Tα

)∗

(s) = w(s) · y∗(rνe , s). (2.67)

The fluctuation of the neutrino temperature affects q and λ:

¶q =
∂q

∂ρ
¶ρ+

∂q

∂ε
¶ε+

∂q

∂Ye
¶Ye + ¶qν , (2.68)

¶λ =
∂λ

∂ρ
¶ρ+

∂λ

∂ε
¶ε+

∂λ

∂Ye
¶Ye + ¶λν , (2.69)

where ¶qν and ¶λν are the new terms compared with the case with no fluctuations of
neutrino luminosity. They are written as

¶qν =
∑

α

1

ρ

4πc

(2πℏc)3

∫ ∞

0
dϵ ϵ3 [(jα(ϵ) + κα(ϵ)) ¶fα(x, ϵ)] , (2.70)

¶λν =
∑

α

iα
mb

ρ

4πc

(2πℏc)3

∫ ∞

0
dϵ ϵ2 [(jα(ϵ) + κα(ϵ)) ¶fα(x, ϵ)] , (2.71)

where the perturbation to the neutrino distribution is given as

¶fα(x, ϵ) =
´αϵe

βαϵ

(1 + eβαϵ)
2 g(|x|)

¶Tα

Tα
, (2.72)

with ´α = 1/kBTα. Basic equation for the vector y is then modified as

M
∂y

∂t
+A′∂y

∂r
+B′(l)y = u′, (2.73)

where matrices M(r), A′(r) and B′(l)(r) are the same as those given in Eqs. (2.18), (2.19)
and (2.20), respectively, and the new term u′ is written as

u′ =

(

0, 0, 0,
1

vr
¶qν ,

mb

ρYe
¶λν , 0

)T

. (2.74)
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By defining A := −A′−1M , B(l) := −A′−1B′(l) and

u
¶Tα

Tα
:= A′−1u′, (2.75)

we obtain the Laplace-transformed linearized equation corresponding to Eq. (2.17):

dy∗

dr
(r, s) = (sA+B(l))y∗(r, s)−Ay0(r) + u

¶T ∗
α

Tα
. (2.76)

In summary, I solve the linear equation (2.76) when the perturbation to the neutrino
luminosity is taken into account. Then the remaining degrees of freedom are ¶r∗sh and
¶T ∗

α after imposing the Rankine-Hugoniot relations at the outer boundary, which are
determined from the two conditions given in Eq. (2.52) and and an additional condition
(see (2.109)).

2.1.6 The formal solution of linearized equations

I present here the formal solution of Eq. (2.76) written again as

dy∗

dr
(r, s) = (sA+B(l))y∗(r, s)−Ay0(r) + u

¶T ∗
α

Tα
. (2.77)

This can be integrated formally as

y∗(r, s) = Λ∗(r, s)y∗(rsh, s)− Λ∗(r, s)

∫ r

rsh

dr′Λ∗−1(r′, s)A(r′)y0(r
′)

+ Λ∗(r, s)

∫ r

rsh

dr′Λ∗−1(r′, s)u

(

¶Tα

Tα

)∗

,

= Λ∗(r, s)y∗(rsh, s)− h∗[y0](r, s) +L∗(r, s)

(

¶Tα

Tα

)∗

, (2.78)

where the matrix Λ∗ and vector h∗[y0] and L∗ are defined as

Λ∗(r, s) := P

[

exp

(∫ r

rsh

dr′(sA+B)

)]

, (2.79)

h∗[y0](r, s) := Λ∗(r, s)

∫ r

rsh

dr′Λ∗−1(r′, s)A(r′)y0(r
′), (2.80)

L∗(r, s) := Λ∗(r, s)

∫ r

rsh

dr′Λ∗−1(r′, s)u(r′). (2.81)

In the above expressions, P stands for the path-ordering operator (Peskin (2018)). In-
serting the linearized Rankine-Hugoniot relation (2.50), Eq. (2.78) is evaluated at the
neutrino sphere as

y∗(rνe , s) = Λ∗(rνe , s)

[

(sc+ d)
¶r∗sh(s)

rsh
+Rz∗(s)

]

− h∗[y0](rνe , s)−L∗(rν , s)
¶Tα

Tα
(s)

=: Λ̃∗(s)

[

(sc+ d)
¶r∗sh(s)

rsh
+Rz∗(s)

]

− h̃∗[y0](s) + L̃∗(s)

(

¶Tα

Tα

)∗

(s),(2.82)

in which Λ̃∗(s), h̃∗[y0](s) and L̃∗(s) are the values of Λ∗, h∗[y0] and L evaluated at the
neutrino sphere, which are introduced just for notational simplicity.
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The boundary conditions imposed at rνe are generally written as

a∗(s) · y∗(rνe , s) + b∗(s) = 0, (2.83)
(

¶Tα

Tα

)∗

(s) = w(s) · y∗(rνe , s). (2.84)

Substituting the formal solution into these two equations, we obtain the following condi-
tion:

(

a∗ · Λ̃∗(s)(sc+ d) a∗ · L̃∗(s)

w∗ · Λ̃∗(s)(sc+ d) w∗ · L̃∗(s)− 1

)(

¶r∗sh/rsh
¶T ∗

α/Tα

)

+

(

a∗(s) · Λ̃∗(s)Rz∗(s) + a∗(s) · h̃∗[y0](s)− b∗(s)

w∗(s) · Λ̃∗(s)Rz∗(s) +w∗(s) · h̃∗[y0](s)

)

= 0. (2.85)

We find from these equations the positions of poles as the zeros of

∣

∣

∣

∣

a∗ · Λ̃∗(s)(sc+ d) a∗ · L̃∗(s)

w∗ · Λ̃∗(s)(sc+ d) w∗ · L̃∗(s)− 1

∣

∣

∣

∣

= 0. (2.86)

Note that they are not affected by the upstream perturbation z∗(s) but are indeed influ-
enced by the inner boundary conditions, i.e., a∗(s) and w∗(s).

2.1.7 The amplitude of the eigenmode

If the perturbed shock radius is written as superposition of eigenmodes as Eq. (2.53), the
amplitude aj is directly related with residue of ¶r∗sh/rsh at the corresponding pole in the
complex plane, i.e.

Res
s=Ωk+iωk

¶r∗sh
rsh

= Res
s=Ωk+iωk

∑

j

aj
eiϕj

(s− Ωj)− iÉj
= ake

iϕk . (2.87)

(2.88)

On the other hand, by the Cauchy’s theorem,

Res
s=Ωk+iωk

¶r∗sh
rsh

=
1

2πi

∮

C

¶r∗sh
rsh

dz, (2.89)

holds where C is any closed curve in the complex plane that includes only the k-th pole
inside. The right integral can be numerically obtained if we know ¶r∗sh/rsh.

If we neglect the fluctuations of the neutrino luminosity as in section 2.1.7, that is, we
assume L̃(s) = 0, w = 0 and ¶Tα = 0 in Eq. (2.85), then the Laplace-transformed shock
perturbation is written as

¶r∗sh
rsh

=
a∗(s) · Λ̃∗(s)Rz∗(s) + a∗(s) · h̃∗[y0](s)− b∗(s)

a∗ · Λ̃∗(s)(sc+ d)

=

(

¶r∗sh
rsh

)

ex

+

(

¶r∗sh
rsh

)

ini

+

(

¶r∗sh
rsh

)

IB

, (2.90)
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where I define
(

¶r∗sh
rsh

)

ex

:=
a∗(s) · Λ̃∗(s)Rz∗(s)

a∗ · Λ̃∗(s)(sc+ d)
, (2.91)

(

¶r∗sh
rsh

)

ini

:=
a∗(s) · h̃∗[y0](s)

a∗ · Λ̃∗(s)(sc+ d)
, (2.92)

(

¶r∗sh
rsh

)

IB

:=
−b∗(s)

a∗ · Λ̃∗(s)(sc+ d)
, (2.93)

which represent the contributions from the perturbations imposed at the outer boundary,
those set initially and those given at the inner boundary, respectively. The first term (i.e.
Eq. (2.91)) can be further decomposed as

(

¶rsh
rsh

)∗

ex

= −
a∗(s) · Λ̃∗(s)Rz∗(s)

a∗(s) · Λ̃∗(s)(sc+ d)
, (2.94)

=: J ∗(z∗1 , · · · , z
∗
6 , s), (2.95)

=
6

∑

k=1

J ∗
k z

∗
k, (2.96)

where zi is the i-th component of z(s) and in the last equation we defined a set of functions,

J ∗
k (s) := J ∗(0, · · · , 0, 1, 0, · · · , 0, s) (k = 1, · · · , 6), (2.97)

where the arguments of J ∗(· · · ) on the right hand side are set to be zero except for the k-
th one, which is put to unity. Since L[¶(t)] = 1, Jk(t) = L−1[J ∗

k ] describes ¶rsh/rsh for the
impulsive perturbation of the unit strength, i.e., ¶(t), added only to the k-th component
of z(t). This implies that Jk(t) can be regarded as a Green’s function. Eq. (2.93) is also
written as

(

¶r∗sh
rsh

)

IB

=
−b∗(s)

a∗ · Λ̃∗(s)(sc+ d)
(2.98)

=: S∗(b∗, s) = S∗(1, s)b∗(s). (2.99)

Corresponding to the decomposition of ¶r∗sh/rsh, Eq. (2.90), its residue can be also
divided into three parts:

|ak| =

∣

∣

∣

∣

∑6
j=1 Res

s=Ωk+iωk

[z∗j (s)J
∗
j (s)] + Res

s=Ωk+iωk

[(

¶rrm
rsh

)

ini

]

+ Res
s=Ωk+iωk

[S∗(1, s)b∗(s)]

∣

∣

∣

∣

.

(2.100)

The first and third terms on the right hand side of the above equation are calculated as

6
∑

j=1

Res
s=Ωk+iωk

[z∗j (s)J
∗
j (s)] =

6
∑

j=1

z∗j (Ωk + iÉk) Res
s=Ωk+iωk

J ∗
j (s), (2.101)

Res
s=Ωk+iωk

[S∗(1, s)b∗(s)] = b∗(Ωk + iÉk) Res
s=Ωk+iωk

[S∗(1, s)], (2.102)

here we assume z∗(s) and b∗(s) do not have a pole at s = Ωk+iÉk. From the above expres-
sions, the contribution from the upstream perturbations and inner boundary fluctuations
can be obtained for any z(t) and b(t) once we derive the residues of J ∗

j (s) (j = 1, · · · , 6)
and S(1, s).
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2.2 Instabilities of the standing shock

2.2.1 Injection of acoustic waves and perturbations of neutrino luminos-
ity

I analyze effects of the injection of acoustic waves from the inner boundary as well as of
the fluctuations of the neutrino luminosity. I introduce the former as a time-dependent
inner boundary condition. In considering the latter, on the other hand, I introduce the
fluctuation of neutrino temperature as a new degree of freedom and impose an additional
inner boundary condition.

In the following, I give the details of the numerical treatments of these two ingredients
in turn. Table 2.2 is a concise summary of the three models considered in this section.

Injection of acoustic waves

According to the general solution of the linearized equations (see Eqs. (2.85) and (2.86)
in section 2.1.6), the positions of poles in the complex plane are affected directly by the
inner boundary condition through the coefficient a∗(s) in Eq. (2.52). This is in sharp
contrast to the outer boundary condition, which has only an indirect leverage. It is hence
important to give an appropriate condition at the inner boundary.

It should be noted that the acoustic mode has been already taken into account in the
linearized equations. This is understood as follows. The propagation speeds of eigenmodes
are the eigenvalues of the matrix V in the linearized equations written as

∂y

∂t
+ V

∂y

∂r
+A−1By = 0. (2.103)

They are actually vr, vr−cs, vr+cs, where cs is the sound speed. Whereas vr is quadruply
degenerate with the corresponding eigenmodes being ¶v⊥, ¶vrot, ¶Ye, P/(ρ)

2¶ρ−¶ε, vr−cs
and vr + cs correspond, respectively, to the ingoing and outgoing acoustic modes, which
have the eigenvectors expressed as

yin =
1

cs2

(

∂P

∂ρ

)

¶ρ

ρ
−

vr
cs

¶vr
vr

+
ε

cs2ρ

(

∂P

∂ε

)

¶ε

ε
+

Ye
cs2ρ

(

∂P

∂Ye

)

¶Ye

Ye

=
1

cs2ρ
¶P −

vr
cs

¶vr
vr

, (2.104)

yout =
1

cs2ρ
¶P +

vr
cs

¶vr
vr

. (2.105)

Based on this observation, I impose the following condition at the inner boundary to
inject the acoustic waves, which may be produced by the g-mode oscillation of PNS:

yout(rνe , t) = ³ sin (ÉPNSt) , (2.106)

where the amplitude ³ is a free parameter, which I set to 1. Laplace-transformed, the
right hand side of the above equation gives b∗(s) in Eq. (2.52). As can be seen from the
general solution (2.86) of the linearized equations, b∗(s) does not affect the pole positions
of ¶r∗sh/rsh(s), or the stability of shock wave. As for ÉPNS in Eq. (2.106), I employ the
typical g-mode frequency of PNS:

ÉPNS = 2000× l s−1 (2.107)

(Burrows et al. (2006)). Note in passing that in no injection model, we imposed the
following inner boundary condition:

¶vr = 0, (2.108)

which is same as previous research (Takahashi et al. (2016)).
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Table 2.2: Comparison of three models in this study

Models
Acoustic
injection

Perturbations
of neutrino
luminosity Basic equation

Outer boundary
condition

Degree of freedom(s)
after imposing
outer boundary condition

Inner boundary
condition(s)

A no no (2.49) (2.50) ¶r∗sh/rsh (2.108)
B yes no (2.49) (2.50) ¶r∗sh/rsh (2.106)
C yes yes (2.76) (2.50) ¶r∗sh/rsh and ¶T ∗

α/Tα (2.106) and (2.109)

Inner boundary condition for fluctuations of the neutrino luminosity

We assume that the fluctuations of neutrino temperature are related with the perturbation
to Ye in the vicinity of the neutrino sphere. Indeed for each (l,m) with l > 1, we impose
the following relation:

(

∂P

∂Ye

)

ρ,T

¶Y (l,m)
e (rνe , t) +

(

∂P

∂T

)

ρ,Ye

¶T (l,m)
α (t) = 0. (2.109)

This means that ¶Tα is equal to the perturbation to the matter temperature that could
cancel the pressure fluctuation that the Ye perturbation would induce which relation is
found in numerical simulation (Janka et al. (2016)). We further assume that there is no
spherically symmetric (l = 0) perturbation to the neutrino temperature.

2.2.2 Instabilities of the standing shock

I first present the growth rates as well as the oscillation frequencies of the dominant modes
for models A, B and C as a function of the neutrino luminosity. They are read out from the
positions of the corresponding poles of ¶r∗sh/rsh(s). Note that there are several poles for a
given luminosity in fact. Figure 2.1 shows the several poles (or growth rate and frequencies)
for a given luminosity in model A. As can be seen, the higher overtones sometimes take
over the position of the maximum-growth-rate mode (see figures of l = 2, 3).

In Figure 2.2 I plot the results for l = 1 for three models listed in Table 2.2. The black,
red and blue lines correspond to models A, B and C, respectively. Figure 2.3 gives the
same results as Figure 2.2 but for higher l modes.

We first look at the effect of the acoustic injection. From a comparison of the different
models in Figure 2.2 (a), the growth rate of the dominant mode with l = 1 is enhanced
by the acoustic power injection especially when the neutrino luminosity is low Lν

<
∼ 4.0×

1052 erg s−1. This enhancement is accompanied by the lowering of the critical luminosity
from Lν ∼ 2.8 × 1052 erg s−1 to Lν ∼ 2.5 × 1052 erg s−1. By the critical luminosity I
mean here the lowest luminosity, at which this particular mode becomes unstable. At high
neutrino luminosities Lν

>
∼ 4.5×1052 erg s−1 the acoustic power does not affect the growth

rates very much. Note that the oscillation frequency vanishes at Lν
>
∼ 5.5× 1052 erg s−1.

This may be interpreted as the transition from the SASI regime to the convection regime.
Then we may say that the acoustic injection does not play an important role in the
convective instability in the linear order.

It is not the l = 1 mode but l = 2 and 3 modes that have the greatest growth rate at
low neutrino luminosities. As we can see from Figure 2.3 (a) and (c), this is due to the
strong enhancements of the growth rates in l = 2 mode at Lν

<
∼ 4.0 × 1052 erg s−1. The

critical luminosities for these modes are also significantly reduced. These results indicate
that quadrupole and octupole radiations of acoustic wave from PNS may strongly enhance
the instability of the same anisotropies.
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Figure 2.1: Plots of eigenmodes as functions of neutrino luminosity for l = 1, 2, 3, 4 in model A.
Left: growth rate of the fundamental mode (red lines) and higher overtones (green,
brown, purple, and light-blue for 1st, 2nd, 3rd and 4th overtones, respectively).
Right: corresponding oscillation frequencies. Colors have the same meanings. (Figure
citation from Takahashi et al. (2016) through the courtesy of Kazuya Takahashi)
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Figure 2.2: The growth rates (a) and oscillation frequencies (b) of the dominant eigenmodes for
three models as a function of the neutrino luminosity Lν . Black dashed, red solid
and blue dash-dotted lines show the results of models A, B and C, respectively.

For l ≥ 4 modes, the modifications of the inner boundary condition do not have much
influence on the shock instability. As an example, the l = 4 case is shown in panels (e) and
(f) of the same figure. The growth rates of the three eigenmodes decrease monotonically
in a similar way as the neutrino luminosity gets smaller and the critical luminosity is not
changed much either. This situation is common to other high l modes.

Compared with the growth rates, the oscillation frequencies are less affected by the
modifications of the inner boundary conditions as is evident from the right panels in
Figures 2.2 and 2.3. This may be because the eigenfrequency of the shock is simply
determined by the global structure of the background flow below the shock wave.

There appear humps around Lν ∼ 4.0 − 4.5 × 1052 erg s−1 in panels (b) and (d) in
Figure 2.3. This happens because the second overtones take over the position of the
maximum-growth-rate mode (see Figure 2.1 for such behavior).

Finally the comparison of models B and C in Figures 2.2 and 2.3 shows that the
perturbation of neutrino luminosity changes neither the growth rates nor the oscillation
frequencies appreciably. This is common to all the modes studied here and suggests that
the fluctuations of neutrino luminosity may not be important for the shock instability in
the linear order.

2.2.3 Instigations of various modes

Various modes, stable and unstable alike, are excited by the perturbations propagated
from the inner boundary, at which we impose the time-dependent conditions. We hence
need not set a non-vanishing perturbation initially. How strongly they are instigated is
different from mode to mode and given by the amplitude aj of Eq. (2.53), which can be
obtained by calculating the residue of ¶r∗sh/rsh(s) as explained in section 2.1.7.

Figure 2.4 shows the absolute values of the amplitudes for the dominant unstable
eigenmodes with l = 1, 2, 3 and 4 in the spherical harmonics expansion. Dash-dotted lines
and squares correspond to model A, solid lines and crosses mean model B and dashes lines
and circles represent model C. Colors indicate the different neutrino luminosities.

Comparing the results for models A and B, one finds that the injection of the acoustic
power magnifies the amplitudes in general and that the amplification is remarkable when
the neutrino luminosity is low. In fact, the enhancement is as high as a few orders of
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(c) Growth rates (l = 3)
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(e) Growth rates (l = 4)
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Figure 2.3: Same figures as Figure 2.2 but for higher l modes
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Figure 2.4: Amplitudes of unstable eigenmodes for different boundary conditions, luminosities
and spherical harmonics modes. Dash-dotted lines and squares correspond to model
A, solid lines and crosses mean model B and dashed lines and circles represent model
C. Colors indicate the different neutrino luminosities.

magnitude at low luminosities whereas it is just a factor of a few at high luminosities.
It is also evident that the enhancement is more remarkable for l = 1 and 2 modes. The
suppression of the enhancement at high luminosities is due to the mismatch between the
frequencies of g-modes in PNS and those of SASI and convection. This will be explained
more in detail later.

The comparison of models B and C in Figure 2.4 shows, on the other hand, that the
excitation of modes is little affected by the perturbation of neutrino luminosity. This is
consistent with the previous findings on the growth rate and oscillation frequency and
suggests that the temporal fluctuation of the neutrino luminosity is not very important
for the shock instability at least in the linear order.

As we mentioned earlier, the amplification of the mode amplitudes by the acoustic
power injection becomes more remarkable as the neutrino luminosity gets lower. We
discuss this trend from the view point of the resonance between SASI and PNS g-modes.
Let us omit the perturbation to the neutrino luminosity, that is, we assume L̃(s) = 0,
w = 0 and ¶Tα = 0 in equation (2.85) for simplicity. As I explained in section 2.1.7, the
amplitude of the Laplace-transformed shock perturbation is expressed as Eq. 2.90 and the
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2.3 Steady perturbed state

We now shift our attention to time-independent solutions of the perturbation equations.
This is motivated by the finding first reported by Tamborra et al. (2014a) that there
occurs a shock deformation accompanied by an anisotropy in the number flux difference
Fn
νe − Fn

ν̄e of the electron-type neutrinos. The structure is robust, being sustained for a
long time. They called it LESA (see section 1.2.3). Dolence et al. (2015) later reported
that they found a dipolar asymmetry not in the difference but in the sum of the two fluxes
Fνe +Fν̄e (and also the sum of number fluxes) is strongly correlated with the deformation
of the shock front. Regardless of the apparent discrepancy, these structures are supposed
to be sustained by the combination of the shock deformation and the asymmetric neutrino
emissions and may be produced even at the linear level. This is what we are going to
investigate in this section.

2.3.1 Steady perturbed equation and inner boundary conditions

I modify the basic equations as follows. First the expressions for the fluctuations in the
neutrino luminosities is extended as

¶Lνe

L0
= 4

¶Tνe

Tνe0
+ cYe

¶Ye

Ye0
, (2.114)

¶Lν̄e

L0
= 4

¶Tν̄e

Tν̄e0
− cYe

¶Ye

Ye0
, (2.115)

where cYe is a constant parameter that accounts for the possible correlation between the
fluctuation in the neutrino luminosity and that in Ye (Janka et al. (2016)). I investigated
two cases with cYe = 0 and cYe = 3.5. The latter value is taken from the numerical
simulation of core-collapse supernova in 2D by Nagakura et al. (2018) with Furusawa
EoS (Furusawa et al. (2013)). Since in the light-bulb approximation the fluctuations of
neutrino luminosities can be also expressed as (see Eq. 2.5)

¶Lα

L0
= 4

¶Tα

Tα0
+ 2

¶rα
rα0

, (2.116)

with ³ = νe, ν̄e, we obtain the perturbations to the neutrino spheres as follows:

¶rνe
rνe0

= +
cYe

2

¶Ye

Ye0
, (2.117)

¶rν̄e
rν̄e0

= −
cYe

2

¶Ye

Ye0
. (2.118)

I use these expressions just for numerical convenience. Note also that we assume

¶Tα

Tα0
=

¶T

T0
, (2.119)

that is, the fluctuations of the neutrino temperatures are equal to that of matter temper-
ature at the neutrino sphere.

This extension gives the new terms in neutrino reaction rate and heating rate. Instead
of using the expression in Eq. (2.72), we have to include fluctuations of the radius of the
neutrino sphere:

¶fα(x, ϵ) =
∂fα(x, ϵ)

∂Tα
¶Tα +

∂fα(x, ϵ)

∂rα
¶rα

=
´αϵe

βαϵ

(1 + eβαϵ)
2 g(|x|)

¶Tα

Tα
+

1

2

1

1 + eβαϵ

(rα/r)
2

√

1− (rα/r)
2

¶rα
rα

, (2.120)
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where the second term in the last equation is new term in this section.
I impose the inner boundary conditions as follows. For simplicity, ¶Tα/Tα0 is normal-

ized as unity. Then, ¶rsh/rsh and ¶rνe/rνe are the remaining variables after imposing outer
boundary condition, and are determined by

1 =
¶Tα

Tα0
=

¶T

T0
=

1

T

{

∂T

∂ρ
¶ρ+

∂T

∂Ye
¶Ye +

∂T

∂ε
¶ε

}

, (2.121)

¶rνe
rνe

=
cYe

2

¶Ye

Ye

∣

∣

∣

∣

PNS

, (2.122)

where ¶rsh/rsh is implicitly determined by Eq. (2.121).
Steady solution of perturbation equations satisfies

∂y

∂r
= B(l)y + u

¶Tα

Tα
. (2.123)

It is important to recognize that steady solutions of the linearized equations in the temporal
regime correspond to the nontrivial solution at s = 0 of the Laplace-transformed equations
(2.76). Since in this section we neglect both the acoustic injection from the inner boundary
and the perturbation ahead of the shock front, such solution represent self-sustained non-
spherical configurations, something corresponding to LESA at the linear perturbation
level. Note that the existence of such solutions is itself highly non-trivial.

2.3.2 Self-sustained steady configuration

It turns out that there are steady solutions indeed even for cYe = 0. As a typical case, I
give the results for the model with Lν = 3.0×1052 erg s−1 in the left half of Table 2.3 and
also as dashed lines in Figure 2.6. I consider only l = 1 modes here. Since I set cYe = 0,
there is no difference in the fluctuation in the luminosity between νe and ν̄e:

¶Lνe = ¶Lν̄e . (2.124)

As represented in Table 2.3, the deformation of the shock front ¶rsh/rsh is correlated
with the temperature fluctuation at the neutrino sphere, having the same sign. This is
consistent with the finding by Dolence et al. (2015) although we cannot say anything
about LESA in this case as there is no asymmetry in ¶Lνe and ¶Lν̄e by definition. It is
noteworthy, however, that ¶Ye/Ye0 has the same signature as ¶T/T0 on the PNS surface
(see the purple and blue dashed lines in Figure 2.6).

Next we consider the case with ¶Lνe − ¶Lν̄e ̸= 0, employing the models with cYe = 3.5.
The results are given in the right half of Table 2.3 and also as solid lines in Figure 2.6. I ob-
tain non-trivial solutions also in this case. The configurations are not much different from
these for the cYe = 0 case with ¶rsh/rsh being positively correlated with the temperature
fluctuation. On the other hand, the perturbation to the electron fraction, ¶Ye/Ye0, has the
opposite sign as ¶T/T0 on the PNS surface (see the purple and blue solid lines in Figure
2.6). As a consequence of the latter fact, the neutrino luminosity difference ¶Lνe − ¶Lν̄e

becomes negatively correlated with the shock deformation. I show the distributions of the
velocity and the lepton number fluctuation in the meridional section in Figure 2.7. They
are consistent with the schematic picture drawn by hand in Tamborra et al. (2014a) (see
Figure 1.4): the dipolar deformation of the shock front bends stream lines and induces the
asymmetry in the lepton number near the PNS surface, which is anti-correlated with the
shock deformation, i.e., more lepton-rich matter accretes on the hemisphere, in which the
shock recedes, resulting in positive ¶Ye there (see the color map in Figure 2.7 for ¶(ρYe)).
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Note that in drawing the velocity field, we add to the unperturbed flow the perturbation
scaled arbitrarily.

Looking into these configurations more closely, we find that |vr| decreases in the direc-
tion, in which the shock front expand (see the yellow lines in Figure 2.6). This results in
longer heating in the gain region and the temperature gets higher on this side. This then
leads to larger luminosities on the same side. We also find that Ye becomes smaller at the
original shock position (see the purple line in Figure 2.6), since the shock expansion leads
to an earlier turn-on of the electron capture. As the matter flows downward, ¶Ye increase
owing to the lager neutrino luminosities just mentioned, which enhances the absorption
of both νe and ν̄e with the former being dominant. The behavior of ¶Ye near the PNS
surface is qualitatively different between the models with and without the correlation of
the perturbation of the neutrino luminosity and that of Ye. As a matter of fact, if we
take it into account, adopting cYe = 3.5, ¶Ye decreases rapidly and changes its sign. It
is also observed that ¶Ye is initially smaller in this case than in the previous case with
cYe = 0. This is because Fν̄e > Fνe is established in the direction of the deformation of the
shock expansion, which in turn is produced by the asymmetry of Ye on the PNS surface
mentioned above: Ye is depleted on the same side. The decrease in ¶Ye and hence Ye itself
there is induced by the enhances absorption of ν̄e. These explanations are admittedly
tautological because it is difficult to tell the cause from the result in the steady state and
all we can say is that the configuration is self-consistent. Incidentally, ¶Ye converges to the
same value at r ∼ 40km irrespective of the value of cYe . This is a well-known feedback ef-
fect: the initial decrease of ¶Ye via the enhanced absorption is canceled by the suppression
of electron capture later because of the smaller value of Ye. It should be also mentioned
that the very rapid change of ¶Ye near the inner boundary in the case of cYe = 3.5 is an
artifact of the geometric factor I employ in this study. In fact, the perturbation to λ (see
Eq. (2.69)) is written as

¶λν =

(

∂λν

∂Tα

)

¶Tα +

(

∂λν

∂Ye

)

¶Ye|PNS. (2.125)

The second term on the right hand side is rewritten as

(

∂λν

∂Ye

)

¶Ye|PNS =

(

∂λν

∂rν

)

¶rν ∝
∂g(r)

∂rν
=

1

2

(rν/r)
2

√

1− (rν/r)
2
,

in which the rightmost expression is a contribution from the derivative of the geometrical
factor and is divergent at r = rν . In reality, ¶λ and hence ¶Ye should change more
gradually.

The fact that the self-sustained steady states are obtained irrespective of the value of
cYe seems to suggest that the asymmetry of the lepton number flux is not essential for
the build-up of such configurations but rather a structure associated with them. Indeed
our results appear to indicate that it is the temperature fluctuation and the resultant
perturbation to the sum of the fluxes of νe and ν̄e, Fνe+Fν̄e rather than their difference that
is the most important ingredients for the production of the self-sustained configurations
(Dolence et al. (2015)). It is also true, however, that the asymmetries in the lepton fluxes
and in the Ye distribution are also self-sustained and are consistent with what Tamborra
et al. (2014a) observed in their simulations. In this sense, our results are consistent with
both of them in fact.
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Figure 2.6: Radial distributions of various quantities in a steady perturbed solution. We set
Lν = 3.0× 1052 erg/s and l = 1 mode here. Dashed and solid lines correspond to the
models for cYe

= 0 and 3.5, respectively. Vertical dash-dotted line indicates the gain
radius.

Table 2.3: Steady perturbed solutions

cYe = 0 cYe = 3.5
Neutrino luminosity

(erg s−1) ¶rsh/rsh0 ¶Tν/Tν0 ¶rνe/rνe0 ¶rsh/rsh0 ¶Tν/Tν0 ¶rνe/rνe0
2× 1052 2.04× 10−2 1 0 7.66× 10−3 1 −0.650
3× 1052 1.86× 10−1 1 0 1.51× 10−1 1 −0.533
4× 1052 4.81× 10−1 1 0 4.43× 10−1 1 −0.421
5× 1052 1.63 1 0 1.60 1 −0.219



2.3. STEADY PERTURBED STATE 39

-60 -40 -20  0  20  40  60

x[km]

-60

-40

-20

 0

 20

 40

 60

z
[k

m
]

-4

-3

-2

-1

 0

 1

 2

 3

 4

δ
(ρ

Y
e
)

Figure 2.7: The distributions of velocity (arrows) and ¶(ρYe) (color map) in the meridional sec-
tion for the model with Lν = 3.0 × 1052 erg/s. We set l = 1, m = 0 and cYe

= 3.5
here. The density contours are also shown for ρ0 = 0.5, 1, 5 and 10 × 1010g/cm3.
Note that the velocity perturbation is emphasized arbitrarily.
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2.3.3 Effects of LESA on neutrino heating

As can be seen from the Table 2.3, the magnitudes of the shock deformation are smaller
when the lepton number flux asymmetry exist. In both cases, the structures of perturbed
states are similar except for ¶Ye/Ye (see Figure 2.6); it rapidly decreases near the neutrino
sphere in the case with cYe = 3.5 and the neutrino emission reaction and cooling are
enhanced. In fact, Figure 2.8 shows the fluctuations of net heating rate. Fluctuations of
net heating rate is written as

¶q = ¶qth + ¶qν , (2.126)

where

¶qth =
∂q

∂ρ
¶ρ+

∂q

∂ε
¶ε+

∂q

∂Ye
¶Ye

=: ¶qρ + ¶qε + ¶qYe , (2.127)

¶qν =
∂q

∂Tα
¶Tα +

∂q

∂rν
¶rν . (2.128)

Net heating rate q0 of background steady flow is shown in Figure 2.8 (a), and fluctuations
of net heating rate for cYe = 0 and 3.5 are shown in Figure 2.8 (b). It is clear that cooling
rate near the PNS surface is stronger for the case with cYe = 3.5. Each term in equation
(2.126) are also shown in Figure 2.8 (b) and both terms decrease because of lepton number
flux asymmetry. The decrease of latter term ¶qν is simply because ¶rν is negative.

The variation of each term in equation (2.127) is shown in Figure 2.8 (c). By lepton
number flux asymmetry, ¶qρ increases but ¶qYe decreases. This is because ∂q/∂ρ and
∂q/∂ε are negative and ¶q decreases and ¶ε increases. ¶qth becomes negative as a result
of taking total of these terms. In fact, in e± dominated case, net heating rate can be
approximately written as

q ∼
Lνσ

4πrν
− σve±ne±⟨ϵν⟩ (2.129)

∼
Lνσ

4πrν
−Ac(3kBT )

3ne± , (2.130)

here we use cross section σ ∼ A⟨ϵν⟩
2 (A is a constant) and ⟨ϵν⟩ ∼ 3kBT . Since ρ ∝ ne±

and ε ∝ T , ∂q/∂ρ and ∂q/∂ε become negative. Approximation of e± dominance is justified
because µe/T ≪ 1 is satisfied around r ∼ 4− 4.5× 106km.

2.4 Summary

I have investigated the instability of the standing shock wave and the accretion flows
downstream in the core of CCSNe by linear analysis. I have focused particularly on
the influences of the fluctuations at the inner boundary. As possible sources of such
fluctuations, we have considered the injection of acoustic powers and the perturbation
of the neutrino luminosity. I have linearized hydrodynamics equations and solved them
by Laplace transform, regarding them as an initial-boundary-value problem. As for the
unperturbed state, we employ spherically symmetric, steady shocked accretion flows. In
this formulation, the intrinsic eigenmodes such as SASI or convection are obtained as
pole singularities of the Laplace-transformed equations and how strongly these modes are
excited by the perturbations imposed at the boundaries is given as the residues at the
poles.



2.4. SUMMARY 41

-8x10
21

-6x10
21

-4x10
21

-2x10
21

 0

 2x10
21

 3.5x10
6

 4x10
6

 4.5x10
6

 5x10
6

 5.5x10
6

 6x10
6

 6.5x10
6

 7x10
6

N
e
t 
h
e
a
ti
n
g
 r

a
te

 q
0
 [
e
rg

/s
]

Radius [km]

q0

(a) Net heating rate of spherical background

-8x10
22

-6x10
22

-4x10
22

-2x10
22

 0

 2x10
22

 4x10
22

 3.5x10
6

 4x10
6

 4.5x10
6

 5x10
6

 5.5x10
6

 6x10
6

 6.5x10
6

 7x10
6

δ
q

Radius [km]

δq

δqth

δqLESA

CYe
=3.5

CYe
=0

(b) Fluctuations of net heating rates δq = δqth+δqLESA

-8x10
22

-6x10
22

-4x10
22

-2x10
22

 0

 2x10
22

 4x10
22

 6x10
22

 3.5x10
6

 4x10
6

 4.5x10
6

 5x10
6

 5.5x10
6

 6x10
6

 6.5x10
6

 7x10
6

δ
q

Radius [km]

δqρ

δqYe

δqε

cYe
=3.5

cYe
=0

(c) Each component of δqth = δqρ + δqε + δqYe

Figure 2.8: Net heating rates of spherical background (a) and fluctuations of the net heating
rates (b) and (c). Model with neutrino luminosity Lν = 3 × 1053erg/s and l = 1 is
plotted here.
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I have first explored the influence of the injection of acoustic power from the PNS.
Unlike the perturbation at the outer boundary, those at the inner boundary like this one
change the growth rates and oscillation frequencies of eigenmodes directly. I have hence
calculated them together with the excitation amplitudes for various neutrino luminosities.
I have found that the acoustic power injection enhances the growth rates of the fluid
instabilities in general and the critical luminosity, i.e., the lowest luminosity at which
SASI occurs for some modes, is reduced. The enhancement is especially remarkable at
low neutrino luminosities. This is because the mismatch between the g-mode oscillations
of the PNS and the oscillations in the accretion flow is reduced. In fact, as the luminosity
is lowered, the shock shrinks and, as a result, the latter frequency rises: since the g-mode
frequency is normally higher than the frequency of the oscillations in the accretion flow,
this means that the two frequencies get closer to each other. I have observed that the
perturbation from the inner boundary excites some modes more preferentially than others
as the perturbation from the outer boundary does but the excitation amplitudes are also
enhanced by the injection of acoustic powers. On the other hand, the perturbations of
the neutrino luminosities have been shown to have little effect on the growth rates and
oscillation frequencies of eigenmodes as well as on their excitation amplitudes at least at
the linear level.

I have then investigated steady perturbed solutions, being motivated by the LESA
phenomenon (Tamborra et al. (2014a)). I have turned off the perturbations on the outer
and inner boundaries except for those in the neutrino luminosities, which we assumed
are induced by the fluctuation in temperature and/or Ye, and studied if self-sustained
configurations are obtained or not. I have found solutions indeed in both cases. It should
be stressed that it is not a trivial thing. I have shown that the obtained structures are
consistent with that proposed by Tamborra et al. (2014a). I also found that such self-
sustained steady states are obtained without asymmetry between νe and ν̄e and it seems
that it is the temperature fluctuation and the resultant perturbation to the sum of the
fluxes of νe and ν̄e, Fνe +Fν̄e , rather than their difference that is the key to the production
of these steady states. This seems consistent with the claim by Dolence et al. (2015).
On the other hand, the asymmetries in the lepton emissions and in the Ye distribution
as Tamborra et al. (2014a) found them are also self-sustained although they may be a
by-product. In this sense our results appear to be consistent also with their results.



Chapter 3

Muon-related neutrino
interactions in PNS cooling phase

Understanding neutrino interactions in hot dense matter is indispensable not only to the
investigation of the explosion mechanism of core-collapse supernovae (CCSNe), in which
shock revival by neutrino heating is believed to be crucial, but also to the quantitative pre-
diction of neutrino signals from newly born proto-neutron stars (PNS) formed by CCSNe.
As a matter of fact, most of the gravitational binding energy of PNS is released in the
form of neutrinos, with roughly a half of them being emitted in the explosion phase of
CCSN and the remaining half being radiated in the cooling phase of PNS.

In the past, only electrons and positrons Ire incorporated as the charged-lepton con-
stituents in most of the quantitative simulations of both CCSN and PNS cooling. That
is because the muon and tauon have rest masses much larger than the typical tempera-
ture in the CCSN interior and their existence is supposed to be suppressed in the early
explosion phase. Recently, the possible effects of the tiny population of muons on the su-
pernova explosion as well as on the PNS cooling in the very early phase were investigated
in supernova simulations as mentioned in chapter 1.

Observations of a long-term neutrino signal will provide us with invaluable information
on the property of dense and hot nuclear matter (see Müller (2019) for a recent review).
For example, the nuclear response to the weak current is modified at high densities via
strong interactions among nucleons Sawyer (1995); Keil et al. (1995); Mart́ınez-Pinedo
et al. (2012). This is true not only for scatterings through the neutral current but also for
emissions and absorptions of neutrinos via the charged-current. As a result, the cooling
timescale is affected. The equation of state (EoS) of nuclear matter at very high densities
is certainly another target for the observation of neutrinos into the late phase of the PNS
cooling Sumiyoshi et al. (1995); Camelio et al. (2017); Nakazato and Suzuki (2019, 2020).
In general, the softer the EoS is, the longer the cooling timescale becomes Nakazato and
Suzuki (2019).

In this chapter, I calculate the rates of various muon-related neutrino reactions for
some thermodynamical conditions that are typical at different times in the PNS cooling
and evaluate its possible implications for the cooling timescale.

This chapter is organized as follows. I give the formulation for the rate calculations
in the next section. In section 3.2, I exhibit the results, picking up a couple of specific
thermodynamical conditions of relevance and discuss possible effects of the muon existence
on the PNS cooling. I summarize our investigations in Section 3.3.

43
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3.1 Weak interaction rates

I list the neutrino reactions considered in this thesis in Table 3.1, which are essentially
the same as those in Bollig et al. (2017); Fischer et al. (2020). They are divided into two
groups, i.e. the leptonic and semi-leptonic processes; in the latter nucleons are involved
and the form factors are fully taken into account in their weak currents; small recoils of
nucleons are also completely accounted for (see subsection 3.1.2 for more details). Having
in mind the application to the collision term of the Boltzmann equation, which may be
written as

1

c

(

dfν
dt

)

coll

= −
1

λν
fν + jν(1− fν), (3.1)

where, λν and jν are the mean free path and emissivity of neutrino, respectively, I will give
their expressions for each reaction listed in Table 3.1 in turn. Details of the derivations
will be presented in Appendices.

Table 3.1: Weak reactions considered in this paper.

Leptonic reactions Semi-leptonic reactions

ν + l → ν + l νl + n → l− + p
νe + µ− ⇆ νµ + e− ν̄l + p → l+ + n
ν̄e + µ+ ⇆ ν̄µ + e+ ν̄l + p+ l− → n
ν̄µ + µ− ⇆ ν̄e + e− ν +N → ν +N
νµ + µ+ ⇆ νe + e+

µ− ⇆ e− + ν̄e + νµ
µ+ ⇆ e+ + νe + ν̄µ
l− + l+ ⇆ ν + ν̄
e− + µ+ ⇆ νe + ν̄µ
e+ + µ− ⇆ ν̄e + νµ

3.1.1 Leptonic reactions

I first summarize the reaction rates of the leptonic reactions. I follow Guo et al. (2020);
Yueh and Buchler (1976) for the derivation. Although the results are not original, I put
them here for self-containedness of the paper and convenience for readers.

Scatterings: ν + l ⇆ ν + l

For the scatterings of neutrino off a lepton, ν+l ⇆ ν+l, ν can be any one of νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ
and l is either e± or µ±. The 4-momenta of the incoming and outgoing neutrinos are de-
noted by qα1 and qα2 , respectively, while those of the incoming and outgoing leptons are
expressed as pα1 and pα2 , respectively. The spin-averaged matrix element squared is ex-
pressed generally as Bruenn (1985)

⟨|M|2⟩ =16G2
F

[

´1(q1 · p1)(q2 · p2) + ´2(q1 · p2)(q2 · p1) + ´3m
2
l (q1 · q2)

]

, (3.2)

where GF is the Fermi coupling constant and the coefficients ´i are given in Table 3.2.
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Table 3.2: Coefficients in the matrix element of lepton scatterings

Lepton scattering 1 ´1
2 ´2 ´3

νl + l− ⇆ νl + l− or ν̄l + l+ ⇆ ν̄l + l+ [(CV + 1) + (CA + 1)]2 [(CV + 1)− (CA + 1)]2 (CA + 1)2 − (CV + 1)2

ν̄l + l− ⇆ ν̄l + l− or νl + l+ ⇆ νl + l+ [(CV + 1)− (CA + 1)]2 [(CV + 1) + (CA + 1)]2 (CA + 1)2 − (CV + 1)2

νl1 + l−2 ⇆ νl1 + l−2 or ν̄l1 + l+2 ⇆ ν̄l1 + l+2 (CV + CA)
2 (CV − CA)

2 C2
A − C2

V

ν̄l1 + l−2 ⇆ ν̄l1 + l−2 or νl1 + l+2 ⇆ νl1 + l+2 (CV − CA)
2 (CV + CA)

2 C2
A − C2

V

al ∈ {e, µ}, l1 ∈ {e, µ, τ}, l2 ∈ {e, µ} and l1 ̸= l2
bCV = 2 sin2 θW − 1/2, CA = −1/2 where θW is the Weinberg angle.

Then the inverse mean free path for neutrino can be written as

1

λlsc
=

1

2E1

∫

d3q2
(2π)32E2

d3p1

(2π)32p01

d3p2

(2π)32p02
× 2fl

(

p01
)

[1− fν (E2)]
[

1− fl
(

p02
)]

× (2π)4 ¶(4) (qα1 + pα1 − qα2 − pα2 ) ⟨|M|2⟩ (3.3)

=

∫

dE2d cos θ
q2E2

(2π)2
[1− fν (E2)]R

in (E1, E2, cos θ) . (3.4)

In the above equations, f ’s are the distribution functions in the phase space of individual
particles involved and θ is the angle between q1 and q2; E1 = q01 and E2 = q02 are
the energies of the incoming and outgoing neutrinos, respectively, and q2 = |q2|. After
evaluating some integrations in Eq. (3.3) analytically (see Appendix A.1 for details), we
obtain the reaction kernel Rin as follows:

Rin(E1, E2, cos θ)

=
G2

F

(2π)2E1E2
[´1I1 (E1, E2, cos θ) + ´2I2 (E1, E2, cos θ) + ´3I3 (E1, E2, cos θ)] , (3.5)

with

I1 (E1, E2, cos θ) =
2πE2

1E
2
2

∆5
(1− cos θ)2 (A1J2 +B1J1 + C1J0) , (3.6)

I2 (E1, E2, cos θ) = I1 (−E2,−E1, cos θ) , (3.7)

I3 (E1, E2, cos θ) =
2πm2

lE1E2

∆
(1− cos θ) J0, (3.8)

where the concrete expressions of ∆, A1, B1, C1, J0, J1 and J2 are given in Appendix A.1.
The Fermi-Dirac integrals included in Ji (see equations (A.13)–(A.15)) are numerically
evaluated Aparicio (1998).

If the Boltzmann equation is employed as it is for the neutrino transport in PNS, the
above expression is sufficient. In some approximate treatment, however, one may need
to evaluate the integration over the outgoing neutrino momentum in Eq. (3.4) . I will
do it in fact in the next section to compare the importance of the individual reactions
quantitatively. In so doing, I assume that the neutrino distribution is given by the Fermi-
Dirac distribution for ´ equilibrium and the double integrations with respect to E2 and
cos θ are done numerically.
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Table 3.3: Coefficients in the matrix element for the lepton flavor exchange/conversion reactions

Reactions ³1 ³2

νe + µ− ⇆ νµ + e− or ν̄e + µ+ ⇆ ν̄µ + e+ 1 0
ν̄µ + µ− ⇆ ν̄e + e− or νµ + µ+ ⇆ νe + e+ 0 1

The emissivity of neutrino is given as

jlsc =

∫

dE2 d cos θ
q2E2

(2π)2
fν (E2)R

out (E1, E2, cos θ) , (3.9)

where the notations are the same as in Eqs. (3.3) and (3.4) and the reaction kernel Rout

is obtained from the detailed balance condition as follows:

Rout (E1, E2, cos θ) = e−β(E1−E2)Rin (E1, E2, cos θ) . (3.10)

Lepton flavor exchange/conversion reactions

The following 4 reactions

νe + µ− ⇆ νµ + e− (3.11)

ν̄e + µ+ ⇆ ν̄µ + e+ (3.12)

ν̄µ + µ− ⇆ ν̄e + e− (3.13)

νµ + µ+ ⇆ νe + e+ (3.14)

are collectively expressed as
ν1 + µ ⇆ ν2 + e, (3.15)

and the 4-momenta of ν1, ν2, µ and e are denoted by qα1 , q
α
2 , p

α
µ and pαe , respectively.

These reactions occur only through the leptonic CC and the spin-averaged matrix element
squared is written in general as

⟨|M|2⟩ = 64G2
F [³1(q1 · pe)(q2 · pµ) + ³2(q1 · pµ)(q2 · pe)] . (3.16)

The coefficients ³1 and ³2 are given in Table 3.3.
The absorptivity and emissivity for ν1 are expressed, respectively, as

1

λν1

=

∫

d3q2
(2π)3

[1− fν2 (E2)]R
in
ν (E1, E2, cos θ) , (3.17)

jν1 =

∫

d3q2
(2π)3

fν2 (E2)R
out
ν (E1, E2, cos θ) , (3.18)

just as in the leptonic scatterings. The reaction kernels are given as

Rin
ν (E1, E2, cos θ) = eβ(E1−E2+µµ−µe)Rout

ν (E1, E2, cos θ) , (3.19)

Rout
ν (E1, E2, cos θ) =

8G2
F

(2π)2E1E2
[³1I1 (E1, E2, cos θ) + ³2I2 (E1, E2, cos θ)] , (3.20)

where I1 and I2 are expressed, respectively, as

I1 (E1, E2, cos θ) =
2πE1E2

∆5
(A1J2 +B1J1 + C1J0) , (3.21)

I2 (E1, E2, cos θ) = I1 (−E2,−E1, cos θ) . (3.22)
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Details of ∆, A1, B1, C1, J0, J1 and J2 are presented in Appendix A.2.
The absorptivity and emissivity for ν2 are also obtained as

1

λν2

=

∫

d3q1
(2π)3

[1− fν1 (E1)]R
out
ν (E1, E2, cos θ) , (3.23)

jν2 =

∫

d3q1
(2π)3

fν1 (E1)R
in
ν (E1, E2, cos θ) . (3.24)

Muon decays: µ− ⇆ e− + ν̄e + νµ and µ+ ⇆ e+ + νe + ν̄µ

Below I give only the reaction rate of µ− ⇆ e− + ν̄e + νµ. The counterpart for µ+ ⇆

e+ + νe + ν̄µ can be obtained just by changing the signature of the chemical potentials of
charged leptons and exchanging the neutrino and anti-neutrino of the same flavor. The
spin-averaged matrix element squared is written as

⟨|M|2⟩ = 64G2
F (qν̄e · pe)(qνµ · pµ). (3.25)

The absorptivity and emissivity for ν̄e are expressed, respectively, as

1

λν̄e

=

∫

d3qνµ
(2π)3

fνµ
(

Eνµ

)

Rin
ν̄e

(

Eν̄e , Eνµ , cos θ
)

, (3.26)

jν̄e =

∫

d3qνµ
(2π)3

[

1− fνµ
(

Eνµ

)]

Rout
ν̄e

(

Eν̄e , Eνµ , cos θ
)

, (3.27)

where the reaction kernels are given as

Rin
ν̄e

(

Eν̄e , Eνµ , cos θ
)

= eβ(Eν̄e+Eνµ+µe−µµ)Rout
ν̄e

(

Eν̄e , Eνµ , cos θ
)

, (3.28)

Rout
ν̄e

(

Eν̄e , Eνµ , cos θ
)

=
8G2

F

(2π)2Eν̄eEνµ

I1
(

Eν̄e , Eνµ , cos θ
)

, (3.29)

with

I1
(

Eν̄e , Eνµ , cos θ
)

=
2πEν̄eEνµ

∆5
Θ(D) (A1J2 +B1J1 + C1J0) . (3.30)

Details of ∆, A1, B1, C1, D, J0, J1 and J2 are presented in Appendix A.3. The absorptivity
and emissivity for νµ can be obtained just by exchanging ν̄e ↔ νµ in the above expression.

Pair creations/annihilations: l− + l+ ⇋ ν + ν̄

In the pair process, l− + l+ ⇋ ν + ν̄, ν is any one of νe, νµ, ντ and l is either e or µ,
and the 4-momenta of neutrino and anti-neutrino are denoted by qα1 and qα2 , respectively,
and those of lepton and anti-lepton by pα1 and pα2 , respectively. The spin-averaged matrix
element squared is expressed as

⟨|M|2⟩ =32³G2
F [´1(q1 · p1)(q2 · p2) + ´2(q1 · p2)(q2 · p1)

+´3m
2
l (q1 · q2)

]

, (3.31)

where the coefficients ³ and ´i are given in Table 3.4. I present the absorptivity and
emissivity for ν1 alone, since those for ν2 can be obtained just by exchanging the roles of
ν1 and ν2.
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Table 3.4: Coefficients in matrix element of pair annihilation

Pair process 1 ³ ´1
2 ´2 ´3

l− + l+ → νl + ν̄l 1/4 [(CV + 1)− (CA + 1)]2 [(CV + 1) + (CA + 1)]2 (CA + 1)2 − (CV + 1)2

l− + l+ ← νl + ν̄l 1 [(CV + 1)− (CA + 1)]2 [(CV + 1) + (CA + 1)]2 (CA + 1)2 − (CV + 1)2

l−1 + l+1 → νl2 + ν̄l2 1/4 (CV − CA)
2 (CV + CA)

2 C2
A − C2

V

l−1 + l+1 ← νl2 + ν̄l2 1 (CV − CA)
2 (CV + CA)

2 C2
A − C2

V

al ∈ {e, µ}, l1 ∈ {e, µ}, l2 ∈ {e, µ, τ} and l1 ̸= l2
bCV = 2 sin2 θW − 1/2, CA = −1/2 where θW is the Weinberg angle.

The results are written as

1

λν1

=

∫

d3q2
(2π)3

fν2 (E2)R
in
ν1 (E1, E2, cos θ) , (3.32)

jν1 =

∫

d3q2
(2π)3

[1− fν2 (E2)]R
out
ν1 (E1, E2, cos θ) , (3.33)

where the reaction kernels are given as

Rin
ν1 (E1, E2, cos θ) = eβ(E1+E2)Rout

ν1 (E1, E2, cos θ) , (3.34)

Rout
ν1 (E1, E2, cos θ)

=
G2

F

(2π)2E1E2
[´1I1 (E1, E2, cos θ) + ´2I2 (E1, E2, cos θ)

+´3I3 (E1, E2, cos θ)] , (3.35)

with

I1 (E1, E2, cos θ)

=
2πE2

1E
2
2

∆5
(1− cos θ)2Θ(D) (A1J2 +B1J1 + C1J0) , (3.36)

I2 (E1, E2, cos θ) = I1 (E2, E1, cos θ) , (3.37)

I3 (E1, E2, cos θ) =
2πm2

lE1E2

∆
(1− cos θ)Θ (D) J0. (3.38)

The details of ∆, A1, B1, C1, D, J0, J1 and J2 are given in Appendix A.4.

Leptonic annihilations:
e− + µ+ ⇆ νe + ν̄µ and e+ + µ− ⇆ ν̄e + νµ

These reactions normally give rather minor contributions to the absorptivity and emissiv-
ity, since the populations of positively-charged leptons are strongly suppressed. I present
the calculation of these reaction rates for completeness. The two reactions are collectively
denoted by e+ µ ⇆ νe + νµ. The spin-averaged matrix element squared is expressed as

⟨|M|2⟩ = 64³G2
F (qνe · pe)(qνµ · pµ), (3.39)

where ³ = 1/2 for e+ µ → νe + νµ and ³ = 2 for νe + νµ → e+ µ.
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The absorptivity and emissivity for ν̄e are written as

1

λνe

=

∫

d3qνµ
(2π)3

[

1− fνµ
(

Eνµ

)]

Rin
νe

(

Eνe , Eνµ , cos θ
)

, (3.40)

jνe =

∫

d3qνµ
(2π)3

fνµ
(

Eνµ

)

Rout
νe

(

Eνe , Eνµ , cos θ
)

, (3.41)

where the reaction kernels are expressed as

Rin
νe

(

Eνe , Eνµ , cos θ
)

= eβ(Eνe+Eνµ−µe−µµ)Rout
νe

(

Eνe , Eνµ , cos θ
)

, (3.42)

Rout
νe

(

Eνe , Eνµ , cos θ
)

=
8G2

F

(2π)2EνeEνµ

I1
(

Eνe , Eνµ , cos θ
)

, (3.43)

with

I1
(

Eνe , Eνµ , cos θ
)

=
2πEνeEνµ

∆5
Θ(D) (A1J2 +B1J1 + C1J0) . (3.44)

Details of ∆, A1, B1, C1, D, J0, J1 and J2 are given in Appendix A.5. The absorptivity and
emissivity for νµ can be obtained just by exchanging νe ↔ νµ in the above formulae.

3.1.2 Semi-leptonic reactions

In this subsection, I deal with the interactions that involve nucleons, that is, the captures
of electron- and muon-type neutrinos on neutron and those of the electron- and muon-
type anti-neutrinos on proton, the scatterings of all flavors of neutrinos on nucleons and
the beta decay of neutron and its inverse. These reactions, especially those via the CC
are sensitive to the modifications of the dispersion relations of nucleons in the hot dense
matter because they shift the thresholds in the reactions. In this work, I take them into
account at the mean-field level. Although it is well known that the vertex corrections need
to be considered simultaneously at the level of the random phase approximation Burrows
and Sawyer (1998); Reddy et al. (1999); Yamada and Toki (1999); Oertel et al. (2020), I
will defer it to a later paper as it is a major undertaking and I think it is still meaningful to
make comparisons with other works that also neglected the corrections Guo et al. (2020).
I note that our formulation is based on the structure function of nucleons, which is suited
for the incorporation of RPA later. It should be also stressed that I employ in this paper
the most generic form of the weak currents of nucleons with the weak magnetism and
other form factors accounted for and fully consider the recoil of nucleons.

CC reactions: νl + n ⇆ l− + p and ν̄l + p ⇆ l+ + n

I write these processes in general as

νl,1 +N2 ⇆ l3 +N4, (3.45)

where νl,1 denotes the neutrino (anti-neutrino), N2 the neutron (proton), l3 the charged
lepton (antilepton), i.e., e or µ and N4 the proton (neutron). The interaction Lagrangian
at low energies may be given by the Fermi theory as

L =
GF cos θC√

2
lα j

α
CC, (3.46)
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where θC is the Cabibbo angle; the leptonic current is given as

lα = l̄3µα
(

1− µ5
)

ν1, (3.47)

and the nucleonic charged current is expressed as

jαCC = Ψ̄4

{

µα
[

GV

(

q2
)

−GA

(

q2
)

µ5
]

+F2

(

q2
) iσαβqβ

M
−GP

(

q2
)

µ5
qα

M

}

Ψ2. (3.48)

In the above expression, Ψ2 and Ψ4 are the wave functions of N2 and N4, respectively, and
qα = pα1 − pα3 is momentum transfer to nucleon; M = (mn +mp) /2 is the bare average
mass of nucleons; the vector, axial vector, tensor and pseudoscalar form factors are given
by Leitner (2005), respectively, as

GV (q
2) =

gV

[

1−
q2(µp − µn)

4M2

]

(

1−
q2

4M2

)(

1−
q2

M2
V

)2 , (3.49)

GA(q
2) =

gA
(

1−
q2

M2
A

)2 , (3.50)

F2(q
2) =

µp − µn − 1
(

1−
q2

4M2

)(

1−
q2

M2
V

)2 , (3.51)

GP (q
2) =

2M2GA(q
2)

m2
π − q2

, (3.52)

where q2 = qαq
α; gV = 1 and gA = 1.27 are the vector and axial vector coupling constants,

respectively; µp = 2.793 and µn = −1.913 are the magnetic moments of proton and
neutron, respectively; MV = 840MeV, MA = 1GeV and mπ = 139.57MeV are the
vector, axial and pion mass, respectively. Note that the tensor contribution to Eq. (3.48)
is nothing but the weak magnetism. The spin-averaged matrix element squared can be
expressed as

⟨|M|2⟩ = ´
G2

F cos2 θC
2

LµνΛ
µν , (3.53)

with the leptonic tensor Lµν and the hadronic counterpart Λµν ; the coefficient ´ originates
from the spin average; ´ = 1/2 for νl,1+N2 → l3+N4 and ´ = 1/4 for l3+N4 → νl,1+N2.
The leptonic tensor is written as

Lµν = 8 (p3µp1ν + p3νp1µ − ηµν(p1 · p3)± ipρ3p
σ
1 ϵρµσν) , (3.54)

where the sign is + for neutrino and − for anti-neutrino and all neutrinos are assumed
to be massless. The hadronic tensor is modified in medium and, as I mentioned earlier, I
take into account the modifications of the free nucleon propagators at the mean field level
as follows Roberts and Reddy (2017a):

Λµν = Tr

{

( ̸p̃4 +m∗
4)

[

µµ(GV −GAµ
5) + F2

iσµαqα
2M

−GP
qµ

M
µ5

]

×( ̸p̃2 +m∗
2)

[

µν(GV −GAµ
5)− F2

iσνβqβ
2M

+GP
qν

M
µ5

]}

, (3.55)
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where I introduce the following notation: p̃α2 = (E∗
2 ,p2), p̃

α
4 = (E∗

4 ,p4) and

E∗
2,4 = E2,4 − U2,4, (3.56)

with U2,4 being the mean field potentials of particles 2 and 4; E∗
2,4 is given by the on-shell

condition in medium as

E∗
2,4 =

√

|p2,4|2 +m∗
2,4

2, (3.57)

where m∗
2,4 are the effective masses of particles 2 and 4, respectively.

The inverse mean free path of ν1 is expressed as

1

λ(E1)
=

∫

d3p2

(2π)3
d3p3

(2π)3
d3p4

(2π)3
2f2(E

∗
2) [(1− f3(E3)] [1− f4(E

∗
4)]

×
1

24E1E∗
2E3E∗

4

(2π)4¶(4)(pµ1 + pµ2 − pµ3 − pµ4 )|M|2

=
G2

F cos2 θC
2

1

E1

∫

d3p3

(2π)32E3
[1− f3(E3)]Lµν S

µν
(

q0, q
)

, (3.58)

where Sµν is the so-called dynamical structure function of nucleon. It can be decomposed
as follows due to the isotropy of the system:

Sµν
(

q0, q
)

= ĀPµν
1 + B̄Pµν

2 + C̄P µν
3 + D̄P µν

4 + ĒPµν
5 , (3.59)

where the coefficients Ā, B̄, C̄, D̄ and Ē are functions of q0 and q = |q|, and Pµν
1 , P µν

2 , P µν
3 , P µν

4

and Pµν
5 are projectors relative to momentum transfer qµ. Their detailed expressions are

given in Appendix B. The Fermi integrals included in the coefficients from Ā to Ē and
other remaining integrals in Eq. (3.58) are evaluated numerically.

The emissivity can be obtained from the absorptivity using the detailed balance con-
dition as

j(E1) =
G2

F cos2 θC
2

1

E1

∫

d3p3

(2π)32E3
f3(E3)

× exp
[

´(−q0 − µ2 + µ4)
]

Lµν S
µν

(

q0, q
)

. (3.60)

NC reaction: ν +N ⇆ ν +N

This is a neutrino scattering on a nucleon, which is denoted by

ν1 +N2 ⇆ ν3 +N4, (3.61)

and its rate is calculated in a similar way to the CC reactions presented above. The
interaction Lagrangian is written as

L =
GF√
2
lα j

α
NC, (3.62)

where the leptonic neutral current is expressed as

lα = ν̄3µα
(

1− µ5
)

ν1, (3.63)

whereas the nucleonic neutral current is given as

jαNC = Ψ̄4

{

µα
[

GN
1

(

q2
)

−GN
A

(

q2
)

µ5
]

+GN
2

(

q2
) iσαβqβ

M

}

Ψ2. (3.64)
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The form factors in this expression are written as

Gp
1,2

(

q2
)

=
1

2

[

(

1− 4 sin2 θW
)

F p
1,2 − Fn

1,2

]

, (3.65)

Gn
1,2

(

q2
)

=
1

2

[

(

1− 4 sin2 θW
)

Fn
1,2 − F p

1,2

]

, (3.66)

Gp
A

(

q2
)

=
1

2
GA

(

q2
)

, (3.67)

Gn
A

(

q2
)

= −
1

2
GA

(

q2
)

, (3.68)

with

F p
1

(

q2
)

=
1−

q2µp
4M2

(

1−
q2

4M2

)(

1−
q2

M2
V

)2 , (3.69)
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and GA(q
2) is given in Eq.(3.50). The inverse mean free path is written in general as
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where Sµν is the structure function calculated in the same way as for the CC reaction just
by replacing the form factors. The emissivity is also expressed as
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from the detailed balance condition.

Beta decay and its inverse: ν̄l + p+ l− ⇆ n

The interaction Lagrangian, matrix element and form factors are the same as those for the
CC reaction except for the momentum transfer now given as qα = pα1 + pα3 . The inverse
mean free path and emissivity are then expressed, respectively, as
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Table 3.5: Thermodynamical conditions considered in this study. Units of temperature T , chem-
ical potentials, µn, µp, µe and µµ, nucleon potential difference Un − Up and effective
mass m∗ are all MeV.

Model tpb(s) r(km) ρ(g/cm3) T Ye Yµ Yn Yp
1 µn µp µe µµ Un − Up

t1S 1 20.0 5.0× 1012 5.5 0.036 0.0025 0.95 2.3× 10−2 933.8 909.0 25.6 102.8 3.5
t3S 3 16.5 1.0× 1013 5.0 0.026 0.0025 0.94 1.1× 10−2 938.6 906.8 30.2 104.2 7.1
t10S 10 14.5 2.0× 1013 4.0 0.025 0.0025 0.86 4.5× 10−4 943.3 896.2 42.0 105.7 13.9
t30S 30 13.6 4.5× 1013 2.7 0.018 0.0025 0.84 5.0× 10−11 948.9 878.7 47.3 107.2 30.2
t50S 50 13.4 6.1× 1013 1.5 0.017 0.0025 0.79 2.0× 10−20 951.0 870.4 52.2 107.8 38.8
t1D 1 10.8 1.2× 1014 35.6 0.22 0.05 0.73 0.27 904.0 836.3 126.4 89.8 27.0
t3D 3 9.4 2.1× 1014 35.0 0.20 0.05 0.75 0.25 930.4 849.2 156.5 114.5 30.9
t10D 10 6.0 3.5× 1014 30.2 0.17 0.05 0.78 0.22 981.3 883.2 186.2 146.3 30.2
t30D 30 1.7 4.7× 1014 17.7 0.16 0.05 0.80 0.20 1037.0 924.8 210.2 174.1 28.5
t50D 50 1.69 4.9× 1014 2.8 0.15 0.05 0.80 0.20 1046.1 932.3 216.3 182.8 28.5

3.2 Results and discussions

Employing the formulae I obtained so far, I now evaluate the rates of all reactions listed
in Table 3.1 numerically for the thermodynamic conditions that we find typically in the
PNS cooling. I compare the inverse mean free paths for these reactions to see their
relative importance quantitatively. I also discuss their possible implications for the cooling
timescale.

For this purpose, I first extract the thermodynamical data at different times from a
one-dimensional PNS cooling calculation under spherical symmetry conducted in Nakazato
et al. (2018). The simulation was done as follows: core-collapse of a 15 M⊙ progenitor
Woosley and Weaver (1995) was first computed with the general relativistic neutrino-
radiation hydrodynamics code Sumiyoshi et al. (2005) until t = 0.3 s after core bounce
when the shock wave is stalled. Knowing that this model does not explode in 1D but
expecting that it will explode in multi-dimensions, the authors in Nakazato et al. (2018)
extracted the region inside the shock wave (up to mass coordinate of ∼ 1.47M⊙) from the
result of the first simulation and use it as an initial condition of the second simulation of
PNS cooling. In this second simulation, the quasi-static evolution of the PNS is computed
by solving the Tolman-Oppenheimer-Volkov equation together with the neutrino transfer
equation, the latter of which was solved with the multi-group flux limited diffusion scheme
for neutrino transfer Suzuki (1994); the Shen EoS Shen et al. (2011) was adopted.

I then picked up the snapshots at t = 1, 3, 10, 30, 50 s post bounce. At each time, I
extracted the trio of the thermodynamical quantities: density, temperature and electron
fraction (ρ, T, Ye) at the neutrino sphere for the average neutrino energy as well as at the
radius where the temperature reaches the maximum. Note that the peak temperature
occurs off center particularly at early times. The choice of the latter position is motivated
by the fact that the muon fraction is expected to be largest, since it is known to be cor-
related with temperature Bollig et al. (2017). It is noted here that the second simulation
(and the first one as well) neglected muon entirely. I hence added it by hand as a param-
eter in this paper: Yµ = 0.0025 at the neutrino sphere and Yµ = 0.05 at the maximum
temperature, with Yµ being the muon fraction. As already explained in detail, the rates
of the semi-leptonic reactions depend not only on the chemical potentials of nucleons but
also on their dispersion relations in medium. I re-evaluated them at the mean field level,
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just in the same way to produce the EoS, for the given quartet (ρ, T, Ye, Yµ). Note that
the effective masses of neutron and proton are the same in the Shen EoS. All the relevant
quantities are listed in Table 3.5.

3.2.1 Inverse mean free paths at tpb = 10 s

I first present the inverse mean free paths for all neutrino reactions at tpb = 10 s as the
fiducial model. Figure 3.1 shows the inverse mean free paths at the neutrino sphere (model
t10S) as a function of the energy of the incoming neutrino.

Panel (a) is the results for νe. As expected the νe absorption on neutron, the CC
reaction, is the dominant source of opacity at high energies of the incident neutrino Eνe ≳

10MeV. The nucleon scattering is the second contributer at the same energy range. Since
protons are much less abundant (Yp = 4.5 × 10−4) than neutrons (Yn = 0.86) due to
the formation of heavy nuclei, the scattering on the former is dominnant by more than 4
orders. Note that the coherent scatterings on heavy nuclei are not considered here.

At low energies (Eνe ≲ 10MeV), on the other hand, the flavor exchange reaction
νe + µ− → νµ + e− dominates the opacity. This is one of the muon-related interactions,
the main topic in this paper. It should be mentioned that this reaction is more important
than the electron scattering at almost all energies of relevance (Eνe ≲ 100MeV). This is
due to the large mass difference between muon and electron.

The scattering on muon, on the other hand, is always smaller than that on electron,
since muons are much less abundant. Note that the energy dependence is also different
between these two reactions, since the muon is much heavier than the electron and the
electron is strongly degenerate. One can see that the rise of the inverse mean free path
for the muon scattering with the neutrino energy becomes less steep at Eνe ≳ 100MeV as
muons get relativistic.

The pair production of muon and anti-muon is less efficient than that of electron-
positron again for the lager mass of muon. The three body reactions are very minor,
since they involve positrons, the abundance of which is suppressed by the degeneracy of
electrons.

Panel (b) shows the inverse mean free paths for ν̄e. This time the absorption via the
charged current is quite minor, since protons are scarce and, more importantly, the poten-
tial difference between proton and neutron disfavors the reaction, producing an effective
threshold in fact. Note that this is also the threshold for the inverse beta decay of neutron,
which occurs essentially below it.

The nucleon scatterings are dominant contributors to the inverse mean free path at
high neutrino energies (Eν̄e ≳ 10MeV), with the neutron scattering overwhelming the
proton scattering for the same reason as for νe. Interestingly, the inverse muon decay is
dominant below ∼ 10MeV. This happens because there is a large phase space available.
Incidentally, the counterpart for νe: νe+ e++ ν̄µ → µ+ is pretty minor, since the positron
is strongly suppressed. Other features are common to νe.

For νµ, the scattering on neutron again gives the dominant contribution in the range of
Eνµ = 10−100MeV (panel (c)). The inverse muon decay comes first at lower energies just
as for ν̄e. At higher energies, Eνµ + Un − Up ≳ 100MeV, on the other hand, the neutrino
capture on neutron becomes the most important. The scattering on muon is subdominant
but is comparable with or even higher than the scattering on electron because the latter
occurs only through the neutral current while the former takes place through both the
neutral and charged currents. The flavor exchange reaction νµ+e− → νe+µ− is substantial
only at high energies Eνµ ≳ 100MeV, since the mass difference between electron and muon
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disfavors in this time. The electron-positron and muon-anti-muon pair productions are
both very minor.

As for ν̄µ (panel (d)), the scattering on neutron is dominant at Eν̄µ ≳ 10MeV while
the flavor exchange reaction ν̄µ + µ− → ν̄e + e− pairs becomes most important at lower
energies Eνµ ≲ 10MeV. The scattering on muon is more important than that on electron
and the production of electron-positron pair is comparable to the former. The production
of muon-anti-muon becomes as important at very high energies Eν̄µ ≳ 100MeV. The
absorption and scattering on proton are much smaller due to the small abundance of
proton. The inverse beta decay of muon is even smaller, since the positron abundance is
more strongly suppressed.

In the presence of muons, the degeneracy between the µ-type and τ -type (anti-)neutrino
is resolved. The muonic reactions for τ -type (anti-)neutrino occur only through the neutral
leptonic or nucleonic current and are always subdominant, with the scattering on neutron
being dominant (panel (e)). The difference in opacity between the electron and muon
scatterings is originated from the differences in the electron and muon fractions and as
well as in the Fermi-blocking factor. The difference between ντ and ν̄τ is pretty minor.
Note, however, that the opacity is always smaller for ν̄τ than for ντ as pointed out in
Horowitz (2002). The difference in the neutrino scatterings on nucleon is ascribed to the
weak magnetism in the nucleon current.

So far I have been concerned with the reaction rates near the neutrino sphere, the
region most important for the formation of neutrino signals as observed. Now we shift our
interest to a deeper region with the highest temperature, where muons are expected to be
most abundant. The results are presented in Figure 3.2.

Panel (a) shows the inverse mean free paths for νe. The absorption on neutron is the
most important source of opacity in all range of the incident neutrino energy as expected.
Since the temperature in model t10D is much higher than that of model t10S, the Fermi
blocking by electron is more moderate, which is the reason why the CC reaction remains
dominant even at low energies. The nucleon scatterings are the second dominant just as for
model t10S (Figure 3.1(a)). Note that the scattering on proton is much larger compared
with model t10S because the free proton is much more abundant in this region (Yp = 0.22)
than around the neutrino sphere.

The opacities of the scatterings on neutron, electron and muon are larger by an order
than the counterparts in model t10S, since the scattered particles are more numerous. The
flavor exchange reaction νe + µ− → νµ + e− is also enhanced compared with model t10S
for the same reason. It is still minor than the CC reaction partly because the chemical
potential of muon is overwhelmed by that of electron, which results in a smaller phase
space available in the flavor exchange reaction whereas in the CC reaction the difference
in the effective potentials between neutron and proton are significant. As I mentioned,
since the Fermi blocking by leptons is weaker in this region, the electron-positron and
muon-anti-muon pair processes are allowed even at lower neutrino energies. The three
body reactions are very minor as in model t10S.

For ν̄e, the inverse neutron decay is strongly enhanced and is dominant indeed in the
energy range of Eν̄e ≲ 20MeV. This happens because the proton number density as well as
the potential difference between proton and neutron are larger in model t10D. The latter
broadens the available phase space. The inverse muon decay is not so large, but is still
greater compared with model t10S. This is because the electron number density is larger
and the inequality µe− > µµ− is satisfied for the chemical potentials at this radius while
the opposite inequality µe− < µµ− holds near the neutrino sphere. The flavor exchange
reaction ν̄e + e− → ν̄µ + µ− is also enhanced from model t10S in the same way as the
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inverse muon decay is. The energy threshold for the absorption via the charged current
is determined by the potential difference between neutron and proton as in model t10S.
The features of other reactions are common to νe.

Panel (c) shows the results for νµ. The neutrino capture on neutron is the greatest
source of opacity in a wider energy range Eνµ ≳ 10MeV compared with model t10S
due to the larger potential difference between neutron and proton. The scattering on
neutron gives the dominant contribution at Eνµ ≲ 10MeV. The flavor exchange reaction
νµ + e− → νe + µ− and the inverse muon decay are subdominant compared with the
scattering and absorption on neutron but are larger than those in model t10S. The reason is
similar to the muon-related reaction for ν̄e; the electron is more abundant and the chemical
potential difference between electron and muon favors these reactions. The scattering on
electron and muon and the pair-processes are minor just as for νe and ν̄e.

For ν̄µ, the scattering on neutron gives the dominant contribution except at 2MeV ≲

Eν̄µ , where the flavor exchange reaction ν̄µ + µ− → ν̄e + e− is the largest contributor,
which is similar to model t10S (see panel (d)). The reaction rate in model t10D, on the
other hand, is larger by an order than that in model t10S because the number density of
muon is larger by the same factor. In the similar way, the neutrino capture on proton is
enhanced at high energies, since the proton number fraction is greater by an order again
compared with model t10S, while the potential difference between proton and neutron
prevents the reaction at low energies. Three body reaction ν̄µ + e+ + νe → µ+ is strongly
suppressed as positrons are scarce. It is mentioned for model t10S that the µ-type (anti-
)neutrino scattering on muon is comparable with or higher than that on electron which is
also confirmed in model t10D.

The scattering on neutron is again the dominant source of opacity for the τ -type
neutrino (panel (e)). The scattering on proton is smaller owing to the smaller abundance
proton. As pointed out in model t10S, the opacity of ν̄τ is always smaller than ντ for all
reactions and at all energies.

3.2.2 Corrections in semi-leptonic reactions

In the evaluation of rates for the semi-leptonic reactions, I include the mean field effect
(MF), the weak magnetism (WM), the q2 dependence of form factors and the pseudoscalar
(PS) term. Here I pay attention to the differences that they make in the CC and NC
reactions.

neutrino capture on neutron

Figure 3.3 summarizes the results for the CC reactions of νe and νµ in model t10S. The
label “Full” (blue line) means that all corrections WM, PS, MF and the q2 dependence
of form factors are included; the orange line incorporates only WM, PS and MF; the
green dotted line excludes PS further; the red dashed line includes only MF; the purple
line corresponds to no corrections at all. The brown line shows the approximated rates
given by Bruenn Bruenn (1985), in which they assume that the momentum transfer of the
nucleon is approximately zero and the nucleon mass is infinitely large. I include the MF
effect in the Bruenn approximation which is expressed as

1
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=
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for each approximation from the complete one as follows:

¶i =
1/λi − 1/λfull

1/λfull
. (3.78)

It is obvious that the purple solid line is deviated from all the others substantially. This
is due to the mean field effect as can be most clearly understood from the comparison with
the red dashed line. It is clear that the absorptivity is enhanced in general. This happens
for νe (panel (a)) because the energy that the produced electron gains becomes greater
by the mean field potential difference between proton and neutron and, as a result, the
final-state Fermi-blocking of electron is suppressed Mart́ınez-Pinedo et al. (2012). For νµ
(panel (b)), the reason is essentially the same but the muon rest mass gives the threshold
at a higher energy.

We can see how the approximation given by Bruenn Bruenn (1985) behaves by com-
paring the brown and red dashed lines. In both νe and νµ capture on neutron, the approx-
imated rates are always larger than the case with full kinematics. The differences between
them depends on the incoming neutrino energies: ∼ 20% in Eν ≲ 30MeV and ∼ 30%
at Eν = 100MeV. Note that in νµ capture on neutron, the reaction cannot be occurred
when the incoming neutrino is Eν < mµ − (Un − Up) in the approximated rate.

The effect of the weak magnetism can be seen from the comparison between the red
dashed line and the green dotted line. It tends to enhance the absorptivity, the degree of
which depends on the momentum transfer q/M : ∼ 10% at Eν ∼ 10MeV and ∼ 30% at
Eν ∼ 100MeV for νe whereas for νµ ∼ 20% at Eν ∼ 100MeV as shown at the bottom
of each panel. The difference between the green dotted line and the orange dash-dotted
line reflects the effects of pseudoscalar term. Since it is proportional to m2

l ≪ M2 in the
matrix elements, the changes that this term induces are rather small both for νe and νµ.

The effects of the q2 dependence of form factors are encoded in the difference between
the blue solid line and the orange dash-dotted line. The absorptivity is reduced in general
by the inclusion of the dependence and the reduction is larger for higher neutrino energies,
scaling with q2/M2. This correction reaches ∼ 10% and ∼ 5% at ∼ 100MeV for νe and
νµ, respectively.

neutrino nucleon scattering

Now we shift our interest to the NC reaction. Figure 3.4(a) shows the effects of the
corrections on the neutrino scattering on neutron in model t10D. The effect of MF can
be seen from the comparison between the purple solid lines and the red dashed lines, in
which the nucleon mass is set to the vacuum value in the former while it is given the
effective mass in the latter, respectively. Note that there is no potential difference in
the NC reactions. In the calculation of the dynamical structure functions of nucleons,
the integration ranges that appear in the Fermi integral (for example see . Eq. (B.24))
strongly depend on the effective mass. In fact, for the NC reaction, in which κ = 1, q̃0 = q0

and ∆2 =
(

q0
)2

− q2 < 0 are satisfied, the integration range (see Eqs. (B.25) and (B.26)
) becomes
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Since the effective mass of nucleon, m∗, in the dense region is substantially smaller than
the vacuum mass, the integration ranges are wider in general. This is the reason why the
inverse mean free paths are enhanced by including the effective mass.

The brown line shows the approximation given by Bruenn Bruenn (1985) as follows:

1

λ(E1)
=

∫

d3p3

(2π)3
[1− f3(E3)]RBruenn, (3.81)

with the reaction kernel
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where θ is an angle between incoming and outgoing neutrinos and ηNN is defined as

ηNN =

∫

2d3pN

(2π)3
fN (E∗

N ) [1− fN (E∗
N )] . (3.83)

By comparing with red dashed lines, the approximated rate is larger than that including
full kinematics for higher energies Eν ≳ 70MeV and Eν ≳ 40MeV for νe and ν̄e, respec-
tively. On the other hand for lower energies, the rate including full kinematics is larger
by an order than the approximated, so I can say that the momentum transfer gives great
influences in the deeper region where the effective mass is reduced.

The WM correction gives opposite modifications for neutrino and anti-neutrino (com-
pare the green and red lines in panels (a) and (b): it tends to enhance (suppresses) the
reaction for neutrino (anti-neutrino). The degrees of change are a few % at Eν ∼ 10MeV
and ∼ 10% at Eν ∼ 100MeV in both cases. These results are qualitatively consistent with
those of the previous study Horowitz (2002).

The q2 dependence of form factors reduces the inverse mean free paths just as the CC
reactions do. The relative difference it makes is a few percent around Eν ∼ 10MeV and
reaches a few tens percent at Eν = 300MeV.

Note in passing that the NC reactions do not distinguish the neutrino flavors except
their distribution functions, the results mentioned above for the e-type neutrino and anti-
neutrino are applied also to other flavors of neutrinos and anti-neutrinos.

3.2.3 Inverse mean free paths at other times

I move on to the results for other thermodynamical conditions obtained at t = 1, 3 s (the
earlier phase) and t = 30, 50 s (the later phase) to infer the time evolutions of the mean
free paths in the PNS cooling.

The inverse mean free paths for νe at the neutrino sphere are shown in Figure 3.5.
Comparing them with Figure 3.1(a), one finds that the neutrino capture on neutron is
enhanced at later times. This is due to the widening of the effective potential difference
between neutron and proton Un − Up as well as to the increase in the number density
of neutron. The inverse mean free paths for the neutrino scattering on neutron and the
flavor exchange reaction also rise as the density at the neutrino sphere increases in time.
The scattering on proton, on the other hand, gets strongly suppressed at later times due
to the declining proton fraction at the neutrino sphere. As the temperature lowers, the
pair production reactions are suppressed at low energies as I mentioned in Figure 3.2.

Figure 3.6 is the same as Figure 3.5 but for the deeper region, where the temperature
becomes maximum. Note that the radius changes in time (see Table 3.5). The inverse
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A in figures 5 and 6 in their paper except for minor deviations induced inevitably by the
use of different EoS and the values of the mean field parameters. Condition B in Guo
et al. (2020) is similar to our model t10S except that the temperature and the electron
fraction in the latter are lower than those in the former due to the advanced cooling and
neutronization in our model. The trends in the inverse mean free paths are qualitatively
the same: for νµ, for example, the inverse muon decay and the neutrino scattering on
neutron are dominant at low and high energies, respectively.

3.2.4 Reaction kernels of the flavor-exchange reaction and the inverse
muon decay

So far I have looked at the inverse mean free path alone, the quantity integrated over the
energy and angle. In this section I will look into more details, i.e., the energy- and angular
dependences of the reaction kernels for some muon-related reactions that become signifi-
cant as an opacity source at some energies: the flavor-exchange reaction νe + µ− ⇆ νµ + e−

and the inverse muon decay ν̄e + νµ + e− → µ−. I show the results at t = 10 s. These
are relevant information for detailed neutrino transport calculations but have not been
presented so far.

Figure 3.13 exhibits as a color contour the reaction kernel Rin
νe for the flavor exchange

reaction, νe + µ− → νµ + e−, as a function of the energy and the angle of the outgoing
νµ with the energy of the incoming νe being fixed. The angle is measured from the flight
direction of the incident νe. The upper panels (a), (b) and (c) are the results for model
t10S while panels (d), (e) and (f) are for model t10D. The energy of the incoming νe is
set to 1, 10 and 100MeV for the left, middle and right columns, respectively.

It is observed that the energy of νµ is larger than the energy of νe thanks to the
large difference of the rest masses between muon and electron. It is also clear that νµ is
preferentially emitted in the forward direction irrespective of the incident energy of νe.
As the energy νe gets larger, the forward peak becomes more remarkable whereas the
energy gain gets smaller. From the comparison between models t10S and t10D, I find
that these features are shared not only qualitatively but also quantitatively although the
thermodynamic conditions are fairly different and the energy of νµ, at which the kernel
attains the maximum, is somewhat different. Since this is true also for the other reactions,
I will focus on model t10S in the following.

Figure 3.14 presents the reaction kernel Rin
νµ

(

= Rout
νe

)

for the inverse process of the

flavor-exchange reaction discussed above: νµ + e− → νe + µ−. This time the energy of
the incident νµ is fixed to 1, 10 and 100MeV in panels (a), (b) and (c), respectively, and
the reaction kernel is regarded as a function of the energy and angle of the outgoing νe.
For rather low incident energies (see panels (a) and (b)), the outgoing νe has very low
energies, since most of the energy is exhausted to generate the muon mass. You can see
again the outgoing neutrinos are emitted preferentially in the forward direction. For the
high incident energy, the energy of outgoing neutrino rises accordingly and the forward
peak gets pronounced. These results simply reflect the detailed balance expected as Eq.
(3.10)

Now I move on to the reaction kernel for the inverse muon decay, ν̄e + νµ + e− → µ−.
Figure 3.15 shows Rin

ν̄e as a function of the energy and angle of νµ with the energy of
incoming ν̄e being fixed to either 1, 10 or 100MeV (corresponding to panels (a), (b) and
(c), respectively). The angle is measured from the flight direction of the other neutrino,
ν̄e. It is found that the kernel is largest when the sum of energies, Eν̄e + Eνµ is close
to the rest mass of muon and the neutrinos collide head on, i.e., cos θ = −1. When one
looks at this reaction from the standpoint of νµ, on the other hand, the picture could
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(1999); Roberts and Reddy (2017b)

Fνi =
1

6π2

∫

f (1)
νi (ε)ε2dε

= −
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³6π2

[

D4,νi

∂³T
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]

, (3.84)

where ηνi = µνi/T , Γ =
√

1− 2GMg/r and ³ is the lapse function, or the (00)-component
of the metric. The diffusion coefficients in this expression are given as
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0
dε

εn
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1
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f (0)
νi (ε)

[

1− f (0)
νi (ε)

]

, (3.85)

where κ∗νi is the total absorption opacity defined as

κ∗νi =
1

λtot
νi

+ jtotνi . (3.86)

Since the second term in Eq. (3.84) is normally negligible in the PNS cooling Roberts and
Reddy (2017b), the energy flux is reduced to

Fνi ≃ −
ΓT 3

³6π2
D4,νi

∂³T

∂r
. (3.87)

It is then obvious that the diffusion coefficient D4,νi is the key factor to determine the
cooling timescale through Eq. (1.12). I hence investigate this coefficient, in particular, the
contribution of each reaction:

Dr
4,νi =

∫ ∞

0
dε

ε4

T 5

1

κrνi
f (0)
νi (ε)

[

1− f (0)
νi (ε)

]

, (3.88)

where r specifies the reaction we consider and κrνi = 1/λr
νi + jrνi . Although 1/D4,νi is not

the sum of 1/Dr
4,νi

, I use it instead of D4,νi , since it corresponds to the inverse mean free
path.

Figures 3.17 and 3.18 show the values of 1/Dr
4,νi

for different reactions again at the
neutrino sphere (figure 3.17) and at the radius (figure 3.18), where the temperature is
highest and hence muons are expected to be most abundant, as a function of time. We
can see from figure 3.17 that at the neutrino surface, the neutrino scattering on neutron is
dominant for ν̄e, νµ, ντ and ν̄τ . For νe, the capture on neutron is almost comparable. For
ν̄µ, on the other hand, the flavor exchange reaction exceeds the neutron scattering at all
times, which suggests that the ν̄µ flux may be most affected by the muon existence. The
flavor exchange reaction and the muon decay are smaller but not negligible also for νe,
ν̄e and νµ. In the deeper region, on the other hand, the flavor exchange reaction as well
as the muon decay is suppressed. I find for νµ that the CC reaction dominates all other
reactions around t = 20 s due to the reduction of effective mass, which makes a wider
region available in the phase space just as for the enhancement of the neutrino scattering
rate discussed in subsection 3.2.2 (see Eq. (3.80)). In the later phase, this CC reaction is
suppressed due to the strong Fermi blocking of muon in the cooled PNS.

The reason for the sudden rises of 1/D4,ν̄e and 1/D4,ν̄µ at t ≳ 30 s in Figures 3.18(b)
and 3.18(d) is that the chemical potential µν̄e,µ = −µνe,µ = µn − µp − µe,µ takes large
negative values. Since the factor fν̄e,µ(1 − fν̄e,µ) in Eq. (3.85) is peaked at ε = µν̄e,µ and
declines rapidly at ε > µν̄e,µ , D4,ν̄e and D4,ν̄µ become also smaller, which means that
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matter may be transparent in this region. If so, the diffusion approximation is no longer
valid and the diffusion coefficients are not a good measure for the cooling timescale.

In Figure 3.19, I show D
w/o µ
4,νi

/Dtot
4,νi

, the ratios of the diffusion coefficients not including
the contributions from the muon-related reactions to that including the contributions from
all reactions, to see to what extent the muon-related reactions affect the energy flux at
the neutrino sphere. In so doing I change the muon fraction rather arbitrarily. We can
see from the figure that the ratios are enhanced for neutrinos and anti-neutrinos other
than the τ -type of them as the muon fraction gets larger, i.e. the diffusion of these
neutrinos is suppressed. To these changes the following reactions νe + µ− → νµ + e− and
ν̄µ +µ− → ν̄e + e− give the greatest contributions for νe and ν̄µ, respectively, whereas the
inverse muon decay ν̄e+ νµ+ e− → µ− is the most important for ν̄e and νµ. These results
imply that muons behave as a reservoir of these neutrinos, disturbing their diffusions in
the PNS. This in turn leads tho the prolongation of the cooling timescale of PNS.

3.3 Summary

In this chapter, I have numerically evaluated the rates of muon- and nucleon-related weak
interactions of all species of neutrinos that are relevant in the cooling phase of PNS. For
the semi-leptonic interactions, I have taken fully into account the relativistic kinematics of
nucleon as well as the weak magnetism, the pseudoscalar term, and the q2 dependence of
form factors for nucleon; I have also considered the corrections to the dispersion relations
of nucleons from nuclear interactions on the mean field level.

I have compared the inverse mean free paths of these reactions at different times. At
the neutrino sphere, the inverse muon decay ν̄e + e− + νµ → µ− is the dominant source
of opacity for ν̄e and νµ at low incoming neutrino energies whereas the flavor exchanging
reactions: νe + µ− → νµ + e− and ν̄µ + µ− → ν̄e + e− give the greatest contributions for
νe and ν̄µ also at low neutrino energies. At high energies, on the other hand, the neutrino
capture on neutron is dominant for νe and νµ whereas the scattering on neutron dominates
the opacity for ν̄e and ν̄µ. In the deeper region, the muon-related reactions are suppressed
compared with the semi-leptonic reactions although general features are similar to what I
have found at the neutrino sphere.

In the exploration of the semi-leptonic reactions, we have observed that the weak-
magnetism enhances (suppresses) the opacities for neutrino (anti-neutrino) both in the
CC and NC current reactions; the q2 dependence of form factors tends to reduce the
opacities both via the CC and NC currents. I have confirmed that the pseudoscalar term
gives only miner corrections even in the muon-related CC semi-leptonic reactions.

The difference of the effective potentials between neutron and proton, which I incorpo-
rate on the mean field level, shifts the threshold of the CC semi-leptonic reactions and, as
a results, enhances the neutrino capture on neutron as well as the inverse neutron decay,
which is one of the dominant sources of opacity in the deeper region. The neutrino scat-
tering on neutron is enhanced, on the other hand, because the effective mass of nucleons
becomes smaller in the dense region.

I have investigated the diffusion coefficients for neutrinos, which are relevant for neu-
trino transport in the optically thick regime. I have paid particular attention to the
changes that the existence of muon will make. I have found that muons play a role of
reservoir for the e- and µ-type neutrinos by disturbing their diffusion in the PNS interior.
I hence expect that the cooling timescale will be longer in the presence of muons.

Our eventual goal is to employ the reaction rates obtained here in calculations of the
PNS cooling, possibly in multi-spatial dimensions, and explore quantitatively their influ-









Chapter 4

Conclusion

Numerical simulations of CCSN has been conducted energetically to unveil the physical
mechanism and the observable signatures of the CCSNe for decades. Due to the remarkable
improvement of numerical computation technology, such as supercomputer, we can now
compute multi-dimensional hydrodynamical evolution including detailed neutrino trans-
fer. In fact, many interesting key physics such as LESA, the muon existence and so on
have been found. The observation technology of neutrino also developed recently, and
if the Galactic supernova occur, it is estimated that neutrino can be detected ∼ 100 s
after the core bounce, which include the later phase of PNS cooling. However, since the
Galactic supernova is so rare, the more accurate prediction and its interpretation have to
be prepared in advance to extract the most information we can get from one CCSN event.
In that point of view, we have to improve several things. One thing is the qualitative or
intuitive understanding of the CCSN numerical simulation. Especially, multi-dimensional
effects I mentioned in this thesis interact with each other complicatedly to hinder the clear
understanding of the detailed physics. Another thing is taking into more precise physics
(especially neutrino physics and nuclear physics) with the solid understanding. I tackled
to the former problem by using the linear analysis of the shock dynamics by decomposing
the multi-dimensional effects. Related with the latter problem, I reveal the fundamental
neutrino interaction related with muon which understandings is indispensable to interpret
the CCSN numerical simulation.

In chapter 2, the instability of the standing shock wave and the accretion flows down-
stream in the core of CCSNe have been investigated by linear analysis. I have focused
particularly on the influences of the fluctuations at the inner boundary. The influence
of the injection of acoustic power from the PNS also have been explored . Unlike the
perturbation at the outer boundary, those at the inner boundary change the growth rates
and oscillation frequencies of eigenmodes directly. I have hence calculated them together
with the excitation amplitudes for various neutrino luminosities. I have found that the
acoustic power injection enhances the growth rates of the fluid instabilities in general and
the critical luminosity is reduced and the enhancement is especially remarkable at low
neutrino luminosities. This is because the mismatch between the g-mode oscillations of
the PNS and the oscillations in the accretion flow is reduced. The perturbation from the
inner boundary excites some modes and the excitation amplitudes are also enhanced by
the injection of acoustic powers. On the other hand, the perturbations of the neutrino lu-
minosities have a slight effect on the growth rates and oscillation frequencies of eigenmodes
as well as on their excitation amplitudes at least at the linear level. I have then investi-
gated steady perturbed solutions, being motivated by the LESA phenomenon (Tamborra
et al. (2014a)). I have found the steady perturbed solutions in which the neutrino lumi-
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nosities is fluctuated, which we assumed are induced by the fluctuation in temperature
and/or Ye, and studied if self-sustained configurations are obtained or not. It should be
stressed that it is not a trivial thing. The obtained structures are consistent with that
proposed by Tamborra et al. (2014a) and such self-sustained steady states are obtained
without asymmetry between νe and ν̄e, It seems that it is the temperature fluctuation
and the resultant perturbation to the sum of the fluxes of νe and ν̄e, Fνe + Fν̄e , rather
than their difference that is the key to the production of these steady states. This seems
consistent with the claim by Dolence et al. (2015). On the other hand, the asymmetries
in the lepton emissions and in the Ye distribution as Tamborra et al. (2014a) found them
are also self-sustained although they may be a by-product.

In chapter 3, I have numerically evaluated the rates of muon- and nucleon-related weak
interactions of all species of neutrinos that are relevant in the cooling phase of PNS. In the
calculation of reaction rate of the semi-leptonic interactions, the relativistic kinematics of
nucleon as well as the weak magnetism, the pseudoscalar term, and the q2 dependence
of form factors for nucleon have been fully taken into account I have also considered the
corrections to the dispersion relations of nucleons from nuclear interactions on the mean
field level. Then I focus on the inverse mean free paths of these reactions in the typical
condition realized at different times of PNS cooling. I have found that muon-related
reaction can be the the dominant source of opacity. At the neutrino sphere, the inverse
muon decay ν̄e + e− + νµ → µ− give the greatest contributions for for ν̄e and νµ at low
incoming neutrino energies whereas the flavor exchanging reactions: νe + µ− → νµ + e−

and ν̄µ + µ− → ν̄e + e− are the dominant source of opacities for νe and ν̄µ also at low
neutrino energies. At high energies, on the other hand, the neutrino capture on neutron
is dominant for νe and νµ whereas the scattering on neutron dominates the opacity for ν̄e
and ν̄µ. In the deeper region, the muon-related reactions are suppressed compared with
the semi-leptonic reactions although general features are similar to what we have found
at the neutrino sphere. I have also explored the corrections to the semi-leptonic reactions
and evaluated how much each correction modified the inverse mean free path. Especially I
have found in the mean-field approximation, the neutrino capture on neutron is enhanced
as well as the inverse neutron decay, which is one of the dominant sources of opacity in
the deeper region. I have also found that the neutrino scattering on neutron is enhanced
due to the suppression of the the effective mass of nucleons in the dense region. I have
also investigated the diffusion coefficients for neutrinos and muons may be play a role of
reservoir for the e- and µ-type neutrinos by disturbing their diffusion in the PNS interior
in the later phase of the PNS cooling. I hence expect that the cooling timescale will be
longer in the presence of muons.



Appendix A

Details of the derivation of
leptonic reaction rates

In this appendix, I present the detailed calculations of reaction kernels for the leptonic
reactions listed in Table 3.1.

A.1 Scatterings: ν + l ⇆ ν + l

The spin-averaged matrix elements squared for this type of reactions are given in Eq.
(3.2) with the coefficients ´i being listed in Table 3.2. The corresponding reaction kernel
is written as

Rin (E1, E2, cos θ)

=

∫∫

d3p1

(2π)3
d3p2

(2π)3
⟨|M|2⟩

16E1E2p01p
0
2

2fl
(

p01
) [

1− fl
(

p02
)]

(2π)4 ¶(4) (qα1 + pα1 − qα2 − pα2 ) (A.1)

=
G2

F

(2π)2E1E2
[´1I1 (E1, E2, cos θ) + ´2I2 (E1, E2, cos θ) + ´3I3 (E1, E2, cos θ)] , (A.2)

where the three functions I1 through I3 are given as

I1 (E1, E2, cos θ) =

∫∫

d3p1d
3p2

1

p01p
0
2

¶(4) (qα1 + pα1 − qα2 − pα2 ) fl
(

p01
) [

1− fl
(

p02
)]

(q1 · p1) (q2 · p2) ,

(A.3)

I2 (E1, E2, cos θ) =

∫∫

d3p1d
3p2

1

p01p
0
2

¶(4) (qα1 + pα1 − qα2 − pα2 ) fl
(

p01
) [

1− fl
(

p02
)]

(q1 · p2) (q2 · p1) ,

(A.4)

I3 (E1, E2, cos θ) =

∫∫

d3p1d
3p2

1

p01p
0
2

¶(4) (qα1 + pα1 − qα2 − pα2 ) fl
(

p01
) [

1− fl
(

p02
)]

m2
l (q1 · q2) .

(A.5)
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The integrations in I1, I2 and I3 can be analytically done following the previous works
Yueh and Buchler (1977); Mezzacappa and Bruenn (1993):

I1 (E1, E2, cos θ) =
2πE2

1E
2
2

∆5
(1− cos θ)2

∫ ∞

ϵmin

dϵlfl (ϵl) [1− fl (ϵl + E1 − E2)]
(

A1ϵ
2
l +B1ϵl + C1

)

,

(A.6)

A1 = E2
1 + E2

2 + E1E2 (3 + cos θ) , (A.7)

B1 = E1

[

2E2
1 + E1E2 (3− cos θ)− E2

2 (1 + 3 cos θ)
]

, (A.8)

C1 = E2
1

[

E2
1 − 2E1E2 cos θ +

1

2
E2

2

(

3 cos2 θ − 1
)

−
m2

l

2

1 + cos θ

1− cos θ

∆2

E2
1

]

,

(A.9)

∆ =
√

E2
1 + E2

2 − 2E1E2 cos θ, (A.10)

ϵmin = max {ml, ϵ−,−(E1 − E2)} , (A.11)

ϵ− = −
E1 − E2

2
+

∆

2

√

1 +
2m2

l

E1E2(1− cos θ)
; (A.12)

the remaining integral over ϵl can be reduced to the Fermi-Dirac integrals:

J0 =

∫ ∞

ϵmin

dϵlfl (ϵl) [1− fl (ϵl + E1 − E2)]

=
1

e−β(E1−E2) − 1
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=
1

´
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e−β(E1−E2) − 1
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0
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1

1 + exp [z − ´ (µl − (E1 − E2)− ϵmin)]
−

1

1 + exp [z − ´ (µl − ϵmin)]

}

=
T

e(E2−E1)/T − 1
G0 (´ϵmin) , (A.13)

J1 =
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ϵmin

dϵlfl (ϵl) [1− fl (ϵl + E1 − E2)] ϵl

=
T 2

e(E2−E1)/T − 1
[G1 (´ϵmin) + ´ϵminG0 (´ϵmin)] , (A.14)

J2 =
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where ´ = 1/T and µl is the chemical potential of lepton l and Gi is defined as

Gi(´ϵ) = Fi [´ (µl − (E1 − E2)− ϵ)]− Fi [´ (µl − ϵ)] (A.16)

with Fi[η] being the Fermi-Dirac integrals defined as

Fi[η] =

∫ ∞

0

xi

ex−η + 1
dx (for i ≥ 0). (A.17)

Note that J0 through J2 are not divergent at E1 = E2 and are given as

J0 = TF−1 [´ (µl − ϵmin)] , (A.18)

J1 = T 2 {F0 [´ (µl − ϵmin)] + ´ϵminF−1 [´ (µl − ϵmin)]} , (A.19)

J2 = T 3
{

2F1 [´ (µl − ϵmin)] + 2´ϵminF0 [´ (µl − ϵmin)] + (´ϵmin)
2 F−1 [´ (µl − ϵmin)]

}

,

(A.20)
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with

F−1[η] =
1

e−η + 1
. (A.21)

To summarize, we get

I1 (E1, E2, cos θ) =
2πE2

1E
2
2

∆5
(1− cos θ)2 (A1J2 +B1J1 + C1J0) . (A.22)

The other two integrals I2 and I3 are calculated in a similar way as

I2 (E1, E2, cos θ)
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∫
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The other kernel Rout is obtained from the detailed balance, Eq. (3.10).

A.2 Lepton flavor exchange/conversion reactions

The spin-averaged matrix element squared for these reactions are given in Eq. (3.16) and
the coefficients ³i are listed in Table 3.3. I present here the detailed expression of Rout

ν in
Eq. (3.20), which is similar to that of the lepton scattering counterpart:

Rout
ν (E1, E2, cos θ)

=

∫∫

d3p1

(2π)3
d3p2

(2π)3
⟨|M|2⟩

16E1E2p01p
0
2

2fe
(

p0e
) [

1− fµ
(

p0µ
)]

(2π)4 ¶(4)
(

qα1 + pαµ − qα2 − pαe
)

(A.25)

=
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[³1I1 (E1, E2, cos θ) + ³2I2 (E1, E2, cos θ)] , (A.26)
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where I1 is expressed as
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∆ =
√
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2 − 2E1E2 cos θ, (A.32)
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In the above expression, Ji’s are again written with the Fermi-Dirac integrals:

J0 =
T

1− e[µµ−(µe+E2−E1)]/T
G0 (´ϵmin) , (A.34)
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∆ =
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κ =
Q

E1E2 (1− cos θ)
, (A.40)

where µµ and µe are the chemical potentials of muon and electron, respectively, and Gi’s
are given as

Gi (´ϵ) = Fi [´ (µe − (E1 − E2)− ϵ)]− Fi [´ (µµ − ϵ)] . (A.41)

There is no divergence at µµ = µe + E2 − E1, and J0 through J2 are obtained as

J0 = TF−1 [´ (µµ − ϵmin)] , (A.42)
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The remaining I2 can be obtained from the following relation:

I2 (E1, E2, cos θ) = I1 (−E2,−E1, cos θ) . (A.45)

The other kernel Rin
ν is obtained from the detailed balance, Eq. (3.19).

A.3 Muon decays

The calculation of Rout
ν̄e in Eq. (3.29) proceeds in a similar way to those for the above two

reactions:
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in which the spin-averaged matrix element squared is given in Eq. (3.25) and I1 is written
as
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with Θ being the Heaviside function and
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E2
ν̄e cos θ +

1

2
Eν̄eEνµ

(

3 + cos2 θ
)

+ E2
νµ cos θ

]

, (A.52)

∆ =
√

E2
ν̄e + E2

νµ + 2Eν̄eEνµ cos θ, (A.53)

Q =
1

2

(

m2
µ −m2

e

)

, (A.54)

D = (1− κ)2 −
2m2

e

Eν̄eEνµ (1− cos θ)
, (A.55)

κ =
Q

Eν̄eEνµ (1− cos θ)
; (A.56)
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Ji’s are given by the Fermi-Dirac integrals:

J0 =
T

1− e(Eν̄e+Eνµ+µe−µµ)/T
[G0 (´ϵmin)−G0 (´ϵmax)] , (A.57)

J1 =
T 2

1− e(Eν̄e+Eνµ+µe−µµ)/T
{[G1 (´ϵmin) + ´ϵminG0 (´ϵmin)]− [G1 (´ϵmax) + ´ϵmaxG0 (´ϵmax)]} ,

(A.58)

J2 =
T 3

1− e(Eν̄e+Eνµ+µe−µµ)/T

{[

G2 (´ϵmin) + 2´ϵminG1 (´ϵmin) + (´ϵmin)
2G0 (´ϵmin)

]

−
[

G2 (´ϵmax) + 2´ϵmaxG1 (´ϵmax) + (´ϵmax)
2G0 (´ϵmax)

]}

,

(A.59)

ϵmin = max
{

ml, ϵ−,mµ −
(

Eν̄e + Eνµ

)}

, (A.60)

ϵmax = ϵ+, (A.61)

ϵ± =
Eν̄e + Eνµ

2
(κ− 1)±

∆

2

√

(1− κ)2 −
2m2

e

Eν̄eEνµ(1− cos θ)
=

Eν̄e + Eνµ

2
(κ− 1)±

∆

2

√
D,

(A.62)

where µµ and µe are the chemical potentials of muon and electron, respectively, and Gi’s
are given as

Gi (´ϵ) = Fi

[

´
(

µµ −
(

Eν̄e + Eνµ

)

− ϵ
)]

− Fi [´ (µe − ϵ)] (A.63)

We obtain J0 through J2 at µµ = µe + Eν̄e + Eνµ by taking appropriate limits:

J0 = T {F−1 [´ (µe − ϵmin)]− F−1 [´ (µe − ϵmax)]} , (A.64)

J1 = T 2
(

{F0 [´ (µe − ϵmin)] + ´ϵminF−1 [´ (µe − ϵmin)]}

− {F0 [´ (µe − ϵmax)] + ´ϵmaxF−1 [´ (µe − ϵmax)]}
)

, (A.65)

J2 = T 3
({

2F1 [´ (µe − ϵmin)] + 2´ϵminF0 [´ (µe − ϵmin)] + (´ϵmin)
2 F−1 [´ (µe − ϵmin)]

}

−
{

2F1 [´ (µe − ϵmax)] + 2´ϵmaxF0 [´ (µe − ϵmax)] + (´ϵmax)
2 F−1 [´ (µe − ϵmax)]

})

.

(A.66)

The other kernel Rin
ν̄e is obtained from the detailed balance, Eq. (3.28)

A.4 Pair creations/annihilations

The spin-averaged matrix element squared is given in (3.31) and the coefficients ³ and ´i
are listed in Table 3.4. Here I presents the detailed expression of Rout

ν1 in Eq. (3.35), which
is written as

Rout
ν1 (E1, E2, cos θ)

=

∫∫

d3p1

(2π)3
d3p2

(2π)3
⟨|M|2⟩

16E1E2p01p
0
2

2fl−
(

p01
)

2fl+
(

p02
)

(2π)4 ¶(4) (qα1 + qα2 − pα1 − pα2 ) (A.67)

=
2G2

F

(2π)2E1E2
[´1I1 (E1, E2, cos θ) + ´2I2 (E1, E2, cos θ) + ´3I3 (E1, E2, cos θ)] , (A.68)
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where I1 can be cast into the following form:

I1 (E1, E2, cos θ) =

∫∫

d3p1d
3p2

1

p01p
0
2

¶(4) (qα1 + qα2 − pα1 − pα2 ) fl−
(

p01
)

fl+
(

p02
)

(q1 · p1) (q2 · p2) ,

(A.69)

=
2πE2

1E
2
2

∆5
(1− cos θ)2Θ(D) (A1J2 +B1J1 + C1J0) , (A.70)

A1 = E2
1 + E2

2 − E1E2 (3 + cos θ) , (A.71)

B1 = E1

[

−2E2
1 + E1E2 (3− cos θ) + E2

2 (1 + 3 cos θ)
]

, (A.72)

C1 = E2
1

[

E2
1 + 2E1E2 cos θ +

1

2
E2

2

(

3 cos2 θ − 1
)

−
m2

l

2

1 + cos θ

1− cos θ

∆2

E2
1

]

,

(A.73)

∆ =
√

E2
1 + E2

2 + 2E1E2 cos θ, (A.74)

D = 1−
2m2

l

E1E2 (1− cos θ)
. (A.75)

Here again Ji’s are written in terms of the Fermi-Dirac integrals:

J0 =
T

e(E1+E2)/T − 1
[G0 (´ϵmin)−G0 (´ϵmax)] , (A.76)

J1 =
T 2

e(E1+E2)/T − 1
{[G1 (´ϵmin) + ´ϵminG0 (´ϵmin)]− [G1 (´ϵmax) + ´ϵmaxG0 (´ϵmax)]} ,

(A.77)

J2 =
T 3

e(E1+E2)/T − 1

{[

G2 (´ϵmin) + 2´ϵminG1 (´ϵmin) + (´ϵmin)
2G0 (´ϵmin)

]

−
[

G2 (´ϵmax) + 2´ϵmaxG1 (´ϵmax) + (´ϵmax)
2G0 (´ϵmax)

]}

,

(A.78)

ϵmin = max {ml, ϵ−} , (A.79)

ϵmax = min {E1 + E2 −ml, ϵ+} , (A.80)

ϵ± =
E1 + E2

2
±

∆

2

√

1−
2m2

l

E1E2(1− cos θ)
=

E1 + E2

2
±

∆

2

√
D, (A.81)

with
Gi (´ϵ) = Fi [´ (µl− + E1 + E2 − ϵ)]− Fi [´ (µl− − ϵ)] ; (A.82)

I2 and I3 are calculated in the similar way as

I2 (E1, E2, cos θ) = I1 (E2, E1, cos θ) , (A.83)

I3 (E1, E2, cos θ) =
2πm2

lE1E2

∆
(1− cos θ)Θ (D) J0. (A.84)

The other kernel Rin
ν1 is obtained from the detailed balance, Eq. (3.34).
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A.5 Leptonic annihilations

The calculation of Rout
νe in Eq. (3.43) proceeds similarly to that for the muon decay. It is

expressed as

Rout
νe

(

Eνe , Eνµ , cos θ
)

=

∫∫

d3pµ

(2π)3
d3pe

(2π)3
⟨|M|2⟩

16EνeEνµp
0
µp

0
e

2fe
(

p0e
)

2fµ
(

p0µ
)

(2π)4 ¶(4)
(

pαe + pαµ − qανe − qανµ

)

(A.85)

=
8G2

F

(2π)2EνeEνµ

I1
(

Eνe , Eνµ , cos θ
)

, (A.86)

where the spin-averaged matrix element squared is given in Eq. (3.39) and I1 can be cast
into the following form:

I1
(

Eνe , Eνµ , cos θ
)

=

∫∫

d3pµd
3pe

1

p0µp
0
e

¶(4)
(

pαe + pαµ − qανe − qανµ

)

2fe
(

p0e
)

2fµ
(

p0µ
)

(qνe · pe)
(

qνµ · pµ
)

,

(A.87)

=
2πEνeEνµ

∆5
Θ(D) (A1J2 +B1J1 + C1J0) , (A.88)

where Θ is again the Heaviside function and other factors are given as follows:

A1 = EνeEνµ (1− cos θ)2
[

E2
νe + E2

νµ − EνeEνµ (3 + cos θ)
]

, (A.89)

B1 = E2
νeEνµ (1− cos θ)2

[

E2
νµ (1 + 3 cos θ) + EνµEνe (3− cos θ)− 2E2

νe

]

−Q
(

Eνe + Eνµ

)

(1− cos θ)
[

E2
νµ − EνµEνe (3 + cos θ) + E2

νe

]

, (A.90)

C1 = −EνµE
3
νe (1− cos θ)2

[

1

2
E2

νµ

(

3 cos2 θ − 1
)

+ 2EνµEνe cos θ + E2
νe

]

−
m2

µ

2
EνµEνe

(

1− cos2 θ
)

∆2

+QEνe (1− cos θ)
[

−E3
νµ cos θ − E2

νµEνe

(

2− cos2 θ
)

+ EνµE
2
νe cos θ + E3

νe

]

−Q2

[

E2
νµ cos θ +

1

2
EνµEνe

(

3 + cos2 θ
)

+ E2
νe cos θ

]

, (A.91)

∆ =
√

E2
νµ + E2

νe + 2EνµEνe cos θ, (A.92)

Q =
1

2

(

m2
µ −m2

e

)

, (A.93)

D = (1 + κ)2 −
2m2

µ

EνµEνe (1− cos θ)
, (A.94)

κ =
Q

EνµEνe (1− cos θ)
; (A.95)
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Ji’s are expressed in terms of the Fermi-Dirac integrals:

J0 =
T

1− e(Eνe+Eνµ+µe−µµ)/T
[G0 (´ϵmin)−G0 (´ϵmax)] , (A.96)

J1 =
T 2

1− e(Eνe+Eνµ+µe−µµ)/T
{[G1 (´ϵmin) + ´ϵminG0 (´ϵmin)]− [G1 (´ϵmax) + ´ϵmaxG0 (´ϵmax)]} ,

(A.97)

J2 =
T 3

1− e(Eνe+Eνµ+µe−µµ)/T

{[

G2 (´ϵmin) + 2´ϵminG1 (´ϵmin) + (´ϵmin)
2G0 (´ϵmin)

]

−
[

G2 (´ϵmax) + 2´ϵmaxG1 (´ϵmax) + (´ϵmax)
2G0 (´ϵmax)

]}

,

(A.98)

ϵmin = max {mµ, ϵ−} , (A.99)

ϵmax = min
{

ϵ+, Eνe + Eνµ −me

}

, (A.100)

ϵ± =
Eνe + Eνµ

2
(κ+ 1)±

∆

2

√

(1 + κ)2 −
2m2

µ

EνeEνµ(1− cos θ)
=

Eνe + Eνµ

2
(κ+ 1)±

∆

2

√
D,

(A.101)

and
Gi (´ϵ) = Fi

[

´
(

Eνe + Eνµ − µe − ϵ
)]

− Fi [´ (µµ − ϵ)] . (A.102)

An appropriate limit to µµ = Eνe + Eνµ − µe results in the following expressions of J0
through J2:

J0 = T {F−1 [´ (µµ − ϵmin)]− F−1 [´ (µµ − ϵmax)]} , (A.103)

J1 = T 2
(

{F0 [´ (µµ − ϵmin)] + ´ϵminF−1 [´ (µµ − ϵmin)]}

− {F0 [´ (µµ − ϵmax)] + ´ϵmaxF−1 [´ (µµ − ϵmax)]}
)

, (A.104)

J2 = T 3
({

2F1 [´ (µµ − ϵmin)] + 2´ϵminF0 [´ (µµ − ϵmin)] + (´ϵmin)
2 F−1 [´ (µµ − ϵmin)]

}

−
{

2F1 [´ (µµ − ϵmax)] + 2´ϵmaxF0 [´ (µµ − ϵmax)] + (´ϵmax)
2 F−1 [´ (µµ − ϵmax)]

})

.

(A.105)

Finally, the other kernel Rin
νe is obtained from the detailed balance, Eq. (3.42).



Appendix B

Nucleon structure function

I give here the detailed calculations of the structure function of nucleons, which, under
the current approximation, are generally witten (Eq. (3.59)) as

Sµν
(

q0, q
)

=

∫∫

d3p2

(2π)32E∗
2

d3p4

(2π)32E∗
4

f2 (E
∗
2) [1− f4 (E

∗
4)] Λ

µν (2π)4¶(4)(pµ1 + pµ2 − pµ3 − pµ4 ).

(B.1)

I follow the procedure given in Roberts and Reddy (2017a). First, I decompose the
hadronic tensor, Λµν , as follows:

Λµν = APµν
1 +BPµν

2 + CP µν
3 +DP µν

4 + EPµν
5 + FPµν

6 , (B.2)

where Pµν
i (i = 1, . . . , 6) are defined with the transferred 4 momentum transfer qα =

(q0, 0, 0, q) and another vector nα = (q, 0, 0, q0), orthogonal to qα;

Pµν
1 = ηµν −

1

q2α
qµqν −

1

n2
nµnν , (B.3)

Pµν
2 =

1

q2α
qµqν , (B.4)

Pµν
3 =

1

n2
nµnν , (B.5)

Pµν
4 =

1

q2α
(qµnν + qνnµ) , (B.6)

Pµν
5 =

1

q2α
qαqβϵ

µναβ , (B.7)

Pµν
6 =

1

q2α
(qµnν − qνnµ) , (B.8)

where q2α = qαq
α, n2 = nαn

α and ϵµναβ is the anti-symmetric tensor. These tensors are
orthogonal to one another and satisfy the following relations:

P1µνP
µν
1 = 2, P2µνP

µν
2 = 1, P3µνP

µν
3 = 1, P4µνP

µν
4 = −2, P5µνP

µν
5 = −2, P6µνP

µν
6 = 2.
(B.9)
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Then the coefficients in the decomposition (Eq. (B.2)) are given as follows:

A = 4m∗
2m

∗
4

(

G2
V −G2

A

)

− 4
(

G2
V +G2

A

) 1

q2α
[(q · p̃2) (q · p̃4)− (n · p̃2) (n · p̃4)]

+ 4
F2GV

M
[m∗

2 (q · p̃4)−m∗
4 (q · p̃2)] +

F 2
2

M2

[

− (n · p̃2) (n · p̃4) +m∗
2m

∗
4q

2
α

]

, (B.10)

B = 4m∗
2m

∗
4

(

G2
V −G2

A

)

+ 4
(

G2
V +G2

A

) 1

q2α

[

2 (q · p̃2) (q · p̃4)− q2α (p̃2 · p̃4)
]

− 2
F 2
2

M2
(q · p̃2) (q · p̃4) + 8

GAGP

M
[m∗

4 (q · p̃2)−m∗
2 (q · p̃4)] + 4

G2
P

M2
q2α [(p̃2 · p̃4)−m∗

2m
∗
4] ,

(B.11)

C = 4m∗
2m

∗
4

(

G2
V −G2

A

)

− 4
(

G2
V +G2

A

) 1

n2

[

(n · p̃2) (n · p̃4)− n2 (p̃2 · p̃4)
]

− 4
F2GV

M
[m∗

4 (q · p̃2)−m∗
2 (q · p̃4)]

+
F 2
2

M2

[

−n2 (p̃2 · p̃4) + 2 (n · p̃2) (n · p̃4)− 2 (q · p̃2) (q · p̃4) +m∗
2m

∗
4q

2
α

]

, (B.12)

D = −4
(

G2
V +G2

A

) 1

q2α
[(q · p̃2) (n · p̃4) + (q · p̃4) (n · p̃2)] + 2

F2GV

M
[m∗

2 (n · p̃4)−m∗
4 (n · p̃2)]

+ 4
GAGP

M
[m∗

2 (n · p̃4)−m∗
4 (n · p̃2)] , (B.13)

E = 8iGV GA
1

q2α
[(q · p̃4) (n · p̃2)− (q · p̃2) (n · p̃4)] + 4i

F2GA

M
[m∗

2 (n · p̃4) +m∗
4 (n · p̃2)] ,

(B.14)

F = −4iGV GA
1

q2α
(qµnν − qνnµ) p̃4αp̃2βϵ

αµβν − 2i
F2GP

M2
nµp̃4ρp̃2σqβϵ

ρσβµ. (B.15)

Now, the calculation of the structure function is reduced to integrations over p2 and
p4 of the following 10 scalar variables:

1, (p̃2 · p̃4) , (q · p̃2) , (q · p̃4) , (n · p̃2) , (n · p̃4) , (q · p̃2) (q · p̃4) , (n · p̃2) (n · p̃4) , (q · p̃2) (n · p̃4) , (n · p̃2) (q · p̃4) .
(B.16)

As an example, I show the calculation for 1:

I1
(

q0, q
)

=

∫∫

d3p2

(2π)32E∗
2

d3p4

(2π)32E∗
4

f2 (E
∗
2) [1− f4 (E

∗
4)] · 1 · (2π)

4¶(4) (pµ1 + pµ2 − pµ3 − pµ4 ) .

(B.17)

The integration over p4 is done with the delta function as

I1
(

q0, q
)

=
1

16π2

∫∫

d3p2

E∗
2

d3p4

∫

dE∗
4

E∗
4

¶

(

E∗
4 −

√

|p4|2 +m∗
4
2

)

f2 (E
∗
2) [1− f4 (E

∗
4)] · 1 · ¶

(4)(pµ1 + pµ2 − pµ3 − pµ4 )

(B.18)

=
1

8π2

∫

p2 dE
∗
2 d cos³d´f2 (E

∗
2) (1− f4 (E

∗
4)) · 1 · ¶

(

p̃24 −m∗
4
2
)

Θ(E∗
4 −m∗

4) , (B.19)

where I used the following relations, 1
E∗

4
¶

(

E∗
4 −

√

|p4|2 +m∗
4
2

)

= ¶
(

p̃24 −m∗
4
2
)

, p2dp2 = E∗
2dE

∗
2 ,

and ³ and ´ are the zenith and azimuth angles of p2, respectively, with q being the z-axis;
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I also note

E∗
4 = E∗

2 + U2 − U4 + q0 =: E∗
2 + q̃0, (B.20)

p4 = p2 + q, (B.21)

and

¶
(

p̃24 −m∗
4
2
)

=
1

|2qp2|
¶ (cos³− cos³0) , (B.22)

cos³0 =

(

q̃0
)2

+ 2q̃0E∗
2 − q2 +m∗

2
2 −m∗

4
2

2qp2
. (B.23)

The integrations over ´ and cos³ can be done to give

I1
(

q0, q
)

=
1

8π|q|

∫ Emax

Emin

dE∗
2f2 (E

∗
2) [1− f4 (E

∗
4)] , (B.24)

where Emin and Emax are given as

{

Emin = max
{

m∗
2,m

∗
4 − q̃0, E∗

2,+

}

, Emax = ∞
(

∆2 :=
(

q̃0
)2

− q2 < 0
)

Emin = max
{

m∗
2,m

∗
4 − q̃0, E∗

2,−

}

, Emax = E∗
2,+

(

∆2 > 0 and ∆2 < (m∗
2
2 −m∗

4
2) or ∆2 > (m∗

2
2 +m∗

4
2)
)

(B.25)

with

E∗
2,± = −

q̃0

2
κ±

|q|

2

√

κ2 −
4m∗

2
2

∆2
, κ = 1 +

m∗
2
2 −m∗

4
2

∆2
; (B.26)

otherwise E∗
2,± has no real solutions for (m∗

2
2 −m∗

4
2) < ∆2 < (m∗

2
2 +m∗

4
2) and I1 = 0.

The remaining integration (B.24) can be written with the Fermi-Dirac integral, which
can be easily evaluated numerically, in the following way:

I1
(

q0, q
)

=
1

8π|q|
J0, (B.27)

where J0 as well as J1 and J2, which will be needed later, are expressed as

J0 =
T

1− exp [´ (−q̃0 − µ2 + µ4)]
[G0 (´Emin)−G0 (´Emax)] , (B.28)

J1 =
T 2

1− exp [´ (−q̃0 − µ2 + µ4)]
{[G1 (´Emin) + ´EminG0 (´Emin)]− [G1 (´Emax) + ´EmaxG0 (´Emax)]} ,

(B.29)

J2 =
T 3

1− exp [´ (−q̃0 − µ2 + µ4)]

{[

G2 (´Emin) + 2´EminG1 (´Emin) + (´Emin)
2G0 (´Emin)

]

−
[

G2 (´Emax) + 2´EmaxG1 (´Emax) + (´Emax)
2G0 (´Emax)

]}

,

(B.30)

with
Gi (´E) = Fi [´ (µ2 − E)]− Fi

[

´
(

µ4 − q̃0 − E
)]

. (B.31)
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Taking appropriate limits, we obtain for q̃0 = µ4 − µ2

J0 = T {F−1 [´ (µ2 − Emin)]− F−1 [´ (µ2 − Emax)]} , (B.32)

J1 = T 2
(

{F0 [´ (µ2 − Emin)] + ´EminF−1 [´ (µ2 − Emin)]}

− {F0 [´ (µ2 − Emax)] + ´EmaxF−1 [´ (µ2 − Emax)]}
)

, (B.33)

J2 = T 3
({

2F1 [´ (µ2 − Emin)] + 2´EminF0 [´ (µ2 − Emin)] + (´Emin)
2 F−1 [´ (µ2 − Emin)]

}

−
{

2F1 [´ (µ2 − Emax)] + 2´EmaxF0 [´ (µ2 − Emax)] + (´Emax)
2 F−1 [´ (µ2 − Emax)]

})

.

(B.34)

In a similar way, other integrals for the remaining 9 scalars in Eq. (B.16) can be
accomplished to get the followings:

I(p̃2·p̃4)
(

q0, q
)

=
1

8π|q|

[

m∗
2
2 −

1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

]

J0, (B.35)

I(q·p̃2)
(

q0, q
)

=
1

8π|q|

(

b(q·p̃2)J1 + c(q·p̃2)J0
)

, (B.36)

b(q·p̃2) = U4 − U2 =: ∆U, (B.37)

c(q·p̃2) = −
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

, (B.38)

I(q·p̃4)
(

q0, q
)

=
1

8π|q|

(

b(q·p̃4)J1 + c(q·p̃4)J0
)

, (B.39)

b(q·p̃4) = ∆U, (B.40)

c(q·p̃4) = −
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q0q̃0 − q2, (B.41)

I(n·p̃2)
(

q0, q
)

=
1

8π|q|

(

b(n·p̃2)J1 + c(n·p̃2)J0
)

, (B.42)

b(n·p̃2) = q −
q0q̃0

q
, (B.43)

c(n·p̃2) = −
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

, (B.44)

I(n·p̃4)
(

q0, q
)

=
1

8π|q|

(

b(n·p̃4)J1 + c(n·p̃4)J0
)

, (B.45)

b(n·p̃4) = q −
q0q̃0

q
, (B.46)

c(n·p̃4) = −
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q
(

q̃0 − q0
)

, (B.47)

I(q·p̃2)(q·p̃4)
(

q0, q
)

=
1

8π|q|

(

a(q·p̃2)(q·p̃4)J2 + b(q·p̃2)(q·p̃4)J1 + c(q·p̃2)(q·p̃4)J0
)

, (B.48)

a(q·p̃2)(q·p̃4) = (∆U)2, (B.49)

b(q·p̃2)(q·p̃4) = ∆U
[

(

q0q̃0 − q2
)

−
(

∆2 +m∗
2
2 −m∗

4
2
)]

, (B.50)

c(q·p̃2)(q·p̃4) =
1

4

(

∆2 +m∗
2
2 −m∗

4
2
)2

−
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

(

q0q̃0 − q2
)

, (B.51)
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I(n·p̃2)(n·p̃4)
(

q0, q
)

=
1

8π|q|

(

a(n·p̃2)(n·p̃4)J2 + b(n·p̃2)(n·p̃4)J1 + c(n·p̃2)(n·p̃4)J0
)

, (B.52)

a(n·p̃2)(n·p̃4) =

(

q −
q0q̃0

q

)2

, (B.53)

b(n·p̃2)(n·p̃4) = q
(

q̃0 − q0
)

(

q −
q0q̃0

q

)

−
q0

q

(

∆2 +m∗
2
2 −m∗

4
2
)

(

q −
q0q̃0

q

)

,

(B.54)

c(n·p̃2)(n·p̃4) =
1

4

(

q0

q

)2
(

∆2 +m∗
2
2 −m∗

4
2
)2

−
1

2
q0

(

q̃0 − q0
)

(

∆2 +m∗
2
2 −m∗

4
2
)

,

(B.55)

I(q·p̃2)(n·p̃4)
(

q0, q
)

=
1

8π|q|

(

a(q·p̃2)(n·p̃4)J2 + b(q·p̃2)(n·p̃4)J1 + c(q·p̃2)(n·p̃4)J0
)

, (B.56)

a(q·p̃2)(n·p̃4) = ∆U

(

q −
q0q̃0

q

)

, (B.57)

b(q·p̃2)(n·p̃4) = −
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

(

q −
q0q̃0

q

)

+∆U

[

−
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q
(

q̃0 − q0
)

]

,

(B.58)

c(q·p̃2)(n·p̃4) = −
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

[

−
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q
(

q̃0 − q0
)

]

,

(B.59)

I(n·p̃2)(q·p̃4)
(

q0, q
)

=
1

8π|q|

(

a(n·p̃2)(q·p̃4)J2 + b(n·p̃2)(q·p̃4)J1 + c(n·p̃2)(q·p̃4)J0
)

, (B.60)

a(n·p̃2)(q·p̃4) = ∆U

(

q −
q0q̃0

q

)

, (B.61)

b(n·p̃2)(q·p̃4) = −
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

∆U +

(

q −
q0q̃0

q

)[

−
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q0q̃0 − q2
]

,

(B.62)

c(n·p̃2)(q·p̃4) = −
q0

2q

(

∆2 +m∗
2
2 −m∗

4
2
)

[

−
1

2

(

∆2 +m∗
2
2 −m∗

4
2
)

+ q0q̃0 − q2
]

.

(B.63)

The structure function is obtained in the following form:

Sµν
(

q0, q
)

= ĀPµν
1 + B̄Pµν

2 + C̄P µν
3 + D̄P µν

4 + ĒPµν
5 , (B.64)

where the coefficients are written as

X̄ =

∫∫

d3p2

(2π)32E∗
2

d3p4

(2π)32E∗
4

f2 (E
∗
2) [1− f4 (E

∗
4)] X (2π)4¶(4)(pµ1+pµ2−pµ3−pµ4 ) (X = A,B,C,D,E) ,

(B.65)
and are actually some linear combinations of Ii with i = 1, (p̃2 · p̃4) , . . . , (n · p̃2) (q · p̃4).
Note that the case with X = F (see Eq. (B.15)) is omitted because it vanishes as a result
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of energy momentum conservation,

qµnν p̃2αp̃4βϵ
µναβ = qµnν p̃2α (p̃2β + qβ + Uβ) ϵ

µναβ

= (U2 − U4)qµnν p̃2αϵ
µνα0

(

Uβ = (U2 − U4, 0, 0, 0)
)

= ∆Uqinj p̃2kϵ
ijk

= 0.
(

∵ q = (0, 0, q),n = (0, 0, q0)
)

(B.66)

Finally the contraction of the projection tensors with the lepton tensor yields the
following results:

LµνP
µν
1 = −16

[

1

q2α
(p1 · q) (p3 · q) +

1

n2
(p1 · n) (p3 · n)

]

, (B.67)

LµνP
µν
2 = 8

[

2

q2α
(p1 · q) (p3 · q)− (p1 · p3)

]

, (B.68)

LµνP
µν
3 = 8

[

2

n2
(p1 · n) (p3 · n)− (p1 · p3)

]

, (B.69)

LµνP
µν
4 =

16

q2α
[(p1 · q) (p3 · n) + (p1 · n) (p3 · q)] , (B.70)

LµνP
µν
5 = ±i

16

q2α
[(p1 · n) (p3 · q)− (p1 · q) (p3 · n)] . (+ : neutrino,− : antineutrino) .

(B.71)
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neutrino-nucleon interactions in dense and hot matter for numerical simulations.
Phys. Rev. C, 102(3):035802, sep 2020. ISSN 2469-9985. doi: 10.1103/PhysRevC.
102.035802. URL http://arxiv.org/abs/2003.02152http://dx.doi.org/10.1103/

PhysRevC.102.035802https://link.aps.org/doi/10.1103/PhysRevC.102.035802.

Naofumi Ohnishi, Kei Kotake, and Shoichi Yamada. Numerical Analysis of Standing
Accretion Shock Instability with Neutrino Heating in Supernova Cores. Astrophys. J.,
641(2):1018–1028, 2006. ISSN 0004-637X. doi: 10.1086/500554.

Michael E. Peskin. An Introduction To Quantum Field Theory. CRC Press, may
2018. ISBN 9780429972102. doi: 10.1201/9780429503559. URL https://www.

taylorfrancis.com/books/9780429972102.

J. A. Pons, S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Miralles. Evolution of
Proto–Neutron Stars. Astrophys. J., 513(2):780–804, mar 1999. ISSN 0004-637X.
doi: 10.1086/306889. URL https://www.worldscientific.com/doi/abs/10.1142/

S0218271810017913https://iopscience.iop.org/article/10.1086/306889.

Jade Powell and Bernhard Müller. Gravitational wave emission from 3D explosion
models of core-collapse supernovae with low and normal explosion energies. Mon.

Not. R. Astron. Soc., 487(1):1178–1190, jul 2019. ISSN 0035-8711. doi: 10.1093/
mnras/stz1304. URL http://arxiv.org/abs/1812.05738https://academic.oup.

com/mnras/article/487/1/1178/5489198.

Georg G. Raffelt. Mu‐ and Tau‐Neutrino Spectra Formation in Supernovae. Astrophys.
J., 561(2):890–914, 2001. ISSN 0004-637X. doi: 10.1086/323379.

Sanjay Reddy, Madappa Prakash, James M. Lattimer, and Jose A. Pons. Effects of strong
and electromagnetic correlations on neutrino interactions in dense matter. Phys. Rev.

C, 59(5):2888–2918, may 1999. ISSN 0556-2813. doi: 10.1103/PhysRevC.59.2888. URL
https://link.aps.org/doi/10.1103/PhysRevC.59.2888.

L. F. Roberts. A NEW CODE FOR PROTO-NEUTRON STAR EVOLUTION. Astro-

phys. J., 755(2):126, aug 2012. ISSN 0004-637X. doi: 10.1088/0004-637X/755/2/126.
URL https://iopscience.iop.org/article/10.1088/0004-637X/755/2/126.

Luke F. Roberts and Sanjay Reddy. Charged current neutrino interactions in hot and dense
matter. Phys. Rev. C, 95(4):1–20, 2017a. ISSN 24699993. doi: 10.1103/PhysRevC.95.
045807.

Luke F. Roberts and Sanjay Reddy. Neutrino Signatures from Young Neutron
Stars. In Handb. Supernovae, pages 1605–1635. Springer International Publish-
ing, Cham, dec 2017b. doi: 10.1007/978-3-319-21846-5 5. URL http://arxiv.

org/abs/1612.03860http://dx.doi.org/10.1007/978-3-319-21846-5{_}5http:

//link.springer.com/10.1007/978-3-319-21846-5{_}5.

R. F. Sawyer. Reduction of Weak Interaction Rates in the Supernova Core. Phys. Rev.

Lett., 75(12):2260–2263, sep 1995. ISSN 0031-9007. doi: 10.1103/PhysRevLett.75.2260.
URL https://link.aps.org/doi/10.1103/PhysRevLett.75.2260.

L. Scheck, K. Kifonidis, H.-Th. Janka, and E. Müller. Multidimensional supernova
simulations with approximative neutrino transport. Astron. Astrophys., 457(3):963–
986, oct 2006. ISSN 0004-6361. doi: 10.1051/0004-6361:20064855. URL http:

//www.aanda.org/10.1051/0004-6361:20064855.

http://arxiv.org/abs/2003.02152 http://dx.doi.org/10.1103/PhysRevC.102.035802 https://link.aps.org/doi/10.1103/PhysRevC.102.035802
http://arxiv.org/abs/2003.02152 http://dx.doi.org/10.1103/PhysRevC.102.035802 https://link.aps.org/doi/10.1103/PhysRevC.102.035802
https://www.taylorfrancis.com/books/9780429972102
https://www.taylorfrancis.com/books/9780429972102
https://www.worldscientific.com/doi/abs/10.1142/S0218271810017913 https://iopscience.iop.org/article/10.1086/306889
https://www.worldscientific.com/doi/abs/10.1142/S0218271810017913 https://iopscience.iop.org/article/10.1086/306889
http://arxiv.org/abs/1812.05738 https://academic.oup.com/mnras/article/487/1/1178/5489198
http://arxiv.org/abs/1812.05738 https://academic.oup.com/mnras/article/487/1/1178/5489198
https://link.aps.org/doi/10.1103/PhysRevC.59.2888
https://iopscience.iop.org/article/10.1088/0004-637X/755/2/126
http://arxiv.org/abs/1612.03860 http://dx.doi.org/10.1007/978-3-319-21846-5{_}5 http://link.springer.com/10.1007/978-3-319-21846-5{_}5
http://arxiv.org/abs/1612.03860 http://dx.doi.org/10.1007/978-3-319-21846-5{_}5 http://link.springer.com/10.1007/978-3-319-21846-5{_}5
http://arxiv.org/abs/1612.03860 http://dx.doi.org/10.1007/978-3-319-21846-5{_}5 http://link.springer.com/10.1007/978-3-319-21846-5{_}5
https://link.aps.org/doi/10.1103/PhysRevLett.75.2260
http://www.aanda.org/10.1051/0004-6361:20064855
http://www.aanda.org/10.1051/0004-6361:20064855


BIBLIOGRAPHY 104

Kate Scholberg. Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci., 62:81–103,
2012. ISSN 01638998. doi: 10.1146/annurev-nucl-102711-095006.

H. Shen. Complete relativistic equation of state for neutron stars. Phys. Rev. C, 65(3):
035802, feb 2002. ISSN 0556-2813. doi: 10.1103/PhysRevC.65.035802. URL https:

//link.aps.org/doi/10.1103/PhysRevC.65.035802.

H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi. Relativistic equation of state for core-
collapse supernova simulations. Astrophys. Journal, Suppl. Ser., 197(2), 2011. ISSN
00670049. doi: 10.1088/0067-0049/197/2/20.

K. Sumiyoshi, H. Suzuki, and H. Toki. Influence of the symmetry energy on the birth
of neutron stars and supernova neutrinos. Astron. Astrophys. -Berlin-, 303(2):475–475,
1995. ISSN 0004-6361.

K Sumiyoshi, S Yamada, H Suzuki, H Shen, S Chiba, and H Toki. Postbounce
Evolution of Core‐Collapse Supernovae: Long‐Term Effects of the Equation of
State. Astrophys. J., 629(2):922–932, aug 2005. ISSN 0004-637X. doi: 10.1086/
431788. URL https://arxiv.org/pdf/astro-ph/0506620.pdfhttps://iopscience.

iop.org/article/10.1086/431788.

Yudai Suwa, Kohsuke Sumiyoshi, Ken’ichiro Nakazato, Yasufumi Takahira, Yusuke
Koshio, Masamitsu Mori, and Roger A. Wendell. Observing Supernova Neutrino
Light Curves with Super-Kamiokande: Expected Event Number over 10 s. Astro-

phys. J., 881(2):139, aug 2019. ISSN 1538-4357. doi: 10.3847/1538-4357/ab2e05.
URL http://arxiv.org/abs/1904.09996http://dx.doi.org/10.3847/1538-4357/

ab2e05https://iopscience.iop.org/article/10.3847/1538-4357/ab2e05.

Hideyuki Suzuki. Supernova Neutrinos. In M. Fukugita and A. Suzuki, edi-
tors, Phys. Astrophys. Neutrinos, pages 763–847. Springer Japan, Tokyo, 1994.
doi: 10.1007/978-4-431-67029-2 12. URL http://link.springer.com/10.1007/

978-4-431-67029-2{_}12.

Kazuya Takahashi, Wakana Iwakami, Yu Yamamoto, and Shoichi Yamada. LINKS BE-
TWEEN THE SHOCK INSTABILITY IN CORE-COLLAPSE SUPERNOVAE. Astro-
phys. J., 831(1):1–30, 2016. ISSN 1538-4357. doi: 10.3847/0004-637X/831/1/75. URL
http://dx.doi.org/10.3847/0004-637X/831/1/75.

Tomoya Takiwaki and Kei Kotake. Anisotropic emission of neutrino and gravitational-
wave signals from rapidly rotating core-collapse supernovae. Mon. Not. R. Astron. Soc.

Lett., 475(1):L91–L95, mar 2018. ISSN 1745-3925. doi: 10.1093/mnrasl/sly008. URL
https://academic.oup.com/mnrasl/article/475/1/L91/4803948.

Irene Tamborra, Florian Hanke, Hans Thomas Janka, Bernhard Müller, Georg G. Raffelt,
and Andreas Marek. Self-sustained asymmetry of lepton-number emission: A new phe-
nomenon during the supernova shock-accretion phase in three dimensions. Astrophys.

J., 792(2), 2014a. ISSN 15384357. doi: 10.1088/0004-637X/792/2/96.

Irene Tamborra, Georg Raffelt, Florian Hanke, Hans Thomas Janka, and Bernhard
Müller. Neutrino emission characteristics and detection opportunities based on three-
dimensional supernova simulations. Phys. Rev. D - Part. Fields, Gravit. Cosmol., 90
(4):1–18, 2014b. ISSN 15502368. doi: 10.1103/PhysRevD.90.045032.

https://link.aps.org/doi/10.1103/PhysRevC.65.035802
https://link.aps.org/doi/10.1103/PhysRevC.65.035802
https://arxiv.org/pdf/astro-ph/0506620.pdf https://iopscience.iop.org/article/10.1086/431788
https://arxiv.org/pdf/astro-ph/0506620.pdf https://iopscience.iop.org/article/10.1086/431788
http://arxiv.org/abs/1904.09996 http://dx.doi.org/10.3847/1538-4357/ab2e05 https://iopscience.iop.org/article/10.3847/1538-4357/ab2e05
http://arxiv.org/abs/1904.09996 http://dx.doi.org/10.3847/1538-4357/ab2e05 https://iopscience.iop.org/article/10.3847/1538-4357/ab2e05
http://link.springer.com/10.1007/978-4-431-67029-2{_}12
http://link.springer.com/10.1007/978-4-431-67029-2{_}12
http://dx.doi.org/10.3847/0004-637X/831/1/75
https://academic.oup.com/mnrasl/article/475/1/L91/4803948


BIBLIOGRAPHY 105

The LIGO Scientific Collaboration, the Virgo Collaboration, B. P. Abbott, et al.
GW190425: Observation of a Compact Binary Coalescence with Total Mass - 3.4 M.
jan 2020. URL http://arxiv.org/abs/2001.01761.

S. E. Woosley and Thomas A. Weaver. The Evolution and Explosion of Massive Stars. II.
Explosive Hydrodynamics and Nucleosynthesis. Astrophys. J. Suppl. Ser., 101(8):181,
nov 1995. ISSN 0067-0049. doi: 10.1086/192237. URL http://adsabs.harvard.edu/

doi/10.1086/192237.

Shoichi Yamada and Hiroshi Toki. Neutrino-nucleon reaction rates in the su-
pernova core in the relativistic random phase approximation. Phys. Rev.

C, 61(1):015803, dec 1999. ISSN 0556-2813. doi: 10.1103/PhysRevC.61.
015803. URL https://journals.aps.org/prc/abstract/10.1103/PhysRevC.61.

015803https://link.aps.org/doi/10.1103/PhysRevC.61.015803.

T. Yamasaki and S. Yamada. Stability of the accretion flows with stalled shocks in core-
collapse supernovae. AIP Conf. Proc., 937:344–348, 2007. ISSN 0094243X. doi: 10.
1063/1.2803589.

Shijun Yoshida, Naofumi Ohnishi, and Shoichi Yamada. EXCITATION OF g -MODES IN
A PROTO Y NEUTRON STAR BY THE STANDING. Astrophys. J., pages 1268–1276,
2007.

W. R. Yueh and J. R. Buchler. Neutrino transport in supernova models - S[SUB]N[/SUB]
method. Astrophys. J., 217:565, oct 1977. ISSN 0004-637X. doi: 10.1086/155605. URL
http://adsabs.harvard.edu/doi/10.1086/155605.

William R. Yueh and J. Robert Buchler. Neutrino processes in dense matter. Astrophys.

Space Sci., 41(1):221–251, may 1976. ISSN 0004-640X. doi: 10.1007/BF00684583. URL
http://link.springer.com/10.1007/BF00684583.

Nai-Bo Zhang and Bao-An Li. Constraints on the Muon Fraction and Density Profile in
Neutron Stars. Astrophys. J., 893(1):61, 2020. ISSN 1538-4357. doi: 10.3847/1538-4357/
ab7dbc. URL http://dx.doi.org/10.3847/1538-4357/ab7dbc.

http://arxiv.org/abs/2001.01761
http://adsabs.harvard.edu/doi/10.1086/192237
http://adsabs.harvard.edu/doi/10.1086/192237
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.61.015803 https://link.aps.org/doi/10.1103/PhysRevC.61.015803
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.61.015803 https://link.aps.org/doi/10.1103/PhysRevC.61.015803
http://adsabs.harvard.edu/doi/10.1086/155605
http://link.springer.com/10.1007/BF00684583
http://dx.doi.org/10.3847/1538-4357/ab7dbc




Full Name： seal or signature

Date Submitted(yyyy/mm/dd):

種類別
(By Type)

Academic 

papers

Lectures

Authors: Ken'ichi Sugiura, Ken'ichiro Nakazato, Shoichi Yamada

Title: Corrections of charged current neutrino reaction rates and its effects on PNS cooling

Conference: Multi-dimensional Modeling and Multi-Messenger observation from

                    Core-Collapse Supernovae

Place: Fukuoka, Japan，Date: October 2020

Conference: The Evolution of Massive Stars and Formation of Compact Stars: from the Cradle

                    to the Grave

Place: Tokyo Japan，Date: Fenruary 2020

Authors: Ken'ichi Sugiura, Hideyuki Suzuki, Ken'ichiro Nakazato, Shoichi Yamada

Authors: 杉浦健一, 山田章一，古澤峻，中里健一郎，鈴木英之，住吉光介

Title: 超新星爆発におけるÿュüオン生成とûュüトúノ·グúûへの影響

Conference: 第7回超新星ûュüトúノ 研究会

Place: オンùイン, Date: 2021年1月

Authors: 杉浦健一，山田章一，古澤峻，中里健一郎，鈴木英之

Title: Muon creation in proto-neutron stars and its implication for neutrino signal in cooling phase

Journal: The Astrophysical Journal, Volume 874, Number 1, Page 28

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: 原始中性子星におけるÿュüオンとそのûュüトúノ·グúûへの影響

Conference: 日本天文学会02021年春季年会

Place: オンùイン，Date: 2021年3月

List of research achievements for application of Doctor of Science, Waseda University

杉浦0健一

Publication date: September 2022

Authors: Ken'ichi Sugiura, Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada

◯ Title: Linear Analysis of the Shock Instability in Core-collapse Supernovae:

Influences of Acoustic Power and Fluctuations of Neutrino Luminosity

◯Title: Muon-related neutrino interactions and their relevance for proto-neutron star cooling

Journal: Progress of Theoretical and Experimental Physics

題名1  発表û発行掲載誌名100発表û発行年月100連名者ÿ申請者含むĀ

(theme, journal name, date & year of publication, name of authors inc. yourself)

2022/9/12

Publication date: March 2019





Full Name： seal or signature

Date Submitted(yyyy/mm/dd):

種類別
(By Type)

List of research achievements for application of Doctor of Science, Waseda University

杉浦0健一

題名1  発表û発行掲載誌名100発表û発行年月100連名者ÿ申請者含むĀ

(theme, journal name, date & year of publication, name of authors inc. yourself)

2022/9/12

Place: 愛知，Date: 2018年7月

Authors: 杉浦健一，高橋和也，山田章一

                   and neutrino signatures (SNeGWv2018)

Place: 富山，Date: 2018年12月

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: 原始中性子星におけるûュüトúノ·グúû

Conference: 第48回天文û天体物理若手夏の学校

Conference: 第31回理論懇·ンポ¸ウĀ

Place: 京都，Date: 2018年12月

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: Linear Analysis of Shock Dynamics in CCSNe ~Effects of Acoustic Injection and LESA~
Conference: Deciphering multi-Dimensional nature of core-ollapse SuperNovae via Gravitational-

Wave

Title: Linear Analysisi of Shock Instability in Core-collapse Supernovae: Effects of fluctuations from

inside
Conference: RIKEN - RESCEU Joint Seminar 2019

Place: Tokyo Japan,  Date: March 2019

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: Linear Analysis of Shock Dynamics in CCSNe ~Effects of Acoustic Injection and LESA~

Title: Linear Analysis of Shock Instability in CCSNe ~ Effects of Acoustic Injection and LESA~

Conference: FOE19 Fifty-one Erg

Place: Raleigh, North Carolina, USA,  Date: May 2019

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: 原始中性子星冷却におけるûュüトúノ·グúûへのweak-magnetismの影響

Conference: 日本天文学会 2019年秋季年会

Place: 熊本，Date: 2019年9月

Authors: 杉浦健一，中里健一郎，山田章一





Full Name： seal or signature

Date Submitted(yyyy/mm/dd):

種類別
(By Type)

List of research achievements for application of Doctor of Science, Waseda University

杉浦0健一

題名1  発表û発行掲載誌名100発表û発行年月100連名者ÿ申請者含むĀ

(theme, journal name, date & year of publication, name of authors inc. yourself)

2022/9/12

Conference: 第47回天文û天体物理若手夏の学校

Title: Linear Analysis of Shock Dynamics in CCSNe ~Effects of Acoustic Injection and LESA~

Conference: Physics of Core-Collapse Supernovae and Compact Star Formations

Authors: 杉浦健一，高橋和也，山田章一

Place: 長野，Date: 2017年7月

Authors: Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada

Title: 超新星コアにおける流体力学的不安定星の線形解析

Place: Tokyo, Japan，Date: March 2018


